Assessing the control of finite-amplitude instabilities via a probabilistic protocol

Application to transitional flows
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Motivation

Finite-amplitude instabilities may arise in systems featuring multi-stability. Charac-
terizing the boundary between the basins of attraction of the stable states represents
invaluable information to understand and control these instabilities. Unfortunately, in
large-dimensional systems, the structure of this boundary is rarely trivial which makes
an exhaustive characterization virtually impossible.

We consider an example of such a system: plane Couette flow, the three-
dimensional viscous flow confined between two parallel, no-slip walls moving in oppo-
site directions. The fluid satisfies the Navier—Stokes equation and the incompressibility
constraint:
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where u is the velocity field, t is the time, p is the pressure and Re is the Reynolds
number, which expresses the ratio between inertial and viscous forces within the
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fluid. These equations are complemented with no-slip boundary conditions in the
wall-normal direction:

kinetic energy density

as well as periodic boundary conditions in the streamwise (x) and spanwise (z) di-
rections. This flow admits a stable so|ution, the laminar flow Uiam = Y€y, which is Figure 1: Example of turbulent flow in a large domain (LX — 16w, L, = 87T) for Re = 500 showing the chaotic

prone to a finite-amplitude instability, transition to turbulence (see Figure 1)_ oscillations of the kinetic energy density as a function of time as well as a mid-plane (y = 0) contour plot of the
streamwise (x— )velocity, where black (resp. yellow) denotes values inferior to —0.3 (resp. superior to 0.3).

Probabilistic protocol Example of control

» Methodology » Control strategy

To study the robustness of the laminar flow, we perturb it and compute the probability We aim to control the flow using wall oscillations in the spanwise direction [2]. The
of the perturbation decaying, known as the laminarization probability, as a function of the non-periodic boundary condition is modified into:

perturbation kinetic energy [1]. u = ye, + W, sin(wt + ¢)e,, ot — 41 (5)
For a set kinetic energy density E, initial conditions,

where the oscillations are characterized by their magnitude W, their frequency w and their
Uinit = (1 + B)ujam + Au (4) phase ¢. The methodology is that presented in the left column with a suitably modified

where the random perturbations, Au, + Buj.m, are generated in the following way: Ulam- | he choice of the phase ¢ did not impact results.

Generate u | : spectral coefficients are drawn from uniform distributions with support » Results

size decaying exponentially with the wavenumber magnitude; ensure

iIncompressibility; normalize.

Generate B: draw from the uniform distribution in [—2E/||ujam||; 2E /||Ujaml]].

Compute A: A= ++/2E — B?||ujam||, where the sign is chosen randomly.

Finalize: time-integrate the resulting field for a small time to ensure boundary

conditions without impacting energy much.
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» Benchmark case

Figure 3: Same as Figure 2 but for W = 0.3 and w = 1/16. Here, the attractor along the edge of chaos is

chaotic and its average energy is represented in the vertical black dashed line with the shaded region around
it indicating a span of two standard deviations around the average value. The green and the cyan lines are
the same as in Figure 2.

— “Large” amplitude perturbations are the most efficiently controled.
— Control acts mainly on enhanced bulk shear perturbations.
— Evolution of the edge of chaos energy misleading.
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E | | To quantify control efficiency, we introduce
the laminarization score [3]:
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Figure 2: Laminarization probability P, as a function of the perturbation kinetic energy E for Re = 500 in a 0.8-

Emax
small domain (L, = 4x, L, = 327 /15). The bars represent the numerical results, where the pink (resp. blue) S — / piam( E)fe( E)dE (6)
)
components indicate the contribution from the reduced (resp. enhanced) bulk shear perturbations. The cyan 0

curve represents the fit to a cumulative distribution function for the gamma distribution [1]. The edge state where the laminarization probability ppa, is

(attractor along the separatrix between the basin of attraction of the laminar flow and that of turbulence) is weighed by fg to put more emphasis on the more

easily generated, low-energy perturbations, and
where E, . is the maximum perturbation energy
deemed relevant. Results in Figure 4 are shown

a steady state and its energy is indicated using the cyan vertical dashed lines. Results for Re = 400 (resp.

Re = 700) are shown using green (resp. red) lines.

—> [ he laminarization probability decreases with increasing perturbation energy and with
increasing Re. | EF-1 exp(_E/Eavg) Figure 4. Laminarization score S as a function

. avg :
—> The edge of chaos energy does not look like a good descriptor of the laminar flow fe(E) = I — exp(—Enmay/ Earg) (7)  of the control frequency w and amplitude Wes.
robustness P max/ —ave Error bars represent uncertainty.

—> The energy of the minimal seed (lowest energy perturbation that does not laminarize) —> Best control is obtained for oscillation frequency w ~ 1/8.
is too small to be of practical relevance. — Increasing the oscillation amplitude improves the robustness of the laminar flow.
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