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Motivation

Finite-amplitude instabilities may arise in systems featuring multi-stability. Charac-
terizing the boundary between the basins of attraction of the stable states represents
invaluable information to understand and control these instabilities. Unfortunately, in
large-dimensional systems, the structure of this boundary is rarely trivial which makes
an exhaustive characterization virtually impossible.

We consider an example of such a system: plane Couette flow, the three-
dimensional viscous flow confined between two parallel, no-slip walls moving in oppo-
site directions. The fluid satisfies the Navier–Stokes equation and the incompressibility
constraint:

∂u

∂t
+ (u · ∇) u = −∇p +

1

Re
∇2u, (1)

∇ · u = 0, (2)
where u is the velocity field, t is the time, p is the pressure and Re is the Reynolds
number, which expresses the ratio between inertial and viscous forces within the
fluid. These equations are complemented with no-slip boundary conditions in the
wall-normal direction:

u = yex, at y = ±1, (3)
as well as periodic boundary conditions in the streamwise (x) and spanwise (z) di-
rections. This flow admits a stable solution, the laminar flow ulam = yex, which is
prone to a finite-amplitude instability, transition to turbulence (see Figure 1).

Figure 1: Example of turbulent flow in a large domain (Lx = 16π, Lz = 8π) for Re = 500 showing the chaotic

oscillations of the kinetic energy density as a function of time as well as a mid-plane (y = 0) contour plot of the

streamwise (x−)velocity, where black (resp. yellow) denotes values inferior to −0.3 (resp. superior to 0.3).

Probabilistic protocol

I Methodology

To study the robustness of the laminar flow, we perturb it and compute the probability
of the perturbation decaying, known as the laminarization probability, as a function of the
perturbation kinetic energy [1].

For a set kinetic energy density E , initial conditions,

uinit = (1 + B)ulam + Au⊥, (4)

where the random perturbations, Au⊥ + Bulam, are generated in the following way:

(i) Generate u⊥: spectral coefficients are drawn from uniform distributions with support

size decaying exponentially with the wavenumber magnitude; ensure

incompressibility; normalize.

(ii) Generate B : draw from the uniform distribution in [−2E/||ulam||; 2E/||ulam||].
(iii) Compute A: A = ±

√
2E − B2||ulam||, where the sign is chosen randomly.

(iv) Finalize: time-integrate the resulting field for a small time to ensure boundary

conditions without impacting energy much.

I Benchmark case

Figure 2: Laminarization probability Plam as a function of the perturbation kinetic energy E for Re = 500 in a

small domain (Lx = 4π, Lz = 32π/15). The bars represent the numerical results, where the pink (resp. blue)

components indicate the contribution from the reduced (resp. enhanced) bulk shear perturbations. The cyan

curve represents the fit to a cumulative distribution function for the gamma distribution [1]. The edge state

(attractor along the separatrix between the basin of attraction of the laminar flow and that of turbulence) is

a steady state and its energy is indicated using the cyan vertical dashed lines. Results for Re = 400 (resp.

Re = 700) are shown using green (resp. red) lines.

=⇒ The laminarization probability decreases with increasing perturbation energy and with
increasing Re.
=⇒ The edge of chaos energy does not look like a good descriptor of the laminar flow
robustness.
=⇒ The energy of the minimal seed (lowest energy perturbation that does not laminarize)
is too small to be of practical relevance.

Example of control

I Control strategy

We aim to control the flow using wall oscillations in the spanwise direction [2]. The
non-periodic boundary condition is modified into:

u = yex +Wosc sin(ωt + φ)ez, at y = ±1, (5)

where the oscillations are characterized by their magnitude Wosc, their frequency ω and their
phase φ. The methodology is that presented in the left column with a suitably modified
ulam. The choice of the phase φ did not impact results.

I Results

Figure 3: Same as Figure 2 but for W = 0.3 and ω = 1/16. Here, the attractor along the edge of chaos is

chaotic and its average energy is represented in the vertical black dashed line with the shaded region around

it indicating a span of two standard deviations around the average value. The green and the cyan lines are

the same as in Figure 2.

=⇒ “Large” amplitude perturbations are the most efficiently controled.
=⇒ Control acts mainly on enhanced bulk shear perturbations.
=⇒ Evolution of the edge of chaos energy misleading.

To quantify control efficiency, we introduce
the laminarization score [3]:

S =

∫ Emax

0

plam(E )fE(E )dE , (6)

where the laminarization probability plam is
weighed by fE to put more emphasis on the more
easily generated, low-energy perturbations, and
where Emax is the maximum perturbation energy
deemed relevant. Results in Figure 4 are shown
for:

fE(E ) =
E−1
avg exp(−E/Eavg)

1− exp(−Emax/Eavg)
. (7)

Figure 4: Laminarization score S as a function

of the control frequency ω and amplitude Wosc.

Error bars represent uncertainty.

=⇒ Best control is obtained for oscillation frequency ω ≈ 1/8.
=⇒ Increasing the oscillation amplitude improves the robustness of the laminar flow.
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