MATH5453M Foundations of Fluid Dynamics

Example Sheet 1

To hand in by Friday 24 October 2025 at 5pm in the box outside my office (11.07)

1. A fluid flow is given by

$$\mathbf{u} = (U_0, \sin \Omega t, 0)$$
.

- (i) Find the equation of the streamlines at time t.
- (ii) Find the path of a particle that is located at (x_0, y_0, z_0) at time t = 0. Hence find the equation of the particle path of a particle released at the point (0, 1, 0) at t = 0.
- (iii) For t > 0, dye is continuously released into this flow at the point (0,1,0). Find the equation of the resulting streakline at time $t = 2\pi/\Omega$.
- (iv) Sketch the streakline and the particle paths of a particle released at the point (0,1,0) at t=0. Are they different? Why?
- **2.** An incompressible fluid occupies the space $0 \le y \le \infty$ above a plane rigid boundary which oscillates in the x-direction with velocity $U\cos(\omega t)$. We assume that the fluid velocity field has the form $\mathbf{u} = u(y,t)\hat{\mathbf{x}}$ and that the pressure is constant, $p = p_0$.
 - (i) Simplify the Navier-Stokes equation.
 - (ii) By seeking a solution of the form $u = Re\{f(y)exp(i\omega t)\}$, where $Re\{\cdot\}$ denotes the real part of \cdot , find the real form of the velocity u. Hint: $2i = (1+i)^2$.
- (iii) We consider the above problem for water (viscosity $\mu = 10^{-3}$ Pa·s, density $\rho = 10^{3}$ kg·m⁻³), an oscillation period of 1s and $U = 1 \text{m·s}^{-1}$. What is the maximum amplitude of the velocity one centimetre above the oscillating boundary?
- **3.** We consider the steady flow

$$\mathbf{u} = -\frac{1}{2}\alpha R\mathbf{\hat{R}} + u_{\phi}\mathbf{\hat{\phi}} + \alpha z\mathbf{\hat{z}},$$

where $\hat{\mathbf{R}}$ is the unit radial vector, $\hat{\boldsymbol{\phi}}$ is the unit azimuthal vector, $\hat{\mathbf{z}}$ is the unit axial vector and where R denotes the radial distance from the origin, u_{ϕ} may depend on R, z is the axial coordinate and where α is a constant.

- (i) Show that the flow is incompressible.
- (ii) Find the expression of the vorticity as a function of u_{ϕ} , R and α .
- (iii) From the ϕ -component of the Navier-Stokes equation, obtain an equation for the vorticity.
- (iv) Calculate the vorticity, where ω_0 is the vorticity at the origin.
- (v) Sketch the flow in the (R, z)-plane.
- (vi) Write the vorticity equation and explain the role of each of the terms.
- (vii) For the above vortex and using the vorticity equation, show what the dominant phenomena are for small R.
- (viii) Same question as (vii) but for large R.