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1 History

This project started at the Dynamics Days Europe 2018 in Loughborough (UK), where the
presentation of Dr. Lucas Goehring (Nottingham Trent University) about dry salt lake patterns
caught my attention. DryLa 1 was written in the following weeks. It was a spectral solver
for the sub-surface fluid dynamics of dry salt lakes that used a Fourier–Galerkin discretization
in the horizontal directions and a Gauss–Lobatto–Legendre collocation method in the vertical
direction.

DryLa 2 was produced for Matthew Threadgold’s PhD project, funded by the Natural Envi-
ronment Research Council’s Doctoral Training Programme: Panorama in 2020. It was mostly
an improvement in user-friendliness. Its computation speed and memory efficiency was subse-
quently improved, leading to DryLa 3 in early 2021.

To circumvent limitations in lake depth created by the collocation method, DryLa was entirely
rewritten in 2022 to rest on a spectral element decomposition in the vertical direction. Oh, and
the vertical direction was no longer called y but z. DryLa 5 was a major update made in early
2024 focusing on performance scalability and was followed, a few months later, by DryLa 6,
further improving scalability and memory management.
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Figure 1: Sketch of the numerical domain modeling the sub-surface region of dry salt lake. The domain
is a cuboid supported by the x- and y-axes in the horizontal direction and for which the z-axis is in the
direction of gravity, g. Solutions are assumed to be periodic in the x- and y-directions with periods Γx

and Γy respectively. The surface (shaded) is located at z “ 0 and the bottom of the lake is located at
z “ h.

2 Dry salt lakes equations

We consider the fluid dynamics that takes place below the salty crust of dry lakes. The domain of
interest is sketched in Figure 1. It is a cuboid of height h identified by the Cartesian coordinates
x and y in the horizontal directions and for which the vertical coordinate, z, increases downward.
We assume that solutions are spatially periodic in the horizontal directions, with period Γx in
x and Γy in y.

2.1 Primitive system

The fluid dynamics of interest is dominated by two phenomena: (i) evaporation, which we model
using a through flow boundary condition in the vertical direction; and (ii) buoyancy, triggered by
a large-scale, upward gradient of salinity accross the domain and modeled by Dirichlet boundary
conditions for the salinity. The interior of the lake is considered to be a porous medium so that
the resulting non-dimensionalized equations are:

u “ ´∇p`RaS ẑ, (1)

∇ ¨ u “ 0, (2)

BtS ` pu ¨ ∇qS “ ∇2S, (3)

where u “ ux̂`vŷ`wẑ is the velocity, x̂ and ŷ are the unit vectors in the horizontal directions,
ẑ is the unit vector in the descending direction, p is the pressure, Ra is the Rayleigh number, S
is the salinity and t is the time. Equation (1) is the Darcy law for a fluid in a porous medium
including the buoyancy force. Equation (2) is the incompressibility condition and equation (3)
is the standard equation for salinity, modeling both advection and diffusion. A discussion on
the non-dimensionalization of these equations is given in [4]. We solve these equations together
with periodic boundary conditions in both horizontal directions and with the following boundary
condition at the top of the domain:

S “ ´w “ 1, at z “ 0. (4)
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The boundary condition at z “ h is not obvious. Since dry salt lakes can extend to large depths,
it might not be practical to design correspondingly deep numerical domains and, even if it were,
other geological phenomena would enter the leading order modeling like horizontal groundwater
flows. For these reasons, we propose two types of boundary conditions at the bottom of the
domain:

reflective : S “ w ` 1 “ 0, at z “ h, (5)

penetrative : BzS “ u “ v “ 0, at z “ h. (6)

2.2 Sequential system

Solving system (1)–(3) is not straightforward due to the fact that we do not possess an equation
to determine the pressure. Such an equation can be classically obtained by noticing that the
velocity can be eliminated from equation (1) by taking the divergence and using the incompress-
ibility condition. The resulting system reads:

∇2p “ Ra BzS, (7)

u “ ´∇p`RaS ẑ, (8)

BtS ` pu ¨ ∇qS “ ∇2S, (9)

where the boundary conditions for the pressure are converted from the Darcy law, the boundary
condition on the velocity and the incompressibility condition. The top boundary condition for
this system reads:

S “ Bzp´Ra “ 1, at z “ 0, (10)

Lastly, the bottom boundary condition is choosen between the following:

reflective : S “ Bzp´ 1 “ 0, at z “ h, (11)

penetrative : BzS “ p “ 0, at z “ h. (12)

We refer to this system as sequential, as it allows to solve for each state variable (p, u and S)
successively rather than system (1)–(3), in which the coupling forces to solve simultaneously for
all the state variables.
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3 Temporal discretization

3.1 Underlying principles

We consider the constant time-step discretization of the time:

tn “ n△t, (13)

where △t is the constant, typically small, time-step, and n is a positive integer. It is useful here
to change referential to discuss function discretization. During one time-step, computations are
carried out to determine the value of functions at the running time knowing its values at past
times. Let us call the running time t and discretize time backwards from it: t ´ △t, t ´ 2△t,
t ´ 3△t, . . . . For simplicity, let us also introduce the following notation for the expression of a
funtion f at time t´ n△t, where n is a positive integer: fpt´ n△tq “ f t´n△t.

To discretize equation (9), we need to express all its terms at the running time:

pBtSqt ` rpu ¨ ∇qSst “
`
∇

2S
˘t
, (14)

but we do not know the value of any of these functions at that time. We could treat the Laplacian
explicitly by extrapolating its value from known times but this is a typical mistake that would
cost the numerical scheme its stability. Instead, it is best kept implicit, as in the above equation.
It will form part of the left-hand-side operator for this equation. The nonlinear term cannot be
treated implicitly, so we need to extrapolate it from its past values. A similar observation can
be made for the time-derivative, which should be expressed by means of a Taylor expansion of
S.

3.2 Extrapolation of the nonlinear term

To avoid heavy notation, we introduce the following notation: N “ pu ¨ ∇qS. We aim to
approximate N t by a linear combination of the known values: N t´△t, N t´2△t, N t´3△t, . . . . Let
us write the Taylor expansions corresponding to these values based on the running time:

N t´△t “ N t `
p´1q1△t

1!

BN

Bt

t

`
p´1q2△t2

2!

B2N

Bt2

t

`
p´1q3△t3

3!

B3N

Bt3

t

`Op△t4q, (15)

N t´2△t “ N t `
p´2q1△t

1!

BN

Bt

t

`
p´2q2△t2

2!

B2N

Bt2

t

`
p´2q3△t3

3!

B3N

Bt3

t

`Op△t4q, (16)

N t´3△t “ N t `
p´3q1△t

1!

BN

Bt

t

`
p´3q2△t2

2!

B2N

Bt2

t

`
p´3q3△t3

3!

B3N

Bt3

t

`Op△t4q. (17)

...

Obtaining a first-order scheme comes down to rearranging equation (15):

N t “ N t´△t ` △t
BN

Bt

t

`Op△t2q, (18)

where the error is Op△tq. To obtain a second-order scheme, we need to involve two time-steps:

β1N
t´△t ` β2N

t´2△t “ pβ1 ` β2qN t `

„
p´1q1β1 ` p´2q1β2

1!


△t

BN

Bt

t

. . .

`

„
p´1q2β1 ` p´2q2β2

2!


△t2

B2N

Bt2

t

`Op△t3q, (19)
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Scheme order β1 β2 β3

First order 1 0 0

Second order 2 ´1 0

Third order 3 ´3 1

Table 1: Coefficients of extrapolation for the nonlinear terms as a function of the scheme order up to
third order.

which imposes the following conditions on β1 and β2:

β1 ` β2 “ 1

p´1q1β1 ` p´2q1β2
1!

“ 0

,
/.
/-

ñ

#
β1 “ 2

β2 “ ´1
. (20)

The resulting approximation is then:

N t “ 2N t´△t ´N t´2△t ` △t2
B2N

Bt2

t

`Op△t3q, (21)

where we can see that the term proportional to △t is absent and that the error is Op△t2q.

Any higher-order scheme can be obtained in a similar way, by involving as many terms as the
order of the desired scheme. A νth-order extrapolation scheme takes the form:

N t “
νÿ

i“1

βiN
t´i△t `Op△tνq, (22)

and yields the following system for the extrapolation coefficients:

νÿ

i“1

βi “ 1, (23)

νÿ

i“1

ij

j!
βi “ 0, j “ 1, . . . , ν. (24)

The resulting coefficients, up to a scheme of third-order, are shown in table 1.

3.3 Approximation of the time-derivative

The same method is used to obtain an approximation of the time-derivative as that used to
determine the coefficients of the nonlinear term extrapolation. We start by writing the salinity
in its Taylor expansion form:

St´i△t “ St `
p´iq1△t

1!

BS

Bt

t

`
p´iq2△t2

2!

B2S

Bt2

t

`
p´iq3△t3

3!

B3S

Bt3

t

`Op△t4q, (25)

where i is a positive integer that identifies the time-step. There is a couple of differences between
the ways the time-derivative and the nonlinear term are treated. The first one is that we can
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Scheme order △t α0 △t α1 △t α2 △t α3

First order 1 ´1 0 0

Second order 3{2 ´2 1{2 0

Third order 11{6 ´3 3{2 ´1{3

Table 2: Coefficients of extrapolation for the time-derivative as a function of the scheme order up to
third order.

afford to keep the implicit term St in the time-derivative expansion: it will become part of the
left-hand-side operator and improve the scheme stability. The expansion then follows:

BS

Bt

t

“
νÿ

i“0

αiS
t´i△t `Op△tνq, (26)

where the difference with the extrapolation in equation (22) is that the coefficient index starts
at 0, allowing the implicit term to enter the expansion. The second difference is that we approx-
imate the first derivative and not the (non-differentiated) value of the function. With these in
mind, the following system for the coefficients can be written:

νÿ

i“0

αi “ 0, (27)

νÿ

i“0

i αi “ ´
1

△t
, (28)

νÿ

i“0

ij

j!
αi “ 0, j “ 2, . . . , ν. (29)

The resulting coefficients are shown in table 2 for discretization schemes up to third-order.

3.4 Summary of the time-discretized system

Using the principles explained in the previous Sections, we can discretize system (7)–(9) into:

`
α0 ´ △t∇2

˘
St “ ´

νÿ

i“1

αiS
t´i△t ´ △t

νÿ

i“1

βi rpu ¨ ∇qSst´i△t , (30)

∇2pt “ Ra BzS
t, (31)

ut “ ´∇pt `RaStẑ, (32)

where rpu ¨ ∇qSst´i△t “
`
ut´i△t ¨ ∇

˘
St´i△t (and not the result of the extrapolation obtained at

a previous time-step—another classic mistake) and where the equations are to be solved in this
order. Equation (30) consists in combining past values of the salinity and of the nonlinear term
into a right-hand-side and applying the inverse of a Helmholtz operator, α0 ´△t∇2, augmented
by boundary conditions:

St “ 1, at z “ 0, (33)
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together with either of the two bottom boundary conditions:

reflective : St “ 0, at z “ h, (34)

penetrative : BzS
t “ 0, at z “ h. (35)

The result, St, is then used to compute the right-hand-side of equation (31). The pressure at the
running time, pt, is then solved for by inverting a Laplace operator, ∇2, provided the boundary
conditions:

Bzp
t “ 1 `Ra, at z “ 0, (36)

with one of the following boundary conditions:

reflective : Bzp
t “ 1, at z “ h, (37)

penetrative : pt “ 0, at z “ h. (38)

Lastly, pt and St are used to “read” the velocity from equation (32).

Although the coefficients obtained in Sections 3.2 and 3.3 stem from simple Taylor expansions,
the associated discretization scheme has been named differently by different researchers with
names like Backward Differentiation Formula, Adams–Bashforth and Adams–Moulton. The
first time I encountered them was in a paper by Karniadakis, Israeli & Orszag [3], where they
are attractively named stiffly-stable scheme coefficients.
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Figure 2: Equidistributed mesh for one-dimensional, periodic functions of period Γ “ 4. The location
of the N “ 16 mesh-points is shown in red.

4 Spatial discretization

4.1 Fourier–Galerkin projection

4.1.1 Principles in one dimension

As we seek periodic solutions in the horizontal directions, it is natural to turn to a Fourier–
Galerkin discretization. To understand such a discretization, let us consider a one-dimensional,
Γ-periodic function: fpxq. This function is discretized on the equidistributed mesh:

xj “
Γj

N
, j “ 0, . . . , N ´ 1, (39)

where N is the number of points and where the last point (j “ N) is omitted as it is unnecessary:
fpxN q “ fpx0q due to the periodicity of the function. An example of such a mesh is shown in
figure 2. Note that to produce good quality plots of any function represented using this type of
mesh, one needs to include the xN data in the output.

We can express fpxq as a discrete Fourier series:

fpxq “
8ÿ

n“´8

f̂n exp

ˆ
ınx

2π

Γ

˙
, (40)

where the f̂n are the complex coefficients associated with the Fourier expansion and ı is the
imaginary unit number. The above choice of basis implicitly takes care of the periodic boundary
condition so that the expansion (40) is, in fact, a Galerkin projection. By using the finite mesh
(39), we can write:

fpxjq “

N{2ÿ

n“´N{2`1

„
f̂n exp

ˆ
ınj

2π

N

˙
(41)

ñ fpxjq “ f̂0 `

N{2´1ÿ

n“1

„
f̂n exp

ˆ
ınj

2π

N

˙
` f̂˚

n exp

ˆ
´ınj

2π

N

˙
` f̂N{2p´1qj , (42)

where j “ 0, . . . , N´1 and where the asterisk denotes complex conjugation. Some simplifications
were carried out: (i) the n “ 0 and n “ N{2 modes taking a trivial form, they have been taken
out of the sum; and (ii) the replacement of the “negative” frequency coefficients by the complex
conjugate of the corresponding positive frequency is a consequence of the fact that fpxq is a
real-valued function (f̂´n “ f̂˚

n ). Lastly, the reason for the limited range of n is explained in
Section 4.1.2. The operation that takes the function values in physical space, fpxjq, and returns

its values in wavenumber space, f̂n, is called forward Fourier transform:

f̂n “
1

N

N´1ÿ

j“0

fpxjq exp

ˆ
´ınj

2π

N

˙
, n “ 0, . . . , N{2, (43)
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while the reverse operation, expressed in equation (42), is called backward Fourier transform.
Note that the normalization by N , here in expression (43), can either be carried out in the
forward or in the backward Fourier transform. In DryLa, the above Fourier transforms are
carried out efficiently by an algorithm called fast Fourier transform (FFT) and implemented via
the use of the library FFTW [2].

4.1.2 Danger: Aliasing

The range of n in equation (42) is better understood by examining the way modes are repre-
sented. First of all, modes with wavenumber above n ě N do not carry any information as our
choice of mesh-grid makes them project exactly onto modes with wavenumber m ă N , where
n ” mpmodNq:

exp

ˆ
ıpm `Nqj

2π

N

˙
“ exp

ˆ
ımj

2π

N

˙
. (44)

As a result, all the information is contained in wavenumbers 0 ď n ă N .

The second remark is less obvious. Let us have a look at a discretized mode of wavenumber
N{2 `m, with m ă N{2:

exp

„
ı

ˆ
N

2
`m

˙
j
2π

N


“ p´1qj exp

ˆ
ımj

2π

N

˙
(45)

“

„
p´1qj exp

ˆ
´ımj

2π

N

˙˚

(46)

“

"
exp

„
ı

ˆ
N

2
´m

˙
j
2π

N

*˚

. (47)

This introduces a special wavenumber called Nyqvist frequency: n “ N{2. This symmetry around
this wavenumber is responsible for a phenomenon called frequency folding, whereby modes be-
yond the Nyqvist frequency fold back onto modes of lower wavenumber: their coefficients appear
complex conjugated on the mode of wavenumber opposite and at the same distance from the
Nyqvist frequency.

As a result from the above remarks, modes with wavenumber higher than the Nyqvist frequency
are incorrectly represented. This phenomenon is called aliasing and is exemplified in Figure 3
for two functions. While the continuous representations of cosp9xq and cosp7xq look drastically
different, their values coincide on the 16 equidistributed meshpoints between 0 and 2π (not
counting in the point at 2π). This results from the fact that, given a 16 point mesh, the Nyqvist
frequency is n “ 8 and, thus, that wavenumber n “ 9 folds back onto n “ 7. A similar
observation can be made with sinp9xq, with the exception that a change of sign needs to be
applied during frequency folding, owing to the complex conjugation of the coefficients, as shown
above.

4.1.3 Information storage

The discretized function fpxjq contains N real values. This is the amount of information avail-
able on the collocation points. The Fourier coefficients are complex, so the storage of the same
amount of information necessitates N{2 coefficients, corresponding to wavenumbers 0 to N{2´1.
However, the first coefficient (n “ 0) corresponds to the constant mode: cosp0xq ` ı sinp0xq “ 1.
Since f is real-valued, the imaginary part of the associated coefficient contains no information,
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Figure 3: Illustration of the phenomenon of aliasing on a Γ “ 2π-periodic domain in x meshed with
N “ 16 equidistributed points given by equation (39) and whose location is shown by the thick vertical
lines. The Nyqvist frequency associated with this mesh is nNyq “ N{2 “ 8. The top (resp. bottom)
figure shows that cosp9xq (resp. sinp9xq) coincides with cosp7xq (resp. ´ sinp7xq) onto the mesh-points.

so we need to find one more real-valued piece of information. The Nyqvist mode is the next one
in order of growing wavenumber. It takes the form:

exp

ˆ
ı
N

2
j
2π

N

˙
“ exp pıjπq (48)

“ p´1qj . (49)

It is real-valued and, therefore, completes the representation of the function.

In practice, both the coefficients of the constant mode and of the Nyqvist frequency modes are
stored as complex numbers but their imaginary part does not enter any calculation. Fourier
coefficients information storage is illustrated in Figure 4 for a function discretized over N “
16 mesh-points. The physical representation of the function contains 16 real-valued pieces of
information. When the Fourier transform of the function is taken, a set of 9 complex coefficients
are returned, corresponding to wavenumber 0 to 8. However, the imaginary part of the coefficient
of the mode of wavenumber 0 and that of the coefficient of the mode of wavenumber 8 do not
contain any information. The Fourier coefficient then contain 1 ` 2 ˆ 7 ` 1 “ 16 real-valued
pieces of information, as much as the collocation representation of the function.

4.1.4 Prevention: De-aliasing

Functions are decomposed into a linear combination of exponentials, as in expression (42).
Multiplying two discretized functions by one another yields exponential products. For example:

exp

ˆ
ınx

2π

Γ

˙
exp

ˆ
ımx

2π

Γ

˙
“ exp

ˆ
ıpn `mqx

2π

Γ

˙
, (50)

Page 12 of 32



DryLa Manual – Dr. Cédric Beaume

Figure 4: Top: Representation of the information contained in a real-valued, discretized function over
N “ 16 collocation points, labeled 0 to 15. The information contained in physical space is real-valued.
Bottom: Representation of the information of the same function via its Fourier coefficients. All coeffi-
cients are complex but only the real and imaginary parts that contain information are represented. The
numerical lable indicates the wavenumber and the suffix “i” indicates the imaginary part of the coefficient.

Figure 5: Graphical representation of the frequency folding phenomenon. In order of ascending
wavenumber, modes project onto themselves until the Nyqvist frequency, N{2, then spuriously down
until wavenumber 0 before going back up again in a periodic process. The idea behind dealiasing via
Fourier filtering is to filter out modes with wavenumber larger than k in such a way that when the non-
linearity is applied to a mode of wavenumber k, frequency folding occurs but does not reach back to k,
as shown by the dark red arrow.

where the wavenumbers n and m are integers. The result is a function whose wavenumber is
the sum of the wavenumbers of the initial functions. By extension, we can easily see that a
nonlinearity of order η takes energy from a mode of wavenumber k and redistributes it into a
mode of wavenumber ηk. If our mesh does not possess a sufficiently large number of points
to accommodate such a function, we will end up with aliasing: the energy contained in that
function will spuriously be redistributed to other, lower wavenumber modes.

One way to prevent aliasing is to use a Fourier filter, which is a simple on/off low-pass filter that
replaces the Fourier coefficients of modes whose wavenumber is larger than a cutoff value by 0.
To calculate this cutoff value, we needs to make use of our understanding of frequency folding.
We want the application of the nonlinearity onto our largest accepted wavenumber mode to
fold back as close as possible but not onto itself, as illustrated in Figure 5. This can be put in
equation as follows:

ηk ă
N

2
`

ˆ
N

2
´ k

˙
, (51)

where the left-hand-side is the wavenumber resulting from the application of the nonlinearity
of order η and where the right-hand-side is the “distance” traveled on the line of wavenumbers
from 0 to the folding point (N{2) and back to the original wavenumber N{2´ k. It follows that

k ă
N

η ` 1
(52)

identifies all the wavenumbers k that can remain unfiltered.

In our case, the nonlinearity is of second order, so we have k ă N{3, filtering out about 1{3 of
the modes. To take a concrete example, let us consider the case shown in Figure 4, whereby
a function is evaluated on N “ 16 mesh-points. This function is characterized numerically by
16 pieces of real-valued information, whether it is considered in its collocation or its Fourier
coefficient form. Using the Fourier filter associated with the quadratic nonlinearity, we should
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only retain modes associated with wavenumbers k ă N{3 « 5.33. We then filter out the modes
associated with wavenumbers 6, 7 and 8, which corresponds to 5 real-valued pieces of information
(remember that wavenumber 8 is the Nyqvist frequency and only contain one piece of real-valued
information), thereby losing 31.25% of the information initially contained by the function.

4.1.5 Extension to two dimensions

The extension of the previous Sections to two-dimensional domains is relatively straightforward.
For a domain of periodicity Γx in the x-direction and Γy in the y-direction, the equidistributed
mesh is defined as follows:

xj “
Γx j

N
, j “ 0, . . . , N ´ 1, (53)

yk “
Γy k

M
, k “ 0, . . . ,M ´ 1, (54)

where N (resp. M) is the number of points in the x-(resp. y-)direction. The discretization then
becomes:

fpxj, ykq “

M{2ÿ

m“´M{2`1

exp

ˆ
ımk

2π

M

˙ $
&
%f̂0,m . . .

`

N{2´1ÿ

n“1

„
f̂n,m exp

ˆ
ınj

2π

N

˙
` f̂˚

n,m exp

ˆ
´ınj

2π

N

˙
` f̂N{2,mp´1qj

,
.
- , (55)

where j “ 0, . . . , N ´ 1 and k “ 0, . . . ,M ´ 1. Expression (55) can be thought of as simply a
Fourier transform in the y-direction applied after the Fourier transform in the x-direction and
given in expression (42). Here, the coefficient symmetry due to the function fpx, yq being real has
been used on the index n and m is allowed to take positive and negative values and m “ ´M{2
has been discarded as it is the negative Nyqvist frequency associated with the y-direction and
would project exactly onto the (positive) Nyqvist frequency m “ M{2. The associated forward
transform is, by extension of expression (43):

f̂n,m “
1

NM

N´1ÿ

j“0

M´1ÿ

k“0

fpxj, ykq exp

ˆ
´ınj

2π

N

˙
exp

ˆ
´ımk

2π

M

˙
, (56)

where n “ 0, . . . , N{2 and m “ ´M{2 ` 1, . . . ,M{2.

The storage of the Fourier coefficients is a little more complicated than in one dimension. As
shown in equation (55), the information is stored only for positive wavenumbers n in the x-
direction but for both positive and negative wavenumbers m in the y-direction. All coefficients
contain complex-valued information, except for four modes: pn,mq “ p0, 0q, pN{2, 0q, p0,M{2q
and pN{2,M{2q, whose imaginary part does not contain any information, either because they
are responsible for imaginary contributions to the physical space representation of the function,
or because the associated modes project trivially onto the mesh-points. Lastly, the coefficients of
the modes pn,mq and pn,´mq are related by complex conjugation for n “ 0 and n “ N{2 so that
the resulting mode combination yields a real expression in physical space. This storage scheme
is illustrated in Figure 6 for a mesh-grid of N “ 16 andM “ 16 points. The physical form of the
function (left panel) shows 256 real-valued pieces of information, one at each collocation point.
In wavenumber space (right panel), the structure of the information is less trivial. Each value
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Figure 6: Left: Representation of the information contained in a two-dimensional, real-valued, discretized
function over N “ 16 collocation points in x and M “ 16 collocation points in y, each labelled from
0 to 15. Right: Representation of the same function in wavenumber space after the application of the
Fourier transform. Wavenumbers 0 to 8 in the x-direction and ´7 to 8 in the y-direction are stored in
complex form but some of these coefficients do not contain as much information as they seem: while most
coefficients are stored complex (denoted C), some only contain information in their real part and are
highlighted in blue. The modes pn “ 0,mq and pn “ 0,´mq, highlighted in pink, as well as pn “ 8,mq
and pn “ 8,´mq, highlighted in orange, are related by complex conjugation, implying that they contain
only half as much information as their memory usage could contain.

of n between 1 and 7 included contains complex coefficients which maximize the information
contained for the allocated memory: 16 complex-valued pieces of information or, equivalently
32 real-valued pieces of information. The modes for n “ 0 or n “ 8 contain either real-valued
coefficients or complex coefficients linked to another by complex conjugation. Each of these
thus only contains the equivalent of one real-valued piece of information, implying that, in
total, the n “ 0 and n “ 8 modes contain each 16 real-valued pieces of information. The
total amount of information contained in the Fourier coefficients is, in order of increasing n:
16 ` 7 ˆ 32 ` 16 “ 256, guaranteeing that the same amount of information is contained in
wavenumber space as in physical space.

Lastly, a Fourier filter has to be applied in each directions to prevent aliasing. This is done
straightforwardly by taking one direction at a time. For example, we consider the function
represented in Figure 6. On an N “ 16-point mesh in x, a quadratic nonlinearity will only allow
modes up to n “ 5 to lead to non-aliased calculations (see Section 4.1.4 for a full explanation).
We filter out all the information contained in wavenumbers 6, 7 and 8, resulting in the loss of
80 real-valued pieces of information. As we also have M “ 16 points in the y-direction, we will
also only accept modes with wavenumbers up to m “ 5. Of the information that survived the
x-filter, we remove the information contained in the lines where m “ ˘6, m “ ˘7 and m “ 8,
or 55 more real-valued pieces of information. We have thus filtered out 135 real-valued pieces of
information, or approximately 52.7% of the information that the memory could contain.
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4.1.6 Example: Helmholtz equation

Let us consider the simple Helmholtz equation:

`
k1 ` k2∇

2
˘
upx, yq “ fpx, yq, (57)

where u is the solution, f is a prescribed right-hand-side and k1 and k2 are constants defining
the Helmholtz operator. We consider that u is periodic in x with period Γx and in y with period
Γy.

Looking at the two-dimensional discrete Fourier transform:

upx, yq “
8ÿ

i“´8

8ÿ

j“´8

ûi,j exp

ˆ
ıix

2π

Γx

˙
exp

ˆ
ıjy

2π

Γy

˙
, (58)

where the circumflex accent denotes the Fourier transform in the x- and y-directions, we see
that:

yBxui “ ıi
2π

Γx

pu, (59)

yByuj “ ıj
2π

Γy

pu, (60)

(61)

in such a way that:

y∇2ui,j “ ´4π2
ˆ
i2

Γ2
x

`
j2

Γ2
y

˙
pu. (62)

As a result, using the forward Fourier transform in the x- and y-directions on equation (57), we
get: „

k1 ´ 4π2k2

ˆ
i2

Γ2
x

`
j2

Γ2
y

˙
ûi,j “ f̂i,j. (63)

We can see that the use of the Fourier transform has decoupled the x and y components of the
differential equation and the operator is now just a scalar quantity for a given couple pi, jq. The
fact that the operator is diagonalized (better seen in one dimension) by the use of the Fourier
transform is a major advantage: Fourier transforming a one-dimensional field typically costs
N ˆ lnpNq operations, where N is the number of points whereas other transforms might involve
a matrix-vector multiplication, which costs N ˆN operations.

4.2 Gauss–Lobatto–Legendre collocation

To discretize the equations in the vertical direction, I made the choice to use a collocation
method. The idea behind these methods is to write down the equations at the location of the
mesh-points and to determine an approximate solution that minimizes the error there.

4.2.1 Gaussian quadrature

Collocation methods are often used in conjunction with a Gaussian quadrature, which enables
to compute integrals with great accuracy. For a suitable choice of quadrature points zk and
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weights wk, where k “ 0, . . . , N ,

ż zmax

zmin

ωpzqfpzqdz “
Nÿ

k“0

wkfpzkq, (64)

where ωpzq is a weight function, is exact when f is a polynomial of degree 2N´1 on rzmin, zmaxs.
The advantage of the Gaussian quadrature is its unusually high order (it is not “just” of order
n, as one would expect).

The most basic Gaussian quadrature is a rule on integration and does not include the boundary
points: z “ zmin and z “ zmax. These are necessary in our case, as they will allow to apply
the boundary conditions. Fortunately, these points can be included into the quadrature, in
which case it is called a Gauss–Lobatto quadrature. If we further set ωpzq “ 1 (a good choice
for functions that are not singular at the boundary), we obtain the Gauss–Lobatto–Legendre

quadrature [1], which is the one we will be using.

The Gauss–Lobatto–Legendre quadrature is associated with the following mesh-points:

z0 “ zmin, (65)

zk “ zmin `
zmax ´ zmin

2
p1 ` ζkq , k “ 1, . . . , N ´ 1, (66)

zN “ zmax, (67)

where ζk is the kth root of the first derivative of LN pzq, which is the N th Legendre polynomial,
and where:

wk “
zmax ´ zmin

NpN ` 1qLN pzkq2
, k “ 0, . . . , N, (68)

are the quadrature weights. There exists a number of ways to generate the Legendre polynomials,
from explicit definitions to solutions of differential equations but, perhaps, the more numerically
friendly is the following recurrence relation:

L0pzq “ 1, (69)

L1pzq “ z, (70)

Lk`1pzq “ “
2k ` 1

k ` 1
z Lkpzq ´

k

k ` 1
Lk´1pzq, k “ 1, 2, . . . . (71)

An example of a Gauss–Lobatto–Legendre mesh is shown in Figure 7 for a domain spanning
r0, 1s meshed with 17 points. We can clearly see a key characteristics of these points: they are
much denser at the edges of the domain, where the point-spacing scales like N´2 and much more
sparsely distributed around the center, where the point-spacing scales like N´1. Furthermore,
the weights associated with these points are larger where the point distribution is sparser to
reflect the increased importance of the mesh-points in more sparsely meshed areas.

4.2.2 Differential operator

Let us consider the simple Helmholtz equation:
`
k1 ` k2 B2z

˘
upzq “ fpzq, (72)

where u is the solution, f is a given right-hand-side and k1 and k2 parameterize the Helmholtz
operator. Let us also prepare the collocation method by expanding functions in terms of La-
grange polynomials:

upzq “
Nÿ

k“0

ukψkpzq, (73)
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Figure 7: Representation of a Gauss–Lobatto–Legendre discretization of the interval r0, 1s using 17
points. The location of the points is shown along the horizontal axis by the large, dark-blue crosses while
the weight w associated with these points is shown by the light-blue curve.

where ψkpzq is the kth Lagrange polynomial associated with the Gauss–Lobatto–Legendre mesh-
grid defined in equations (65)–(67):

ψkpzq “
Nź

l“0
l‰k

z ´ zl

zk ´ zl
. (74)

The advantage of using Lagrange polynomials is that they possess the Kronecker property:
ψkpzmq “ δkm, where δ is the Kronecker. This property is in line with the spirit of collocation
methods, since it implies that upzkq “ uk.

To recast equation (72) into an integral and use the Gauss–Lobatto–Legendre quadrature ex-
plained in the Section 4.2.1, we first multiply it by a set of test functions which, for simplicity, we
take to be the Lagrange polynomials. This preliminary step has two purposes: it allows to ob-
tain as many equations as there are mesh-points (one per Lagrange polynomial), and it provides
an way to implement boundary conditions explicitly, as we shall see. The choice of Lagrange
polynomial, here, is, again, motivated by the Kronecker property. Equation (72) becomes:

ż zmax

zmin

k1 upzqψlpzq dz `

ż zmax

zmin

k2 ψlpzq B2zupzq dz “

ż zmax

zmin

fpzqψlpzq dz, l “ 0, . . . , N, (75)

which, upon integration by part, generates a boundary term, which is nothing else but the
Neumann boundary condition:

ż zmax

zmin

k1 upzqψlpzq dz `

„
k2 ψlpzq Bzupzq

zmax

zmin

´

ż zmax

zmin

k2 Bzψlpzq Bzupzqdz

“

ż zmax

zmin

fpzqψlpzq dz, l “ 0, . . . , N. (76)

Now, we discretize the functions u and f according to equation (73) and without touching the
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boundary term:

ż zmax

zmin

Nÿ

k“0

k1 uk ψkpzqψlpzq dz `

„
k2 ψlpzq Bzupzq

zmax

zmin

. . .

´

ż zmax

zmin

Nÿ

k“0

k2 uk Bzψlpzq Bzψkpzq dz . . .

“

ż zmax

zmin

Nÿ

k“0

fk ψkpzqψlpzq dz, l “ 0, . . . , N, (77)

where we have made use of the fact that the coefficients uk and fk do not depend on z. We
can now express the above equation at the Gauss–Lobatto–Legendre mesh-points and apply the
quadrature rule for all integrals:

Nÿ

j“0

˜
wj

Nÿ

k“0

k1 uk ψkpzjqψlpzjq

¸
`

„
k2 ψlpzjq Bzupzjq

j“N

j“0

. . .

´
Nÿ

j“0

˜
wj

Nÿ

k“0

k2 uk Bzψlpzjq Bzψkpzjq

¸
. . .

“
Nÿ

j“0

˜
wj

Nÿ

k“0

fk ψkpzjqψlpzjq

¸
, l “ 0, . . . , N, (78)

which, thanks to the Kronecker property of the Lagrange polynomials, simplifies into:

Nÿ

j“0

Nÿ

k“0

k1 wj uk δjk δjl ` k2 δNl BzupzN q ´ k2 δ0l Bzupz0q . . .

´
Nÿ

j“0

Nÿ

k“0

k2 wj uk Bzψlpzjq Bzψkpzjq . . .

“
Nÿ

j“0

Nÿ

k“0

wj fk δjk δjl, l “ 0, . . . , N. (79)

This expression is much simpler than it seems. First of all, the first double sum involves two
Kronecker operators and reduces down to a single term, much like the right-hand-side. Fur-
thermore, we note that the boundary terms are only present for equations l “ 0 and l “ N .
Given that the boundary conditions are known, it is convenient to send the related terms to the
right-hand-side. The resulting system reads:

k1ul ´
Nÿ

j“0

Nÿ

k“0

k2
wj

wl

uk Bzψlpzjq Bzψkpzjq “ fl . . .

`
k2

wl

Bzupz0qδ0l ´
k2

wl

BzupzN qδNl, l “ 0, . . . , N, (80)

where we have divided by wl.

Equation (80) features the derivative of the Lagrange polynomials at the Gauss–Lobatto–
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Legendre mesh-points. Fortunately, it can easily be computed:

Dkl “

$
’’’’’’’’’’’’&
’’’’’’’’’’’’%

2LN pzkq

pzmax ´ zminqpzk ´ zlqLN pzlq
k ‰ l

NpN ` 1q

2pzmax ´ zminq
k “ l “ 0

´
NpN ` 1q

2pzmax ´ zminq
k “ l “ N

0 otherwise

, (81)

where Dkl “ Bzψlpzkq in such a way that

Bzupzkq “
Nÿ

l“0

Dklul, (82)

is spectrally accurate. Equation (80) can then be written in matrix form:

Mlkuk “ fl ` Bl, (83)

where

Mlk “ k1 ´ k2

Nÿ

j“0

wj

wl

DjlDjk, (84)

Bl “
k2

wl

Bzupz0qδ0l ´
k2

wl

BzupzN qδNl, (85)

for l “ 0, . . . , N and k “ 0, . . . , N .

In the case we want to impose Dirichlet boundary conditions (u0 and uN are constants), we do
no longer need equations l “ 0 and l “ N , which removes the contribution of the Neumann
boundary condition term Bl from the right-hand-side. The left-hand-side of the remaining
equations are split into a boundary contribution and the contribution of the inner part of the
domain. Since the boundary contributions are known, they are sent to the right-hand-side and
the system reduces to:

Mlkuk “ fl ´ Ml0u0 ´ MlNuN , (86)

for l “ 1, . . . , N ´ 1 and k “ 1, . . . , N ´ 1.

4.3 Spectral element domain decomposition

The discretization detailed in Section 4.2 is ideal for domains are relatively small extent in the
vertical direction. However, the lake might display a surface solutal boundary layer of small
extent compared to the vertical diffusive scale. The problem caused by this scale difference
cannot be entirely addressed by the simple collocation method: increasing the number of points
would result in a larger meshing differences between the edges and the center of the domain,
which can undermine numerical stability and yield wasteful computations (the bottom of the
lake, where the dynamics is mostly diffusive, would end up massively over-meshed).

To overcome this difficulty, we decompose the domain in elements in the vertical direction, each
element being discretized using the Gauss–Lobatto–Legendre discretization of Section 4.2. An
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Figure 8: Representation of an Gauss–Lobatto–Legendre element discretization of the interval r0, 4s
using 4 identical elements of 11 points each.

example of such a spectral element mesh-grid on r0, 4s is shown in Figure 8 for 4 elements
discretized by 11 Gauss–Lobatto–Legendre points each. The structure of each element is the
same, which means that the weights w and the differentiation matrix D are the same for each
element. One key subtelty of this discretization is that the interface between two elements is
discretized using two mesh-points: the last point of the first element and the first point of the
next one.

4.3.1 Operator structure

To understand the operator generated by the spectral element method, let us go back to a simple
Helmholtz problem to make some preliminary observations. Firstly, the elements are all iden-
tical and are discretized using Gauss–Lobatto–Legendre points, so they yield a block-diagonal
operator matrix, each block corresponding to the element operator as defined in equation (83).
As a first, naive step, we can write the resulting discretized Helmholtz problem as:

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

M1 0 0 . . .

0 M2 0 . . .

0 0 M3

...
...

. . .

MN

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

u
top
1

uR
1

ubtm
1

u
top
2

uR
2

ubtm
2

u
top
3

uR
3

ubtm
3

...

u
top
N

uRN
ubtmN

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

f
top
1

fR
1

f btm
1

f
top
2

fR
2

f btm
2

f
top
3

fR
3

f btm
3

...

f
top
N

fRN
f btmN

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

`

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

Btop

0

0

0

0

0

0

0

0

...

0

0

Bbtm

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

, (87)

where we have assumed a discretization with N elements. In writing equation (87), we have
included some new notation: subscripts indicate the element number, so that the matrix Ml

represents the element operator for element l; we have decomposed the vectors u and f within
each element into a reduced part, denoted with superscript R and which corresponds to all
the values of the vector except the first and last, and into a top (resp. bottom) part, denoted
with superscript top (resp. btm) and which corresponds to the first (resp. last) value of the
vector, located at the top (resp. bottom) of the element. The boundary condition only enter
in the top and bottom equation, as indicated by the last vectorial term in equation (87). This
equation is not entirely rigorous: it overlooks the fact that the end point of an element coincides
with the first point of the next. To correct equation (87), we note that f btml “ f

top
l`1

and

Page 21 of 32



DryLa Manual – Dr. Cédric Beaume

Figure 9: Representation of the Helmholtz operator matrix sparsity resulting from a spectral element
collocation method. The matrix is structured into blocks on its diagonal. The blocks are structured into
an inner part, shown in blue and marked R for “reduced” and an interface part, represented in gray,
which couples neighboring elements. The white region is filled with 0.

ubtml “ u
top
l`1

, since these terms correspond to the evaluation of the right-hand-side and the
solution at the same location. To take this fact into account, we average these values into new
variables uIl “ pubtml ` u

top
l`1

q{2 and f Il “ pf btml ` f
top
l`1

q{2, which correspond to the value of u

and f at the lth interfacial point. This coupling occurs at all the N ´ 1 interfaces and alters the
structure of the operator matrix from equation (87) by coupling the diagonal blocks through
their first and last rows and columns, as shown in figure 9.

To make further progress, I find it easier to approach the full operator matrix from the element
operator matrix’s perspective. Let us consider the element operator matrix for element l, Ml,
as defined in equation (83). This matrix can be decomposed into blocks:

Ml “

¨
˚̊
˚̊
˚̋

M
Ô
l M

Ò
l M

Õ
l

MÐ
l MRR

l MÑ
l

M
Ö
l M

Ó
l M

Œ
l

˛
‹‹‹‹‹‚
, (88)

where:

• MRR
l has dimension N ´ 1ˆN ´ 1 and corresponds to the terms of the equations written

inside an element and involving the points inside that element,

• M
Ô
l has dimension 1 ˆ 1 and corresponds to the term of the equation written on the top

interface involving the top interfacial points,
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• M
Œ
l has dimension 1 ˆ 1 and corresponds to the term of the equation written on the

bottom interface involving the bottom interfacial points,

• M
Õ
l has dimension 1 ˆ 1 and corresponds to the term of the equation written on the top

interface involving the bottom interfacial points,

• M
Ö
l has dimension 1 ˆ 1 and corresponds to the term of the equation written on the

bottom interface involving the top interfacial points,

• M
Ò
l has dimension 1ˆN ´ 1 and corresponds to the terms of the equation written on the

top interface that involve the points inside the element,

• M
Ó
l has dimension 1ˆN ´ 1 and corresponds to the terms of the equation written on the

bottom interface that involve the points inside the element,

• MÐ
l has dimension N ´ 1 ˆ 1 and corresponds to the terms of the equations written on

the reduced elements involving the top interfacial points.

• MÐ
l has dimension N ´ 1 ˆ 1 and corresponds to the terms of the equations written on

the reduced elements involving the bottom interfacial points.

We can use the blocks defined above to re-write the operator matrix from equation (87) in its
coupled form, as graphically represented in Figure 9:

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

. . .

M
Œ
l´1

` M
Ô
l

2

M
Ò
l

2

M
Õ
l

2

MÐ
l MRR

l MÑ
l

M
Ö
l

2

M
Ó
l

2

M
Œ
l ` M

Ô
l`1

2

M
Ò
l`1

2

M
Õ
l`1

2

MÐ
l`1

MRR
l`1

MÑ
l`1

M
Ö
l`1

2

M
Ó
l`1

2

M
Œ
l`1

` M
Ô
l`2

2

. . .

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

, (89)

for 2 ď l ď N ´ 2. The first and last block lines of the matrix are trivially written by taking the
corresponding terms from equation (88) without dividing them by two, as they do not correspond
to interactions between elements but rather to boundary equations.

The above description holds for Neumann boundary conditions. In the case of Dirichlet boundary
condition, a similar treatment as in the mono-element discretization in Section 4.2 is applied:
the first and last line of the matrix are removed and the contributions of the boundary points
to the left-hand-side are sent to the right-hand-side as in equation (86). This only impacts the
first and last elements.
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4.3.2 Schur decomposition

The system resulting from the spectral element collocation method (see equation (89) and Figure
9) is a large-dimensional coupled system, which is impractical to solve without any algebraic
trick. Fortunately, the coupling between elements is only done via the interface and is, thus, of
low order. We can take advantage of it by re-ordering the terms:

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

utop

uR
1

uI
1

uR
2

uI
2

uR
3

uI
3

...

uIN´1

uRN
ubtm

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

ÝÝÝÝÝÝÝÝÝÑ

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

uR
1

uR
2

uR
3

...

uRN
utop

uI
1

uI
2

uI
3

...

uIN´1

ubtm

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

, (90)

where the values of u inside an element, denoted by the superscript R, are now at the top of
the solution vector and follow in their original order. The remaining values are those at the
interfacial points, denoted by the superscript I, and at the boundaries. These are sent to the
end of the solution vector in the order in which they originally appeared. This reordering allows
to rewrite equation (87) in the following way:

¨
˚̊
˚̊
˚̊
˚̊
˝

MRR
1

0 0 . . . 0 MRI
1

0 MRR
2

0 . . . 0 MRI
2

0 0 MRR
3

MRI
3

...
...

. . .
...

0 0 MRR
N MRI

N

MIR
1

MIR
2

MIR
3

. . . MIR
N MII

˛
‹‹‹‹‹‹‹‹‚

¨
˚̊
˚̊
˚̊
˚̊
˝

uR
1

uR
2

uR
3

...

uRN
uI

˛
‹‹‹‹‹‹‹‹‚

“

¨
˚̊
˚̊
˚̊
˚̊
˝

fR
1

fR
2

fR
3

...

fRN
f I

˛
‹‹‹‹‹‹‹‹‚

`

¨
˚̊
˚̊
˚̊
˚̊
˝

0

0

0
...

0

BI

˛
‹‹‹‹‹‹‹‹‚

, (91)

where the MRR
l are defined in equation (88), uI (resp. f I) corresponds to the vector constituted

of the boundary and interfacial values of u (resp. f) and ordered in the same way as the values
located below the horizontal line in equation (90) and BI is a sparse vector with only two non-
zero values: Btop as its first entry and Bbtm as its last entry. The N matrices MRI

l are sparse
and of dimension pN ´ 1q ˆ pN ` 1q. Their only non-zero entries are their lth and pl ` 1qst

columns, which are, respectively, MÐ
l and MÑ

l . The N matrices MIR
l are also sparse and of

dimension pN ` 1q ˆ pN ´ 1q. Their only non-zero entries are their lth and pl` 1qst rows, which
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are, respectively, MÒ
l {2 and M

Ó
l {2. Lastly, the matrix MII is the tridiagonal matrix:

MII “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

M
Ô
1

M
Õ
1

0 0 . . . 0 0

M
Ö
1

2

M
Œ
1

` M
Ô
2

2

M
Õ
2

2
0 . . . 0 0

0
M

Ö
2

2

M
Œ
2

` M
Ô
3

2

M
Õ
3

2
0

0 0
M

Ö
3

2

M
Œ
3

` M
Ô
4

2

. . .
...

...
...

. . .
. . . 0

0 0
M

Œ
N´1

` M
Ô
N

2

M
Õ
N

2

0 0 0 . . . 0 M
Ö
N

M
Œ
N

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

.

(92)

Adapting the above to Dirichlet boundary conditions is straightforward. Since the boundary
conditions have been moved to the interface part of the field during the Schur decomposition,
we need to remove the first and last rows of uI . The resulting changes impact the MIR

l by
removing their first and last rows, the MRI

l by removing their first and last columns and M II

by removing its first and last rows and first and last columns. The right-hand-side does not
longer feature BI , which corresponded to the contribution of the Neumann boundary condition,
but now should include the penalty for the Dirichlet boundary conditions (see equation (86)) on
the first and last elements.

4.3.3 Solution method

The aim of the Schur decomposition was to take advantage of the the structure of the Helmholtz
operator generated by the spectral element collocation method. In particular, we can see from
equation (91) that the operator couples elements with each other via their interface so that
knowing the solution at the interface decouples the elements. To use this, let us first write the
system in its index form:

MRR
n uRn ` MRI

n uI “ fRn , n “ 1, . . . ,N , (93)
Nÿ

n“1

M
IR
n uRn ` M

II uI “ f I ` B
I . (94)

We can now express u inside each elements as a function of its value at the interfaces:

MRR
n uRn “ fRn ´ MRI

n uI , n “ 1, . . . ,N , (95)

which can then be used to express the value of u inside the elements in equation (94):
«
MII ´

Nÿ

n“1

MIR
n

`
MRR

n

˘´1
MRI

n

ff
uI “ f I ` BI ´

Nÿ

n“1

MIR
n

`
MRR

n

˘´1
fRn . (96)

This equation allows to determine the solution at the interfacial points, which can then be used
to decouple the N equations (95) and obtain the value of the solution inside each element.
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To summarize, the problem is solved sequentially by first solving for the solution at the interfaces:

uI “
`
SL

˘´1

«
f I ` BI ´

Nÿ

n“1

SR
n f

R
n

ff
, (97)

where SL “ MII ´
řN

n“1
MIR

n

`
MRR

n

˘´1
MRI

n and SR
n “ MIR

n

`
MRR

n

˘´1
, for n “ 1, . . . ,N , are

precomputed matrices. The solution inside the elements is then simply computed using:

uRn “
`
MRR

n

˘´1 “
fRn ´ MRI

n uI
‰
, n “ 1, . . . ,N , (98)

with the values of uI just obtained. We note that these equations only require the following
matrices to be stored and carried over during the computation: the MRR

n , the MRI
n , SL and

the SR
n . These matrices are computed in a preliminary step.
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5 Dry salt lake solver

We recall that the dry salt lake is represented using a cuboid of extent h in the vertical direction
z and of extent Γx and Γy in the horizontal directions x and y respectively. On this domain, we
solve the following equations:

∇2p “ Ra BzS, (99)

u “ ´∇p`RaS ẑ, (100)

BtS ` pu ¨ ∇qS “ ∇2S, (101)

where p is the pressure, Ra is the Rayleigh number, S is the salinity, u is the velocity field,
ẑ is the descending unit vector and t is the time. These equations are accompanied with the
following boundary condition in the vertical direction:

S “ Bzp´Ra “ 1, at z “ 0, (102)

together with one of the two bottom boundary conditions:

reflective : S “ Bzp´ 1 “ 0, at z “ h, (103)

penetrative : BzS “ p “ 0, at z “ h, (104)

and with periodic boundary conditions in both horizontal directions.

The domain is discretized using a Cartesian grid, with equidistributed points in the horizontal
directions:

xi “
iΓx

Nx

, i “ 0, . . . , Nx ´ 1, (105)

yj “
j Γy

Ny

, j “ 0, . . . , Ny ´ 1, (106)

where Nx and Ny are the number of points in the x and y directions respectively; and with a
Gauss–Lobatto–Legendre element discretization in the vertical direction z:

zk,l “
pl ´ 1qh

Ne

` z̃k, l “ 1, . . . , Ne, (107)

where Ne is the number of elements and z̃k is the kth Gauss–Lobatto–Legendre point of the
interval r0;h{Nes, where k “ 0, . . . , Nz and Nz is the number of discretization intervals per
element. Basic information on Gauss–Lobatto–Legendre discretization is presented in Section
4.2.

The horizontal directions are treated using the Fourier–Galerkin formalism developed in Section
4.1, while the vertical direction is handled using the spectral element method described in Section
4.3. We discretize the salinity as follows:

Spxi, yj , zk,lq “
Neÿ

r“1

Nzÿ

q“0

Ny{2ÿ

n“´Ny{2`1

ψq,rpzk,lq exp

ˆ
ınj

2π

Ny

˙ $
&
%

qS0,n,q,r . . .

`

Nx{2´1ÿ

m“1

„
qSm,n,q,r exp

ˆ
ımi

2π

Nx

˙
` qS˚

m,n,q,r exp

ˆ
´ımi

2π

Nx

˙
. . .

` qSNx{2,n,q,rp´1qi

,
.
- , (108)
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where ı is the imaginary unit number, i “ 0, . . . , Nx ´ 1, j “ 0, . . . , Ny ´ 1, k “ 0, . . . , Nz and

l “ 1, . . . , Ne. The coefficients in “spectral” space, qSm,n,q,r are complex, owing to the use of the
exponential Fourier basis to treat the x- and y-directions. The interpolation polynomials in the
z-direction are the element-specific Lagrange polynomials:

ψq,rpzq “

$
’’’’’&
’’’’’%

Nzź

α“0
l‰q

z ´ zα,r

zq,r ´ zα,r
if

pr ´ 1qh

Ne

ď z ď
rh

Ne

“ 0 otherwise

, (109)

for q “ 0, . . . , Nz and r “ 1, . . . , Ne. These polynomial possess the extended Kronecker property
ψq,rpzk,lq “ δkqδlr. The other state variables are discretized similarly.

We first Fourier transform the equations in both horizontal directions. This operation turns
each three-dimensional partial differential equation into a set of Nx{2 ` 1 ˆNy decoupled one-
dimensional partial differential equation on the vertical direction, one partial differential equation
for each horizontal wavenumber. For m “ 1, . . . , Nx{2 ` 1 and n “ ´Ny{2 ` 1, . . . , Ny{2, these
equations are:

`
B2z ´ km,n

˘
p̂m,n “ Ra BzŜm,n, (110)

ûm,n “ ´f̂1m,n `Ra Ŝm,n ẑ, (111)

BtŜm,n ` f̂2m,n “
`
B2z ´ km,n

˘
Ŝm,n, (112)

where

km,n “ 4π2
ˆ
m2

Γ2
x

`
n2

Γ2
y

˙
, (113)

and where the use of a circumflex accent denotes that the quantity has been Fourier transformed
in x and y, f̂1 (resp. f̂2) is the Fourier transform of ∇p (resp. pu ¨ ∇qS).

We now apply a Taylor expansion-based temporal discretization for the time-derivative and the
nonlinear terms, treating the diffusion term implicitly:

“
α0 ´ △t

`
B2z ´ km,n

˘‰
Ŝt
m,n “ ´

νÿ

i“1

αiŜ
t´i△t
m,n ´ △t

νÿ

i“1

βi

´
f̂2m,n

¯t´i△t

, (114)

`
B2z ´ km,n

˘
p̂tm,n “ Ra BzŜ

t
m,n, (115)

ût
m,n “ ´f̂1

t

m,n `Ra Ŝt
m,nẑ, (116)

where △t is the time-step, the αi, i “ 0, . . . , ν (resp. βi, i “ 1, . . . , ν) are the coefficients of
expansion for the time-derivative (resp. nonlinear term) for the scheme described in Section 3
at order ν and where the superscripts involving t indicate the time at which the term is taken.

The discretized equations are solved in a sequential manner, as follows. Firstly, the salinity is
solved for via the equation:

HS
m,nŜ

t
m,n “ ´

νÿ

i“1

αiŜ
t´i△t
m,n ´ △t

νÿ

i“1

βi

´
f̂2m,n

¯t´i△t

, (117)

for each horizontal wavenumber couple pm,nq, where m “ 1, . . . , Nx{2 ` 1 and n “ ´Ny{2 `
1, . . . , Ny{2. This is achieved by inverting the salinity Helmholtz operator HS

m,n “ α0`△t km,n´
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△t B2z together with the Dirichlet boundary condition at the top:

St “ 1, at z “ 0, (118)

and either a Dirichlet or a Neumann boundary condition at the bottom:

reflective : St “ 0, at z “ h, (119)

penetrative : BzS
t “ 0, at z “ h, (120)

according to the Schur decomposition method explained in Section 4.3. Secondly, knowing the
salinity at the running time t, we invert another Helmholtz problem, this time for the pressure:

Hp
m,np̂

t
m,n “ Ra BzŜ

t
m,n, (121)

where H
p
m,n “ ´km,n ` B2z , together with the Neumann boundary condition at the top:

Bzp
t “ 1 `Ra, at z “ 0, (122)

and either a Neumann or a Dirichlet boundary condition at the bottom:

reflective : Bzp
t “ 1, at z “ h, (123)

penetrative : pt “ 0, at z “ h. (124)

The way this second Helmholtz problem inversion is carried out is also explained in Section 4.3.
Lastly, the velocity field is “read” by computing the right-hand-side of:

ût
m,n “ ´f̂1

t

m,n `Ra Ŝt
m,nẑ, (125)

where f̂1
t

m,n is the gradient of the pressure just computed.
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6 Performance

We can predict the theoretical performance of DryLa by assuming it is limited by algebraic
operations, leaving aside any lower level operations like memory fetching and writing. While
the initialization of the code can be costly due to the number of calculations required to compute
MRR

n , MRI
n , SL and SR

n for both the salinity and the pressure equations (see Section 4.3.3), it
is only carried out a small number of times compared to the operations involved in the time-
stepping loop. The steps involved by time-stepping are:

• Evaluation of the right-hand-side for the salinity/pressure equation: OpNxNyNzNeq oper-
ations.

• Solution of the salinity/pressure equation: see below.

• Computation of the horizontal derivatives for the salinity/pressure: taking advantage of
the availability of the spectral representation of the salinity/pressure, the derivative is
computed in spectral space and involves backward Fourier transforms. This is carried out
in OpNxNyNzNe lnpNxNyqq operations.

• Computation of the vertical derivative for the salinity/pressure: OpNxNyN
2
zNeq opera-

tions.

• Evaluation of the velocity: OpNxNyNzNeq operations.

Computation of the salinity and of the pressure relies on a spectral element method and is
explained in Section (4.3.3). It involves the following steps:

• Splitting/reassembling the fields into interfacial and element values: OpNxNyNzNeq oper-
ations.

• Implementation of the vertical boundary conditions: OpNxNyq operations.

• Horizontal Fourier transforms: OpNxNyNzNe lnpNxNyqq operations.

• Computation of the right-hand-side for the interfacial (resp. element) problem: taking
advantage of the fact that SR

n (resp. MRI
n ) only has two non-zero rows (resp. columns),

this step costs OpNxNyNzNeq operations.

• Interface solution computation: taking advantage of the fact that SL is tri-diagonal, the
interface problem is solved using an LU decomposition and costs OpNxNyNeq operations.

• Element solution computation: this step is dominated by the spectral transforms in the
vertical direction and costs OpNxNyN

2
zNeq operations.

The limiting operations are consequently the horizontal Fourier transforms, which scale like
NxNy lnpNxNyq, and the vertical derivatives and the element solution computation, which scale
like N2

z . All operations scale, at most, like Ne.

To assess the actual performance of DryLa, we proceeded in the following way. A baseline
spatial discretization was set: Nx “ Ny “ 32, Nz “ 20 and Ne “ 10. Each simulation used
the second-order time-discretization scheme and was run on 8 threads for 4 hours on ARC4, the
high-performance computing facility of the University of Leeds. Some of the larger simulations
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Figure 10: Performance of DryLa represented by the inverse of the number of time-steps calculated P as
a function of the changed discretization parameter. The top panel shows P as a function of the horizontal
discretization parameter Nx “ Ny together with curves scaling like N2

x lnpN2

xq (version 5.6). The bottom
left panel shows P as a function of the number of spectral elements in the vertical direction Ne as well
as curves scaling like Ne (version 6.2). The bottom right panel shows P as a function of the number of
points per element in the vertical direction, Nz, next to a curve scaling like Nz (version 5.6). Details of
the simulation are given in the text.

had larger memory requirements; these were satisfied as needed by requesting additional memory
and did not incur any measurable impact on performance. In order to test the scalability of
the solver only, all writing output was disabled except for the iteration count. The results
were collected in the form of the number of iterations completed within the allocated time and
represented as the inverse of this number, hereafter referred to as P .

The top panel of Figure 10 shows P as a function of Nx with the constraint Nx “ Ny in order
to test the performance scaling with the number of points in the horizontal direction without
any direction bias. As Nx increases, the cost per iteration increases in proportion to N2

x lnpN2
xq,

indicating that the horizontal Fourier transforms are indeed the dominant contribution to the
computing cost. The lower panels of Figure 10 show how the performance of DryLa scales
with the vertical discretization parameters. The performance scales linearly with Ne and with
Nz until Nz is sufficiently large, where the cost increases faster than linearly against Nz. It is
logical to presume that, ultimately, performance will scale like the theoretical quadratic law in
Nz, however, this was not observed for the values of Nz tested. These should not, however,
exceed Op10q values1 to avoid the deterioration of the solution due to the poor conditioning of
the differentiation matrix. In practice, it is often found that values around Nz “ 20 represent a
safe default choice.

1some references go as far as suggesting Nz ď 64.
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