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1 History

This project started in 2021 motivated by several questions that involved cylindrical geometries.
I initially tried mainstream spectral methods but was not satisfied with the way they handled
the singularity at the cylinder axis. I later discovered the disk discretization of Matsushima and
Marcus [6], which handles the intricacies of the geometry elegantly. Unfortunately, its imple-
mentation is not the easiest but, after all, YODO1. The first Helmholtz solvers were validated
in 2022. As I reflected about the method to solve the Navier–Stokes equation together with the
incompressibility constraint, I remembered my many discussions with Laurette Tuckerman. Her
passion for divergence-free methods swayed me and I opted for a potential approach, inspired
by the impressive work of Piotr Boroński. CyFlow 1 was completed in 2023.

1You Only Discretize Once
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Figure 1: Sketch of the cylindrical domain of interest. The domain is centered at the origin. The cylinder
side-walls are located at r = 1 and its end-walls are located at z = ±h/2. The azimuthal direction is
denoted θ.

2 Incompressible flow equations

We consider an incompressible flow inside a cylinder of radius 1 and height h, as sketched in
Figure 1. The cylinder is centered at the origin of the coordinate system, r denotes the radial
coordinate, θ is the azimuthal coordinate and z denotes the axial one.

The fluid flow is governed by the Navier–Stokes equation and the incompressibility condition:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u, (1)

∇ · u = 0, (2)

where u = urr̂+ uθ θ̂ + uz ẑ is the velocity field with its projections onto the unit vectors in the
radial direction, r̂, the azimuthal direction, θ̂, and the axial direction, ẑ, p is the pressure, t is
the time and Re is the Reynolds number.

Ensuring the incompressibility of the flow numerically is not a straightforward task due to
the fact that the incompressibility constraint (2) is not an evolution equation and due to the
absence of such an equation for the pressure. However, it can be done exactly by reformulating
the equation using poloidal and toroidal streamfunctions. The derivation of this formulation is
not trivial and relies heavily on vector calculus. I have provided necessary identities in Appendix
A & B. If something appears non-trivial, it is likely that these will help.
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2.1 Poloidal-toroidal formulation

We introduce the poloidal streamfunction, φ, and the toroidal streamfunction, ψ, such that:

u = ∇× (ψẑ) +∇×∇× (φẑ). (3)

This decomposition automatically ensures that the velocity is divergence-free.

Under this decomposition, each velocity component derives from the streamfunction as follows:

u =







ur
uθ
uz






=













1

r
∂θψ + ∂rzφ

1

r
∂θzφ− ∂rψ

−∇2
hφ













, (4)

where ∇2
h = r−1∂r(r∂r) + r−2∂2θ is the Laplacian restricted to the disk components. Note that

the subscript h is used to match literature notation, where its stands for horizontal, the axis of
the cylinder often being represented in the vertical direction. The vorticity follows directly:

ω = ∇× u =







ωr
ωθ
ωz






=













∂rzψ − 1

r
∂θ∇2φ

∂r∇2φ+
1

r
∂θzψ

−∇2
hψ













, (5)

where ∇2 = ∇2
h + ∂2z is the full Laplacian. Lastly, the double curl of the velocity will also be

useful:

∇×∇× u =













−∂rz∇2φ− 1

r
∂θ∇2ψ

∂r∇2ψ − 1

r
∂θz∇2φ

∇2∇2
hφ













. (6)

The Navier–Stokes equation is transformed by taking the projection on ẑ of its curl and its
double curl:

(

∂t −
1

Re
∇2

)

∇2
hψ = ẑ · ∇ × [(u · ∇)u] , (7)

(

∂t −
1

Re
∇2

)

∇2∇2
hφ = −ẑ · ∇ ×∇× [(u · ∇)u] . (8)

The resulting equations are periodic in the azimuthal direction, so they will not require any
boundary conditions in θ. However, they require 5 boundary conditions in the radial direction
(noting that r = 1 covers “both sides” of the origin) as well as 3 boundary conditions per
end-wall in z.
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2.2 Gauge condition

By introducing the poloidal-toroidal decomposition (3), we have introduced a gauge freedom for
both φ and ψ. To understand the structure of the gauge, we need to solve:

ug = 0 ⇒ ∇× (ψg ẑ) +∇×∇× (φgẑ) = 0 (9)

⇒ ∇h × (ψg ẑ) +∇ [∇ · (φg ẑ)]−∇2(φg ẑ) = 0 (10)

⇒ ∇h × (ψg ẑ) +∇ [∂zφ
g]− (∇2φg)ẑ = 0 (11)

⇒ ∇h × (ψg ẑ) +∇h [∂zφ
g]− (∇2

hφ
g)ẑ = 0 (12)

⇒
{

∇h × (ψg ẑ) = −∇h (∂zφ
g)

∇2
hφ

g = 0
, (13)

where ∇h = r̂∂r + r−1θ̂∂θ is the gradient restricted to the disk components.

The poloidal gauge φg exists and its uniqueness can be imposed by providing a suitable boundary
condition on the disk. To guarantee the existence of a toroidal gauge, we note that:

∇2
hφ

g = 0 ⇒ ∇h · ∇hφ
g = 0 (14)

⇒ ∇h · [∇h (∂zφ
g)] = 0. (15)

Observing that this calculation yields a divergence-free field in the (r, θ)-plane, we use the
identity: ∇h · [∇h × (f ẑ)] = 0 for any suitably regular function f , to deduce:

∇h × (f ẑ) = ∇h (∂zφ
g) (16)

= −∇h × (ψg ẑ), (17)

obtained by using equation (13) and thereby proving the existence of a toroidal gauge ψg.

The gauge problem (13) can equivalently be presented in the following form [5]:

{

∇2
hφ

g = 0

∇hψ
g = ∇h (∂zφ

g)× ẑ
, (18)

and implies that the poloidal gauge φg is defined up to a harmonic function in (r, θ) and arbitrary
in z. Its uniqueness can be imposed by simply setting the value of the gauge at the cylinder
side-wall. The toroidal gauge ψg is determined by its poloidal counterpart up to a constant that
may vary with z. A simple way to impose the uniqueness of the toroidal gauge is to set its value
on the centerline of the cylinder. A simple choice of gauge condition is [2]:

φg = 0 at r = 1, (19)

ψg = 0 at r = 0. (20)

2.3 Radial boundary condition

The side-wall of the cylinder is impenetrable, so we impose ur(r = 1) = uwr = 0, where the
superscript w indicates a value at the wall. This boundary condition becomes:

1

r
∂θψ + ∂rzφ = 0 at r = 1. (21)
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We also impose no-slip boundary condition on a static side-wall:

uθ(r = 1) = uwθ

uz(r = 1) = uwz







⇒







1

r
∂θzφ− ∂rψ = uwθ

−∇2
hφ = uwz

at r = 1. (22)

The poloidal gauge condition (19) is set at the same boundary and implies that ∂θzφ(r = 1) = 0.
Consequently, the radial no-slip boundary condition reads:







∂rψ = −uwθ
∇2
hφ = −uwz

at r = 1. (23)

2.4 Compatibility condition

We need to ensure that the poloidal-toroidal problem (7) & (8) is equivalent to the primitive
problem we wish to solve (equations (1) & (2)). Let us define:

f = ∂tu+ (u · ∇)u− 1

Re
∇2u (24)

= −∇p, (25)

in such a way that the primitive problem can be written as g = ∇ × f = 0 [5]. The following
implication is natural:

g = 0 ⇒
{

g · ẑ = 0

(∇× g) · ẑ = 0
, (26)

where the right-hand-side is, in fact, the poloidal-toroidal problem (7) & (8). For the equivalence
to stand, we need to prove the leftward implication. Unfortunately, conditions are missing to
establish it as the right-hand-side problem is of higher order [1]:

g · ẑ = 0

(∇× g) · ẑ = 0

}

⇒ g = ∇hκ, (27)

where κ does not automatically yield g = 0. For this equality to stand, we need κ = κ(z). We
can easily get κ of this form by making it a solution of a Laplace equation on the disk with
homogeneous Neumann boundary conditions at its edge:

g = ∇hκ

∇ · g = 0

g · r̂ = 0 at r = 1











⇒ ∇2
hκ = 0

∂rκ = 0 at r = 1

}

⇒ κ = κ(z) ⇒ g = 0. (28)

Consequently, the exact equivalence between the primitive problem and the potential problem
is as follows:

g = 0 ⇐⇒



















g · ẑ = 0

(∇× g) · ẑ = 0

∇ · g = 0

g · r̂ = 0 at r = 1

. (29)
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The first additional condition, ∇ · g = 0, is automatically satisfied in the case of incompressible
flows. Furthermore, the additional boundary condition is trivial for axisymmetric modes since:

∇2
hκ = 0 ⇒ 1

r
∂r(r∂rκ) = 0 for κ axisymmetric (30)

⇒ κ = k1(z) ln(r) + k2(z) (31)

⇒ κ = k2(z), (32)

without the need for any additional condition.

As a result of the above equivalence and remarks, we need to impose a compatibility condition
between the primitive and potential formulations, which takes the form of a radial boundary
condition for non-axisymmetric modes:

∇×
[

∂tu+ (u · ∇)u− 1

Re
∇2u

]

· r̂ = 0 at r = 1. (33)

The first term of equation (33) yields:

∇× ∂tu · r̂ = ∂t [(∇× u) · r̂] (34)

= ∂tωr (35)

= 0 at r = 1, (36)

at a non-deformable side-wall (ωr = 0 at r = 1). The second term of equation (33) requires
more care:

∇× [(u · ∇)u] · r̂ = −∇× (u× ω) · r̂ (37)

= ∂z (uzωr − urωz)−
1

r
∂θ (urωθ − uθωr) (38)

= ∂z(uzωr) +
1

r
∂θ(uθωr) as uwr = 0 (39)

= 0 at r = 1, (40)

for the same reason as before. Equation (33) thus reduces to:

∇×
(

∇2u
)

· r̂ = 0 ⇒ ∇× [∇× (∇× u)] · r̂ = 0 (41)

⇒ ∇×













−∂rz(∇2φ)− 1

r
∂θ(∇2ψ)

∂r(∇2ψ)− 1

r
∂θz(∇2φ)

∇2∇2
hφ













· r̂ = 0 (42)

⇒ 1

r
∂θ∇2∇2

hφ− ∂z

[

∂r(∇2ψ)− 1

r
∂θz(∇2φ)

]

= 0 (43)

⇒ 1

r
∂θ∇2∇2

hφ− ∂rz(∇2ψ) +
1

r
∂θzz(∇2φ) = 0 at r = 1. (44)

This expression can be further simplified by noticing that the velocity definition and the poloidal
gauge imply:

uwz = −∇2
hφ at r = 1

φ(r = 1) = 0

}

⇒ ∇2φ = −uwz at r = 1, (45)

uwθ =
1

r
∂θzφ− ∂rψ at r = 1

φ(r = 1) = 0







⇒ ∂rψ = −uwθ at r = 1, (46)
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in such a way that the last term and the axial contribution of the Laplacian of the second term
of equation (44) vanish for a non-deformable side-wall (∂θu

w
z = 0 and ∂zu

w
θ = 0). Eventually,

the compatibility condition reads:

1

r
∂θ∇2∇2

hφ− ∂rz∇2
hψ = 0 at r = 1 for non-axisymmetric modes. (47)

Note here that the derivation of this compatibility condition relies solely on three conditions:
the impenetrability condition ur = 0 at r = 1 as well as the non-deformability of the side-wall
∂θu

w
z = ∂zu

w
θ = 0. If these conditions are not met, additional terms would enter the compatibility

condition.

2.5 Axial boundary condition

The impenetrability and no-slip boundary conditions in the axial direction take the form u = u±

at z = ±h/2. Imposing this boundary condition by simply expressing the velocity components in
terms of the potentials is not straightforward as the resulting expressions couple the potentials
together. Instead, we can make use of equivalence (29) for g = u − u± and on the top and
bottom disks, rather than on the cylinder. We can thus impose on the surfaces z = ±h/2:

uz = u±z
(∇h × u) · ẑ = (∇h × u±) · ẑ
∇h · u = ∇h · u±

ur = u±r at r = 1



















⇒



















uz = 0 (impenetrability condition)

(∇h × u) · ẑ = (∇h × u±) · ẑ
−∂zuz = ∇h · u±

ur = 0 at r = 1 as uwr = 0

(48)

⇒



























∇2
hφ = 0

−∇2
hψ =

1

r

[

∂r(ru
±
θ )− ∂θu

±
r

]

−∂zuz =
1

r

[

∂r(ru
±
r ) + ∂θu

±
θ

]

, (49)

where we dropped the fourth condition as it is already imposed by the radial no-slip boundary
condition. The non-deformability of the top and bottom walls require u±r = ∂θu

±
θ = 0 and the

axial boundary condition reduces to:























∇2
hφ = 0

∇2
hψ = −1

r
∂r(ru

±
θ )

∂z∇2
hφ = 0

on z = ±h/2. (50)

2.6 Summary

The poloidal-toroidal formulation of the Navier–Stokes equation for an incompressible flow is:

(

∂t −
1

Re
∇2

)

∇2
hψ = ẑ · ∇ × [(u · ∇)u] , (51)

(

∂t −
1

Re
∇2

)

∇2∇2
hφ = −ẑ · ∇ ×∇× [(u · ∇)u] . (52)
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These equations are to be solved alongisde the following radial boundary conditions:



































1

r
∂θψ + ∂rzφ = 0

∂rψ = −uwθ
∇2
hφ = −uwz

φ = 0

at r = 1, (53)

the following additional conditions:











ψ(r = 0) = 0 for axisymmetric modes

1

r
∂θ∇2∇2

hφ− ∂rz∇2
hψ = 0 for non axisymmetric modes at r = 1

(54)

and the following axial boundary conditions:























∇2
hφ = 0

∇2
hψ = −1

r
∂r(ru

±
θ )

∂z∇2
hφ = 0

on z = ±h/2. (55)

This derivation relies on the fact that the side-wall is impenetrable (uwr = 0) and non-deformable
(∂θu

w
z = ∂zu

w
θ = 0) and that the end-walls are impenetrable (u±z = 0) and non-deformable

(u±r = ∂θu
±
θ = 0).
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3 Temporal discretization

Fill out this section
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Figure 2: Equidistributed mesh for one-dimensional, 2π-periodic functions. The location of the N = 16
meshpoints is shown in red.

4 Spatial discretization

4.1 Fourier–Galerkin projection for the azimuthal direction

4.1.1 Principles

As we seek periodic solutions in the azimuthal direction, it is natural to turn to a Fourier–
Galerkin discretization based on the equidistributed mesh:

θj =
2πj

N
, j = 0, . . . , N − 1, (56)

where N is the number of points and where the last point (j = N) is omitted as it is unnecessary:
f(xN ) = f(x0) due to the periodicity of the function f . An example of such a mesh is shown in
figure 2. Note that to produce good quality plots of any function represented using this type of
mesh, one needs to include the value of the function at xN by copying its value at x0.

We can express f(θ) as a discrete Fourier series:

f(θ) =
∞
∑

n=−∞

f̂n exp (ınθ), (57)

where the f̂n are the complex coefficients associated with the Fourier expansion and ı is the
imaginary unit number. The above choice of basis implicitly takes care of the periodic boundary
condition so that expansion (57) is, in fact, a Galerkin projection. By using the finite mesh (56),
we can write:

f(θj) =

N/2
∑

n=−N/2+1

[

f̂n exp

(

ınj
2π

N

)]

(58)

⇒ f(θj) = f̂0 +

N/2−1
∑

n=1

[

f̂n exp

(

ınj
2π

N

)

+ f̂∗n exp

(

−ınj 2π
N

)]

+ f̂N/2(−1)j , (59)

where j = 0, . . . , N−1 and where the asterisk denotes complex conjugation. Some simplifications
were carried out: (i) the n = 0 and n = N/2 modes have been taken out of the sum; and
(ii) the replacement of the “negative” frequency coefficients by the complex conjugate of the
corresponding positive frequency is a consequence of the fact that f(θ) is a real-valued function
(f̂−n = f̂∗n). The reason for the limited range of n is explained in Section 4.1.2. The operation
that takes the function values in physical space, f(θj), and returns its values in wavenumber

space, f̂n, is called forward Fourier transform:

f̂n =
1

N

N−1
∑

j=0

f(θj) exp

(

−ınj 2π
N

)

, n = 0, . . . , N/2, (60)
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while the reverse operation, expressed in equation (59), is called backward Fourier transform.
Note that the normalization by N , here in expression (60), can either be carried out in the
forward, in the backward Fourier transform or split between both. It is, obviously, advantageous
to do it all at once. Our Fourier transforms are carried out efficiently by an algorithm called fast
Fourier transform (FFT) and implemented via the use of the library FFTW [4]. This algorithm
takes care of the normalization during the forward transform.

4.1.2 Danger: Aliasing

The range of n in equation (59) is better understood by examining mode representation. First
of all, modes with wavenumber n ≥ N do not carry any information as our choice of meshgrid
makes them project exactly onto modes with wavenumber m < N , where n ≡ m(modN):

exp

(

ı(m+N)j
2π

N

)

= exp

(

ımj
2π

N

)

. (61)

As a result, all the information is contained in wavenumbers 0 ≤ n < N .

Let us now have a look at a discretized mode of wavenumber N/2 +m, with m < N/2:

exp

[

ı

(

N

2
+m

)

j
2π

N

]

= (−1)j exp

(

ımj
2π

N

)

(62)

=

[

(−1)j exp

(

−ımj 2π
N

)]∗

(63)

=

{

exp

[

ı

(

N

2
−m

)

j
2π

N

]}∗

. (64)

This introduces a special wavenumber called Nyqvist frequency: n = N/2. The symmetry around
this wavenumber is responsible for a phenomenon called frequency folding, whereby modes be-
yond the Nyqvist frequency fold back onto modes of lower wavenumber: their coefficients appear
complex conjugated and with wavenumber reflected with respect to the Nyqvist frequency.

As a result from the above remarks, modes with wavenumber higher than the Nyqvist frequency
are incorrectly represented. This phenomenon is called aliasing and is exemplified in Figure 3
for two functions. While the continuous representations of cos(9θ) and cos(7θ) look drastically
different, their values coincide on the 16 equidistributed meshpoints between 0 and 2π. This
results from the fact that, given a 16 point mesh, the Nyqvist frequency is N/2 = 8 and,
thus, that wavenumber n = 9 folds back onto n = 7. A similar observation can be made with
sin(9θ), with the exception that a change of sign is applied during frequency folding, owing to
the complex conjugation of the coefficients, as shown above.

4.1.3 Information storage

The discretized function f(θj) contains N real values. This is the amount of information available
at the collocation points. The Fourier coefficients are complex, so the storage of the same
amount of information necessitates N/2 coefficients, corresponding to wavenumbers 0 to N/2−1.
However, the first coefficient (n = 0) corresponds to the constant mode: cos(0θ) + ı sin(0θ) = 1.
Since f is real-valued, the imaginary part of the associated coefficient contains no information,
so one real-valued piece of information has to be contained elsewhere. The first mode above
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Figure 3: Illustration of the phenomenon of aliasing on a Γ = 2π-periodic domain in θ meshed with
N = 16 equidistributed points given by equation (56) and whose location is shown by the thick vertical
lines. The Nyqvist frequency associated with this mesh is nNyq = N/2 = 8. The top (resp. bottom)
figure shows that cos(9θ) (resp. sin(9θ)) coincides with cos(7θ) (resp. − sin(7θ)) onto the meshpoints.

wavenumber N/2− 1 is the Nyqvist mode and takes the form:

exp

(

ı
N

2
j
2π

N

)

= exp (ıjπ) (65)

= (−1)j . (66)

Since it is real-valued, it completes the representation of the function in wavenumber space.

In practice, both the coefficients of the constant mode and of the Nyqvist frequency modes are
stored as complex numbers but their imaginary part does not enter any calculation. Fourier
coefficient information storage is illustrated in Figure 4 for a function discretized over N =
16 meshpoints. The physical representation of the function contains 16 real-valued pieces of
information When the Fourier transform of the function is taken, a set of 9 complex coefficients
are returned, corresponding to wavenumber 0 to 8. However, the imaginary part of the coefficient
of the mode of wavenumber 0 and that of the coefficient of the mode of wavenumber 8 do not
contain any information. The Fourier coefficients therefore also contain 16 real-valued pieces of
information, as many as the collocation representation of the function.

4.1.4 Prevention: De-aliasing

The product of two Fourier modes of wavenumbers n and m redistributes energy to a mode
whose wavenumber is m+ n:

exp

(

ınθ
2π

Γ

)

exp

(

ımθ
2π

Γ

)

= exp

(

ı(n+m)θ
2π

Γ

)

. (67)
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Figure 4: Top: Representation of the information contained in a real-valued, discretized function over
N = 16 collocation points, labeled 0 to 15. The information contained in physical space is real-valued.
Bottom: Representation of the information of the same function via its Fourier coefficients. All coeffi-
cients are complex but only the real and imaginary parts that contain information are represented. The
numerical label indicates the wavenumber and the suffix “i” indicates the imaginary part of the coeffi-
cient.

Figure 5: Graphical representation of the frequency folding phenomenon. In order of ascending
wavenumber, modes project onto themselves until the Nyqvist frequency, N/2, then spuriously down
until wavenumber 0 before going back up again in a periodic process. The idea behind dealiasing via
Fourier filtering is to filter out modes with wavenumber larger than k in such a way that when the non-
linearity is applied, frequency folding occurs only onto modes with wavenumber greater than k, as shown
by the dark red arrow.

By extension, we can easily see that a nonlinearity of order η applied onto a mode of wavenumber
k injects energy at wavenumber ηk. If our mesh does not possess a sufficiently large number of
points to accommodate such a function, we will end up with aliasing: the energy contained in
that function will spuriously be redistributed to other, lower wavenumber modes, as previously
discussed.

One way to prevent aliasing is to use a Fourier filter, which is a simple low-pass filter that
replaces the Fourier coefficients of modes whose wavenumber is larger than a cutoff value by 0.
To calculate this cutoff value, we needs to make use of our understanding of frequency folding.
We want the application of the nonlinearity onto our largest unfiltered wavenumber mode to
fold back as close as possible but not onto itself, as illustrated in Figure 5. This can be put in
equation as follows:

ηk <
N

2
+

(

N

2
− k

)

, (68)

where the left-hand-side is the wavenumber resulting from the application of the nonlinearity
of order η and where the right-hand-side is the “distance” traveled on the line of wavenumbers
from 0 to the folding point (N/2) and back to the original wavenumber N/2− k. It follows that

k <
N

η + 1
(69)

identifies all the wavenumbers k that can remain unfiltered.

In our case, the nonlinearity is of second order, so we have k < N/3, filtering out about 1/3 of
the modes. To take a concrete example, let us consider the case shown in Figure 4, whereby
a function is evaluated on N = 16 meshpoints. This function is characterized numerically by
16 pieces of real-valued information, whether it is considered in its collocation or its Fourier
coefficient form. Using the Fourier filter associated with the quadratic nonlinearity, we should
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only retain modes associated with wavenumbers k < N/3 ≈ 5.33. We then filter out the modes
associated with wavenumbers 6, 7 and 8, which corresponds to 5 real-valued pieces of information
(remember that wavenumber 8 is the Nyqvist frequency and only contain one piece of real-valued
information), thereby losing 31.25% of the information initially contained by the function.

4.2 Zernike tau method for the radial direction

4.2.1 The pole condition

Assuming a Fourier expansion in the azimuthal direction θ, it is natural to think of a discretized
function in terms of a linear combination of non-singular monomials in the radial direction. The
resulting basis functions take the form:

hm,n(r, θ) = rn exp(ımθ), (70)

where n = 0, 1, 2, . . . and where m is the azimuthal wavenumber.

Focusing on the real line, i.e. x = r for θ = 0 and x = −r for θ = π, this monomial can be
expressed as:

hm,n(r, 0) = xn, (71)

hm,n(r, π) = (−x)n exp(ımπ)
= (−1)m+nxn. (72)

From these expression, one can see that if m + n is not even, the nth derivative of the basis
function with respect to r is not continuous at r = 0. This imposes a parity condition: if n is
odd (resp. even), then m has to be odd (resp. even).

A second condition stems from the application of the polar Laplacian onto our basis functions:

∇2
polar hm,n(r, θ) =

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

rn exp(ımθ)

=
(

n2 −m2
)

rn−2 exp(ımθ). (73)

This expression contains valuable information: (i) applying the Laplacian onto our basis function
drops the r-polynomial degree by 2 and (ii) basis functions with m = n are in the kernel of
the Laplacian. Together with the parity condition, we can see that basis functions for which
n = m+2p with p = 0, 1, 2, . . . are well-behaved when under the action of the Laplacian. Basis
functions for which n = m− 2− 2p are, however, affected by clustering around r = 0 as we shall
see. For m and n even, successive applications of the Laplacian yield a function that does no
longer vary with r. Azimuthal variations of such functions:

1

r

∂

∂θ
exp(ımθ) =

ım exp(ımθ)

r
(74)

diverge when r tends to zero (the case m = 0 yields n < 0 and, thus, is not considered). For m
and n odd, successive applications of the Laplacian yield a function proportional to r. Applying
the Laplacian to this function once more, we get:

∇2
polar [r exp(ımθ)] =

1−m2

r
exp(ımθ). (75)

Page 17 of 37



CyFlow Manual – Dr. Cédric Beaume

Azimuthal basis function Allowed radial monomials

1 1, r2, r4, r6, r8, r10, r12, . . .

exp(ıθ) r, r3, r5, r7, r9, r11, r13, . . .

exp(2ıθ) r2, r4, r6, r8, r10, r12, r14, . . .

exp(3ıθ) r3, r5, r7, r9, r11, r13, r15, . . .

exp(4ıθ) r4, r6, r8, r10, r12, r14, r16, . . .

exp(5ıθ) r5, r7, r9, r11, r13, r15, r17, . . .

exp(6ıθ) r6, r8, r10, r12, r14, r16, r18, . . .
...

...

Table 1: List of the radial monomials satisfying the pole condition for each azimuthal basis function.

This function is also singular at r = 0 (the case m = 1 also yields n < 0 and, thus, is not
considered). Examples of troublesome basis functions are provided for illustrative purposes in
[3].

As a result, the pole condition yields n = m+ 2p, where n is the monomial order in the radial
direction, m is the azimuthal wavenumber and p = 0, 1, 2, . . . . This condition provides a sparse
structure for the function basis, which is shown in Table 1.

4.2.2 The Zernike polynomials

Unfortunately, the radial monomials do not possess good numerical properties: the transfer
matrix associated with the transform from physical space to monomial space is ill-conditioned.
A natural choice of basis function in polar coordinates is that of the Bessel functions. This,
too, is a poor choice: expressing solutions in a basis of Bessel functions displays unsuitably
slow convergence due the Gibbs phenomenon at the edge of the disk. A tempting, flexible
choice is that of the Chebyshev polynomials but it is far from optimal: any basis of Chebyshev
polynomials contains all the monomials and, thus, would waste memory and computing time
(half of the modes have the wrong parity, and half of the remaining ones have n < m).

The Zernike polynomials provide a natural polynomial basis that satisfies the pole condition.
They were developed in optics where they serve, among other things, as basis functions to
describe features on circular lenses. These polynomials were used for the first time in fluid
dynamics by Matsushima & Marcus [6] and can be defined in several ways. They are solutions
of the following Sturm–Liouville problem:

[

1

r

d

dr

(

(1− r2)r
d

dr

)

− m2

r2
+ n(n+ 2)

]

Qmn (r) = 0, (76)

for 0 ≤ r ≤ 1 and 0 ≤ |m| ≤ n, where m and n are integers. Equation (76) is singular at r = 1,
thereby preventing the Gibbs phenomenon from developing at the edge of the disk. The indices
m and n respectively refer to the azimuthal wavenumber and the radial polynomial order, and
are related by the condition: n = m+ 2p, with p = 0, 1, 2, . . . . The Zernike polynomials can be
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obtained using the Frobenius method:

Qmn (r) =

n−|m|
2
∑

q=0

(−1)q+
n−|m|

2 Γ
(

n+|m|
2 + q + 1

)

q!
(

n−|m|
2 − q

)

! Γ (|m|+ q + 1)
r|m|+2q, (77)

where the Gamma function Γ(x) =
∫∞
0 yx−1 exp(−y)dy, for a complex number x with positive

real part. This special function is often encountered as an extension of the factorial due to the
property: Γ(n) = (n− 1)!, when n is a strictly positive integer.

The Zernike polynomials are orthogonal with respect to the weight function r:
∫ 1

0
Qmn (r)Q

m
n′ r dr = Imn δnn′ , (78)

where

Imn =
1

2n+ 2
(79)

is the normalization constant and δnn′ is the Kronecker delta.

The first Zernike polynomials are:

Q0
0(r) = 1, (80)

Q0
2(r) = 2r2 − 1, (81)

Q0
4(r) = 6r4 − 6r2 + 1, (82)

Q0
6(r) = 20r6 − 30r4 + 12r2 − 1, (83)

Q1
1(r) = r, (84)

Q1
3(r) = 3r3 − 2r, (85)

Q1
5(r) = 10r5 − 12r3 + 3r, (86)

Q2
2(r) = r2, (87)

Q2
4(r) = 4r4 − 3r2, (88)

Q2
6(r) = 15r6 − 20r4 + 6r2, (89)

Q3
3(r) = r3, (90)

Q3
5(r) = 5r5 − 4r3, (91)

Q4
4(r) = r4, (92)

Q4
6(r) = 6r6 − 5r4. (93)

The fully two-dimensional basis functions that they generate are represented in Figure 6 for an
arbitrary phase. Other phases can be obtained by rotation of the basis function around the
disk center. The way these modes generate solutions can be understood from the classification
provided by the figure. The higher the azimuthal wavenumber m, the more wavelengths in the
azimuthal direction. The higher the radial polynomial order n, the more sign changes from r = 0
until r = 1. Note that the sign change density increases toward the edge of the disk to prevent
clustering at r = 0.

4.2.3 Discretizing the disk

We use a standard equidistributed meshgrid in the azimuthal direction:

θj =
2πj

M
, j = 0, . . . ,M − 1, (94)
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Figure 6: First Zernike modes Qm
n , where m ≤ 4 is the azimuthal wavenumber and n ≤ m + 6 is the

radial polynomial order. Red (resp. blue) areas represent positive (resp. negative) values of the mode.
Only one phase of the mode is shown here (phase 0, corresponding to the real part of exp(ımθ)). All
other phases can be obtained by circular rotation of the modes.
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Figure 7: Example of meshgrid generated on the disk for 17 points in the radial direction and 16 points
in the azimuthal direction.

in preparation for the use of the Fourier transform. In the radial direction, we wish to use a
meshgrid including a point at the boundary to apply boundary conditions. The first N radial
points are roots of a polynomial:

ri = roots
(

Q0
2N+2(r)−Q0

2N (r)
)

, i = 0, . . . , N − 1, (95)

while the last point rN = 1 is located at the boundary. An example of meshgrid resulting from
the above choices is shown in figure 7.

The interplay between the azimuthal wavenumber and the radial polynomial order in the Zernike
basis enforces a condition on the meshing parameters. WithM points in the azimuthal direction,
the maximum azimuthal wavenumber modeled, once the Fourier transform is taken, is M/2.
Owing to equation (95), an N +1-point discretization in the radial direction yields a maximum
radial polynomial order of 2N . To avoid generating a suboptimal meshgrid, we need to ensure
that there is at least one radial polynomial associated with the highest azimuthal wavenumbers.
This condition implies:

M ≤ 4N. (96)

4.2.4 The Zernike transform

To send a function expressed in the space of the disk into Zernike space, we make first use of
the Fourier transform associated with the azimuthal direction:

fm(r) =
1

M

M−1
∑

j=0

f(r, θj) exp

(

−ımj 2π
M

)

, m = 0, . . . ,M/2, (97)

where the superscriptm indicates the azimuthal wavenumber and ı is the unit imaginary number.
The radial direction is then treated using the Zernike transform:

fmn =

N
∑

i=0

wi f
m(ri)

Qmn (ri)

Imn
, n = 0, . . . , 2N,with n = m+ 2p and p = 0, 1, . . . , (98)
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where the quadrature weights are:

wi =
(2N + 1) r2i I

0
2N

(N + 1)2
[

Q0
2N (ri)

]2 , i = 0, . . . , N − 1 (99)

wN = I00 −
N−1
∑

i=0

wi. (100)

To send a function back into physical space, we first take the reverse Zernike transform:

fm(r) =

2N
∑

n=|m|
n+|m| even

fmn Qmn (r), (101)

followed by the inverse Fourier transform:

f(r, θj) = f0(r) +

M/2−1
∑

m=1

[

fm(r) exp

(

ımj
2π

M

)

+ fm∗(r) exp

(

−ımj 2π
M

)]

+ fM/2(r)(−1)j ,

(102)
where j = 0, . . . , N − 1 and where the asterisk denotes complex conjugation.

4.2.5 Numerical procedure

The Frobenius definition of the Zernike polynomials is numerically unstable: the ratios involved
remain of a reasonable magnitude but each of their components becomes large for moderate
n and m, which leads to a loss of numerical accuracy. For this reason, we use the recurrence
formulae from [6], which consist in generating the polynomial values for each wavenumber m
from starting values:

Qm|m|(r) = r|m|, (103)

Qm|m|+2(r) = (|m|+ 1)

[ |m|+ 2

|m|+ 1
r2 − 1

]

Qm|m|(r), (104)

and successively determining the other polynomial values using the recurrence relation:

Qmn (r) =
(n− 1)

[

4n(n − 2)r2 − 2n(n − 1)− 2m2
]

(n− |m|)(n + |m|)(n − 2)
Qmn−2(r) . . .

− n(n+ |m| − 2)(n − |m| − 2)

(n− |m|)(n + |m|)(n− 2)
Qmn−4(r). (105)

The numerical procedure to generate the meshpoints and the basis functions is as follows. First
of all, we generate the radial mesh by using successive bisection down to a machine-precision
gap to find ri, i = 0, . . . , N − 1 from expression (95) and where the successive evaluations
of the polynomials are calculated using equations (103)–(105) with m = 0. The last point is
rN = 1. The value of the basis functions is then computed at the location of the meshpoints
using equations (103)–(105). The normalization constants are subsequently computed using
equation (79), followed by the quadrature weights, computed using equations (99) and (100).
At this point, I noticed that taking the Zernike transform of standard functions forward then
backward generated a small error, typically O(10−12). This error is due to the accumulation
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Figure 8: Left: The green boxes with the check mark represent the non-zero Qm
n modes, where m

represents the Fourier index of the azimuthal wavenumber and n the radial Zernike polynomial number.
The table represents the modes obtained for a disk discretized using N +1 = 6 radial points and M = 20
azimuthal points. The modes that are not marked violate the pole condition and, thus, cannot contribute
to the representation of the solution. Right: A simple reorganization of the non-zero Qm

n modes makes
information storage optimal.

of operations during the recurrence procedure. To improve the polynomial values, I used a
modified Gram–Schmidt projection of the polynomials using the quadrature in expression (98).
Using the Gram–Schmidt orthogonalized polynomials, I did not observe any error above 10−13

when Zernike transforming forward then backward the same functions.

Question: since the polynomials have been corrected and are used to generate the quadrature
weights, should we not recompute the latter? I tried: the process is unstable and the optimal
stopping point was after the first Gram–Schmidt projection. Why?

4.2.6 Information storage

The structure of the modes introduced in the previous section is peculiar as Qmn (r) 6= 0 only
when n is greater than or equal to m and shares the same parity. This creates sparse matrices,
leading to a waste of memory and of computing time, as shown in the left panel of Figure 8.
For N + 1 = 6 radial points and M = 20 azimuthal points, we notice that only 36% of the
the Qmn satisfy the pole condition. Increasing the number of azimuthal points would not allow
the storage of more information as all the newly added modes violate the pole condition, while
increasing the number of radial points would increase the proportion of useful modes (to a limit
at 50% due to the parity condition).

To take advantage of this structure, we reorganize the modes by replacing the radial number n
by a radial index equal to (n −m)/2. The modes are now stored according to the radial index
and m, as shown on the right panel of Figure 8. To avoid calculating over inexisting modes, we
define the azimuthal Zernike dimension:

Nzer(m) = floor

(

2N −m

2

)

, (106)

where m is the azimuthal wavenumber, N + 1 is the number of radial points (implying that
2N is the maximum degree of the radial polynomial). Matrices in Zernike spaces (as the one
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represented on the right panel of Figure 8) only contain value from 0 to Nzer(m) and loops
involving them will simply stop at Nzer(m).

Information storage for each mode in the azimuthal direction is carried out as outlined in Section
4.1.3 independently for each m.

4.2.7 Generating operator matrices

Matsushima & Marcus [6] provided a recurrence method to generate the matrix formulation of
the Helmholtz operator. First of all, let us assume the following expansion for the component
of a function u corresponding to azimuthal wavenumber m:

um(r) =

2N
∑

n=|m|
n+|m|even

umn Q
m
n (r), (107)

which follows from Section 4.2.4 and where we have assumed that the radial direction is dis-
cretized using N + 1 Zernike points. Since differential operations in the azimuthal directions
can be dealt with as scalar operations in Fourier space, differential operators are diagonal in
that direction and can be written for any given azimuthal wavenumber m independently. For a
differential operator acting on azimuthal wavenumber m, Lm, we have:

fm(r) = Lmum(r)

=
2N
∑

n=|m|
n+|m|even

fmn Qmn (r). (108)

For Lm = r2Hm(κ), where:

Hm(κ) =
d2

dr2
+

1

r

d

dr
− m2

r2
− κ, (109)

is the Helmholtz operator parameterized by coefficient κ and written for azimuthal wavenumber
m, the following recurrence relation can be written:

4

[

(n− |m|)(n + |m|)(n + 4)(n+ 5)− κ
n+ 5

n

(

n+m2
)

]

umn + . . .

2
[

4(n + 1)(n + 5)
(

n2 + 6n+m2 + 4
)

+ κ
(

n2 + 6n+ 3m2 + 2
)]

umn+2 + . . .

4

[

(n− |m|+ 6)(n + |m|+ 6)(n + 1)(n + 2) + κ
n+ 1

n+ 6

(

n−m2
)

]

umn+4 − . . .

κ
(n− |m|+ 6)(n+ |m|+ 6)(n + 1)(n + 2)

(n+ 6)(n + 7)
umn+6 − . . .

κ
(n− |m|)(n + |m|)(n+ 4)(n + 5))

(n− 1)n
umn−2 = . . .

(2n+ 8)(2n + 10)fmn − 2(2n + 2)(2n + 10)fmn+2 + (2n + 2)(2n + 4)fmn+4. (110)

Following the notation of [6], this relationship can be written in matrix form:

Lm(κ)umn = Smfmn , (111)
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with Lm(κ) and Sm suitably defined by equation (110).

Another recurrence relationship can be obtained for operator Lm = r2:

n2 +m2 + 2

2n(n+ 2)
umn +

(n− |m|+ 2)(n + |m|+ 2)

4(n+ 3)(n + 2)
umn+2 + . . .

(n− |m|)(n + |m|)
4n(n− 1)

umn−2 = fmn , (112)

which can be similarly written in matrix form:

Tmumn = fmn . (113)

By combining the above operators, we can write the Helmholtz operator:

Hm(κ) = (SmTm)−1 Lm(κ). (114)

In preparing these matrices, it is important to construct Sm and Tm as non-square matrices.
The former has one more column than rows and the latter one more row than columns. Keeping
these extra terms by allowing these matrices not to be square takes advantage of the form of
the recurrence relations and improves accuracy by 2 orders of magnitude on typical Helmholtz
operator inversions.

Another useful operator is Lm = r∂r, also defined by a recurrence relationship:

numn +
(n+ 1)(n + 4)

n+ 3
umn+2 = fmn − n+ 1

n+ 3
fmn+2, (115)

where the fmn can be stably solved backward by starting from the value fmNzer(m) = 0.

Are there any other operator that need defining?

4.2.8 Boundary conditions

Boundary conditions on the circle can be turned into equations using the Zernike discretization.

For Dirichlet boundary conditions at r = 1:

u(r = 1, θ) = ubc(θ) =⇒
Nzer(m)
∑

i=1

Qm|m|+2(i−1)(r = 1) um|m|+2(i−1) = umbc, m = 0, . . . ,M/2,

(116)
where the boundary condition value on the circle ubc(θ) is Fourier transformed to yield coeffi-
cients umbc, m = 0, . . . ,M/2.

For Neumann boundary conditions at r = 1, we use the relation for the operator r∂r provided
by Matsushima & Marcus [6] to obtain:

du

dr
(r = 1) = ubc(θ) =⇒

Nzer(m)
∑

i=1

[

|m|+ 2(i− 1)Qm|m|+2(i−1)(r = 1) um|m|+2(i−1) . . .

+2(|m|+ 2i)Qm|m|+2(i−1)(r = 1)

∞
∑

p=|m|+2i

ump



 = umbc. (117)
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Figure 9: Gauss–Lobatto–Chebyshev mesh for one-dimensional functions between z = −1 and z = 1.
The location of the Nz + 1 = 16 meshpoints is shown in purple.

These boundary conditions can easily be programmed as a matrix of coefficients cmi and a vector
of values umbc such that:

Nzer(m)
∑

i=1

cmi u
m
i = umbc, m = 0, . . . ,M/2. (118)

4.3 Chebyshev Schur method in the axial direction

4.3.1 Discretization

We use a Chebyshev Schur method in the axial direction based on the Gauss–Lobatto–Chebyshev
meshgrid:

zk = zmin +
zmax − zmin

2

[

1 + cos

(

kπ

Nz

)]

, k = 0, 1, . . . , Nz, (119)

where Nz+1 is the number of points used to mesh the interval [zmin; zmax]. An example of such
a meshgrid is shown in Figure 9. Bear in mind that, due to the (standard) way in which we
defined the meshgrid, the meshpoints are organized in reverse order, from the right to the left.

The Gauss–Lobatto–Chebyshev meshpoints allow us to work in the space of the Chebyshev
polynomials of the first kind, Tk(z), k = 0, 1, . . . . These are typically defined on [−1; 1] where
they are solutions of the Sturm–Liouville problem:

[

d

dz

(

√

1− z2
d

dz

)

+
k2√
1− z2

]

Tk(z) = 0, (120)

augmented with the boundary condition Tk(z = 1) = 1. Note that these polynomials are
symmetric: Tk is even (resp. odd) if k is even (resp. odd), such that a full set of boundary
conditions would be redundant. The Chebyshev polynomials of the first kind are:

Tk(z) = cos
[

k cos−1 (z)
]

, (121)

which can then be suitably expressed for any interval [zmin; zmax] by a simple change of variable.

Functions of z can be expressed in the basis of Chebyshev polynomials of the first kind:

f(z) =
∞
∑

k=0

fkTk(z). (122)

The coefficients fk can be obtained using the following matrix transform based on the Gauss–
Lobatto–Chebyshev meshgrid:

fk = T fwdkj f(zj), (123)

where

T fwdkj =
2

cjckNz
cos

(

πjk

Nz

)

, (124)
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Figure 10: Left: Matrix structure for the full Laplacian operator in Chebyshev space, where the non-zero
entries are shown in light blue. Right: Matrix structure for the parity decoupled Laplacian operator in
Chebyshev space, where each matrix corresponds to a parity.

where cj = 2 if j = 0 or j = Nz and cj = 1 otherwise. The inverse transform is given by:

f(zj) = T bwdjk fk, (125)

where

T bwdjk = cos

(

πjk

Nz

)

. (126)

In practice, due to the structure of these transforms, we can simply obtain the coefficients fk
by the type-I discrete cosine transform. These transforms are then performed using FFTW [4],
which scales like Nz ln(Nz) rather than the above matrix multiplication, which scales like N2

z .

4.3.2 The Laplacian and its boundary conditions

In the space of the Chebyshev polynomials of the first kind over [zmin; zmax], the Laplacian
matrix is expressed as follows:

f =
d2u

dz2
⇒ fk = Dkjuj, (127)

where

Dkj =











4 j (j2 − k2)

ck(zmax − zmin)2
, if j ≥ k + 2 and j + k even

= 0, otherwise

. (128)

The Laplacian matrix, D, is less than 1/4 full due to the conditions j+k even (the parity of the
Laplacian of a function is the same as the parity of that function) and j ≥ k+2 (the Laplacian
of a polynomial decreases its degree). The resulting matrix structure is shown in the left panel
of Figure 10. We can exploit this structure by decoupling the odd and even Chebyshev modes.
To do so, we construct the matrix acting on the odd Chebyshev modes, Dod, by only keeping
the odd rows and columns of the full Laplacian matrix. We also construct the matrix acting on
the even Chebyshev modes, Dev, by keeping the even rows and columns of the full Laplacian
matrix. The result of this decoupling is two upper-triangular parity-Laplacian matrices that are
each of size (Nz + 1)/2 × (Nz + 1)/2, i.e., 4 times smaller than the full Laplacian matrix. In
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CyFlow, we define Nzpp = (Nz +1)/2 in order to control the number of mode per parity, rather
than the number of points Nz.

The last line of each parity-Laplacian matrix is empty (the Laplacian of a polynomial decreases
its degree!). We take advantage of this structure to impose the boundary conditions. The
Dirichlet and Neumann boundary conditions in Chebyshev space take the form:

bkuk = β, (129)

where bk is the boundary condition vector and β is the boundary condition value in physical
space. The boundary conditions are then given by:

• bk = 1 and β = u(zmax) for Dirichlet boundary conditions at zmax

• bk = (−1)k and β = u(zmin) for Dirichlet boundary conditions at zmin

• bk = k2 and β = u′(zmax) for Neumann boundary conditions at zmax

• bk = (−1)kk2 and β = u′(zmax) for Neumann boundary conditions at zmin

These boundary conditions need to be transformed to be compatible with the parity-Laplacian
matrices. They are thus replaced by:

• bk = 1 and β = [u(zmax)+u(zmin)]/2 for the Dirichlet boundary condition on even modes

• bk = 1 and β = [u(zmax)− u(zmin)]/2 for the Dirichlet boundary condition on odd modes

• bk = k2 and β = [u′(zmax) + u′(zmin)]/2 for the Neumann boundary condition on even
modes

• bk = k2 and β = [u′(zmax) − u′(zmin)]/2 for the Neumann boundary condition on odd
modes

4.3.3 Inverting the Laplacian

To invert the parity Laplacian matrices, Dod andDev, we use a Schur method where the equations
corresponding to the two highest frequencies are replaced by the boundary condition equations
(129). Since the treatment of the odd and even parity matrices is the same, I will only focus on
the odd one here. The system is originally written by separating the high and the low frequency
matrix components:

(

Dod
lolo Dod

lohi

Dod
hilo Dod

hihi

)(

uodlo
uodhi

)

=

(

f odlo
f odhi

)

, (130)

where the odd component of the solution, uod, is of dimension Nzpp and decomposed into a
vector of coefficients uodlo corresponding to the Nzpp−1 lowest Chebyshev frequencies and a scalar
corresponding to the largest Chebyshev frequencies uodhi . A similar decomposition is applied to
the right-hand-side f . The operator matrix is then consequently split into four parts:

• Dod
lolo is of dimension (Nzpp − 1) × (Nzpp − 1) and corresponds to the low frequency com-

ponents of the operator acting on the low frequency part of the solution

• Dod
lohi is of dimension (Nzpp − 1)× 1 and corresponds to the low frequency components of

the operator acting on the high frequency part of the solution
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• Dod
hilo is of dimension 1× (Nzpp− 1) and corresponds to the high frequency components of

the operator acting on the low frequency part of the solution

• Dod
hihi is of dimension 1 × 1 and corresponds to the high frequency components of the

operator acting on the high frequency part of the solution

The Schur method simply consists in replacing the equations on the largest frequency by the
boundary conditions. The resulting system reads:

(

Dod
lolo Dod

lohi

bodlo bodhi

)(

uodlo
uodhi

)

=

(

f odlo
βod

)

, (131)

where bodlo is the row constituted of the first Nzpp − 1 boundary condition coefficients bk associ-
ated with the desired boundary condition, bodhi is comprised of the corresponding high-frequency
coefficient and βod is the right-hand-side β of the boundary condition. Solving the resulting
system is done in two steps. First, we solve the low frequencies via:

[

Dod
lolo −Dod

lohi(b
od
hi)

−1bodlo

]

uodlo = f odlo −Dod
lohi(b

od
hi)

−1βod, (132)

where we diagonalize the left-hand-side as a preliminary step to the calculation:

[

Dod
lolo −Dod

lohi(b
od
hi)

−1bodlo

]

= (P od)−1ΛodP od, (133)

where P od is the transfer matrix comprised of the eigenvectors of the left-hand-side matrix
and Λod is the diagonal matrix of its eigenvalues. The inversion is a three-step process easily
understandable when equation (132) is cast in the following form:

ΛodP oduodlo = P od
[

f odlo −Dod
lohi(b

od
hi)

−1βod
]

. (134)

After evaluating the right-hand-side of equation (132), it is transformed into the eigenspace of
the Laplacian by multiplying it by P od. Then, each component is divided by the corresponding
eigenvalue of Λod. The solution uodlo is then recovered by multiplying the result by (P od)−1.

The final step is to recover the high frequencies through:

uodhi = (bodhi)
−1
(

βod − bodlo u
od
lo

)

. (135)

Page 29 of 37



CyFlow Manual – Dr. Cédric Beaume

5 Solving the Helmholtz problem

Let us now consider the Helmholtz problem:

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2

)

u = f, (136)

where u is the solution and f is a known right-hand-side. For this explanation, we will consider
the following Dirichlet boundary conditions:

u = urbc at r = 1, (137)

u = uzbc at z = ±h
2
, (138)

where r = 1 is the side-wall of the cylinder and z = ±h/2 are the end-walls of the cylinder.

5.1 Diagonalizations

The first step to solve the Helmholtz equation (136) is to Fourier transform it in the azimuthal
direction:

(

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2

)

um(r, z) = fm(r, z), (139)

where the superscript m indicates the azimuthal wavenumber m component. This results in
M/2 + 1 decoupled complex equations, where M is the number of meshpoints in the azimuthal
direction.

The equations are then transformed in r using the Zernike transform (98) and in z using the
Chebyshev transform, taking care of separating the even and odd Chebyshev contributions (see
Section 4.3). The resulting equation for the odd modes is:

(

Lm ⊗ I + I ⊗Dod
)

Uod,m = (I ⊗ I)F od,m, (140)

where ⊗ indicates the tensor product between the r-tensor on the left and the z-tensor on the
right, Lm is the discrete version of ∂2/∂r2+1/r∂/∂r−m/r2 in Zernike space (it is not needed as
such, so read on!), Dod is the odd mode contribution to the discretized Laplacian in Chebyshev
space (see Section 4.3), I is the identity matrix, Uod,m represents the odd modes in z at azimuthal
wavenumber m of the solution and where F od,m is the projection of the right-hand-side onto
azimuthal wavenumber m and the odd Chebyshev basis in z. A similar equation is found for
the even modes and results in the same treatment.

Equation (140) is tensorial, so it is useful to clarify the dimension of its terms. First of all,
there are M/2 + 1 such complex equations, due to the azimuthal Fourier transform but these
equations are decoupled. For N + 1 radial points and Nz + 1 axial points, matrix Lm is of
dimension (N +1)× (N +1), matrix Dod is of dimension Nzpp×Nzpp (cf Section 4.3) and Uod,m

and F od,m are tensors of dimensions (N + 1)×Nzpp.

We use a Schur method to apply the boundary condition on the disks: the highest Chebyshev
frequency mode equation is discarded and replaced by the boundary conditions in z. This
method is described in Section 4.3 and yields:

[

Lm ⊗ I + I ⊗ (Dod
lolo −Dod

lohi(b
od
hi)

−1bodlo )
]

Uod,mlo = (I ⊗ I) F̂ od,mlo , (141)
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where (I ⊗ I) F̂ od,mlo = (I ⊗ I)F od,mlo −
(

I ⊗Dod
lohi(b

od
hi)

−1βod
)

is the right-hand-side corrected by
the boundary condition contribution and where all the new terms have already been introduced
in Section 4.3. Note here that the z-dimension of the tensors in this equation has been reduced
to Nzpp − 1 due to the Schur method. The left-hand-side z-operator can be diagonalized like in
Section 4.3 to yield:

[

Lm ⊗ I + I ⊗ (P od)−1ΛodP od
]

Uod,mlo = (I ⊗ I) F̂ od,mlo , (142)

which can be multiplied by I ⊗ P od to yield:
[

Lm ⊗ P od + I ⊗ ΛodP od
]

Uod,mlo =
(

I ⊗ P od
)

F̂ od,mlo . (143)

By introducing Ũod,mlo =
(

I ⊗ P od
)

Uod,mlo and F̃ od,mlo =
(

I ⊗ P od
)

F̂ od,mlo , we can see the simple
numerical structure of the resulting equation:

[

Lm ⊗ I + I ⊗ Λod
]

Ũod,mlo = (I ⊗ I) F̃ od,mlo . (144)

Since the problem is now diagonalized in z, we can decouple all its components and write:
(

Lm + Λodk

)

Ũod,mlo,k = F̃ od,mlo,k , (145)

for k = 1, . . . , Nzpp−1 and m = 0, . . . ,M/2. We note that the left-hand-side operator is nothing
else but Hm(Λodk ), defined in Section 4.2.7, so that the equation we need to solve is:

Hm(Λodk )Ũod,mlo,k = F̃ od,mlo,k . (146)

For each azimuthal wavenumber m, we have Nzpp−1 such equations to solve, each corresponding
to an eigendirection of the odd parity Laplace operator in Chebyshev space and as many for the
even parity Laplace operator. In total, we have (M/2 + 1)(2Nzpp − 2) such problems to solve.
Each of these equations needs to be complemented with its corresponding radial boundary
condition. Equation (137) is Fourier transformed in θ and Chebyshev transformed in z. The
resulting contribution for the odd modes is:

uod,mk = uod,mrbc,k, at r = 1, (147)

where the superscript m indicates the mth azimuthal wavenumber and the subscript k indicates
the kth Chebyshev mode of the parity identified in the first superscript. A similar equation is
also obtained for the even modes.

5.2 Tau method on the disks

For simplicity, we recast equation (146) into the following form:

HU = F, (148)

with boundary condition (147) expressed in matrix form using (118):

c · U = s, (149)

where the notation has been simplified for clarity. There are (M/2+1)(2Nzpp−2) such problems,
i.e., Nzpp − 1 per axial parity per azimuthal wavenumber and all of these problems are solved
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in the same way. We continue the calculation in index notation, which makes the algebra more
intuitive.

We implement the boundary condition using a tau method:

R−1
ij LjkUk = Fi + τ1δiN̄ , (150)

where H = R−1L = (ST )−1L (see equation (114)), where R and L are of dimension N̄ × N̄ ,
where N̄ is a function of Nzer (see Section 4.2.7), τ1 is the tau correction to satisfy the boundary
condition and δij is the Kronecker delta (δij = 1 is i = j and 0 otherwise). Sending R to the
right-hand-side, we get:

LjkUk = RjiFi + τ1RjN̄ . (151)

We want to take advantage of the structure of the matrix L to use fast solvers. By moving all the
rows down one row and bringing the last row into first row position, we obtain a penta-diagonal
matrix, with the exception of the first row. We apply such a transformation to L and R, and
name the resulting matrices L̃ and R̃:

L̃jkUk = R̃jiFi + τ1R̃jN̄ . (152)

Since the first row of L̃ prevents it from being penta-diagonal, we replace it with δ1j , leaving 1 on
its first component and 0 elsewhere and making the resulting matrix, L′, at last penta-diagonal.
By doing this, we have modified one row of system (152), so we need to include a second tau
correction, τ2, to allow the solution to be solution of the initial problem:

L′
jkUk = R̃jiFi + τ1R̃jN̄ + τ2δj1. (153)

By sending the left-hand-operator to the right-hand-side, we get:

Uk = L′−1
kj R̃jiFi + τ1L

′−1
kj R̃jN̄ + τ2L

′−1
k1 , (154)

which can be written using the notation in [6]:

Uk = Āk + τ1G1,k + τ2G2,k, (155)

where new vectors are introduced: Āk = L′−1
kj Yj = L′−1

kj R̃jiFi, G1,k = L′−1
kj G3,j = L′−1

kj R̃jN̄ and

G2,k = L′−1
k1 .

Equation (155) needs to be complemented by the boundary condition

ckUk = s, (156)

as well as the high-frequency equation that we discarded when we replaced the first line of L̃ by
δ1j :

LN̄kUk = RN̄iFi + τ1RN̄N̄ . (157)

By replacing Uk using equation (155) in these two relationships, we obtain the following system:
{

ckG1,kτ1 + ckG2,kτ2 = s− ckĀk
(fkG1,k −RN̄N̄ )τ1 + ffG2,kτ2 = Y1 − fkĀk

, (158)

where fk = LN̄k. The solution to this system is:














τ1 =
clG2,l(Y1 − fkĀk)− fkG2,k(s− clĀl)

ξ

τ2 =
(fkG1,k −RN̄N̄ )(s − clĀl)− clG1,l(Y1 − fkĀk)

ξ

, (159)

where ξ = (fkG1,k −RN̄N̄ )clG2,l − clG1,lfkG2,k.
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6 Influence matrix method

To be written
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7 Nonlinear terms

7.1 Direct expression

The poloidal-toroidal formulation of the governing equations is:
(

∂t −
1

Re
∇2

)

∇2
hψ = Sψ, (160)

(

∂t −
1

Re
∇2

)

∇2∇2
hφ = Sφ, (161)

where we have introduced the following nonlinear terms:

Sψ = ẑ · ∇ × [(u · ∇)u] , (162)

Sφ = −ẑ · ∇ ×∇× [(u · ∇)u] . (163)

Using the identities (u ·∇)u = 0.5∇u2−u× (∇×u) and ∇× (∇f) = 0 for any suitably regular
function f , as well as the definition of the vorticity, ω = ∇ × u, these nonlinearities can be
simplified into:

Sψ = −ẑ · ∇ × (u× ω), (164)

Sφ = ẑ · ∇ ×∇× (u× ω). (165)

For simplicity, we introduce:

S = −u× ω ⇒











Sr = uzωθ − uθωz
Sθ = urωz − uzωr
Sz = uθωr − urωθ

. (166)

The nonlinear terms therefore become:

Sψ = −ẑ · ∇ × S

Sφ = ẑ · ∇ ×∇× S

}

⇒















Sψ =
1

r
∂r(rSθ)−

1

r
∂θSr

Sφ = ∇2
hSz − ∂z

[

1

r
∂r(rSr) +

1

r
∂θSθ

] . (167)

7.2 A good choice of differential operators

Unfortunately, not all the differential operators involved in the numerical expression of the
nonlinear terms (167) are compatible with our choice of disctretization of the disk. For example,
f(r, θ) = rn exp(ımθ) does not satisfy the pole condition for n < m (see Section 1). This implies
that differential operators are only allowed if they do not generate polynomials in r of lower
degree when applied to rm exp(ımθ).

We note that expressing S involves a number of differential operators and, while ∂z and ∇2
h do

not pose any issue with the pole condition, r−1∂θ and ∂r do. We replace these operators by ∂θ
and r∂r and define the surrogate velocities and vorticities:

u∗ =











u∗r = ∂θψ + r∂rzφ

u∗θ = ∂θzφ− r∂rψ

u∗z = −∇2
hφ

, (168)

ω∗ =











ω∗
r = ∂θu

∗
z − ∂zu

∗
θ

ω∗
θ = ∂zu

∗
r − r∂ru

∗
z

ω∗
z = −∇2

hψ

, (169)
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noting that u∗r = rur, u
∗
θ = ruθ, u

∗
z = uz, ω

∗
r = rωr, ω

∗
θ = rωθ and ω∗

z = ωz. The surrogate
velocities and vorticities can be direclty computed in spectral space.

The nonlinearity S has to be computed in physical space and respect the pole condition (see
Section 1). This cannot be achieved directly, so we define a surrogate nonlinearity:

S∗ =























S∗
r = u∗zω

∗
θ − u∗θω

∗
z

S∗
θ = u∗rω

∗
z − u∗zω

∗
r

S∗
z =

1

r2
(u∗θω

∗
r − u∗rω

∗
θ)

, (170)

where S∗
r = rSr, S

∗
θ = rSθ and S∗

z = Sz. Note that dividing S∗
r or S∗

θ by r would violate the
pole condition and would create a large error when transforming these quantities into spectral
space.

The nonlinear terms (167) can be expressed in terms of the surrogate quantities:















Sψ =
1

r
∂rS

∗
θ −

1

r2
∂θS

∗
r

Sφ = ∇2
hS

∗
z − ∂z

[

1

r
∂rS

∗
r +

1

r2
∂θS

∗
θ

] . (171)

Here, another problem arises: the operator r−1∂r is not compatible with the pole condition.
When applying this operator to rm exp(ımθ), we notice that the additional operator ır−2∂θ is
required to satisfy the pole condition. We thus write:

System (171) ⇒















Sψ =
1

r
∂rS

∗
θ +

ı

r2
∂θS

∗
θ −

ı

r2
∂θS

∗
θ −

1

r2
∂θS

∗
r

Sφ = ∇2
hS

∗
z − ∂z

[

1

r
∂rS

∗
r +

ı

r2
∂θS

∗
r −

ı

r2
∂θS

∗
r +

1

r2
∂θS

∗
θ

] (172)

⇒















Sψ =

(

1

r
∂r +

ı

r2
∂θ

)

S∗
θ + ı

(

ı

r2
∂θS

∗
r −

1

r2
∂θS

∗
θ

)

Sφ = ∇2
hS

∗
z − ∂z

[(

1

r
∂r +

ı

r2
∂θ

)

S∗
r − ı

(

1

r2
∂θS

∗
r +

ı

r2
∂θS

∗
θ

)] (173)

⇒















Sψ =

(

1

r
∂r +

ı

r2
∂θ

)

S∗
θ + ıS∗

c

Sφ = ∇2
hS

∗
z − ∂z

[(

1

r
∂r +

ı

r2
∂θ

)

S∗
r − S∗

c

] , (174)

where
S∗
c =

ı

r2
∂θ (S

∗
r + ıS∗

θ ) . (175)

With this algebra, we notice that all the operations carried out on S∗ can be performed in
spectral space. The only dangerous evaluations are those of S∗

c . They will be carried out in
quasi-physical space (physical in r and z but spectral in θ to take advantage of the differentiation
in this direction).
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A Vector calculus

Let φ be a continuously twice-differentiable scalar field:

∇2φ = ∇ · (∇φ) . (176)

Let u be a continuously twice-differentiable vector field:

∇ · (∇× u) = 0, (177)

(u · ∇)u =
1

2
∇u2 − u× (∇× u) , (178)

∇2u = ∇ (∇ · u)−∇× (∇× u) (179)

B Cylindrical calculus

Let us consider a suitably regular scalar field φ:

∇2φ =
1

r
∂r(r∂rφ) +

1

r2
∂2θφ+ ∂2zφ. (180)

Let us consider a suitably regular vector field A = Arr̂+ Aθθ̂ + Az ẑ with its projections along
the radial, azimuthal and axial directions of respective unit vectors r̂, θ̂ and ẑ:

∇×A =











1

r
∂θAz − ∂zAθ

∂zAr − ∂rAz
1

r
[∂r(rAθ)− ∂θAr]











. (181)

Similarly:

∇×∇×A =

















∂r

(

1

r
∂θAθ + ∂zAz

)

+
2

r2
∂θAθ −

(

1

r2
∂2θ + ∂2z

)

Ar

1

r
∂θ (∂rAr + ∂zAz) +

1

r2
(Aθ − ∂θAr)−

[

1

r
∂r(r∂r) + ∂2z

]

Aθ

∂z

[

1

r
∂r(rAr) +

1

r
∂θAθ

]

−
[

1

r
∂r(r∂r) +

1

r2
∂2θ

]

Az

















. (182)

The Laplacian is not straightforward:

∇2A =













∇2Ar −
Ar
r2

− 2∂θAθ
r2

∇2Aθ −
Aθ
r2

+
2∂θAr
r2

∇2Az













, (183)

where the expression of the scalar field Laplacian is given in equation (180).
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