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Chapter 1

Introduction

Formula 1 is a motorsport which consists of 20 drivers from 10 teams attempting to complete a
set number of laps around a track quicker than all other drivers. Points are awarded to drivers
based on their finishing position. After each race, the points scored by each driver is added
to their total for the season, thus creating a Drivers’ Championship. There is an equivalent
Constructors’ Championship, where each team is given the combined points scored by their
drivers. After the season has been completed, which typically consists of 20 separate races, the
driver and team with the most points wins their respective championship. The goal of each
team is therefore a simple one: give themselves the best chance of securing the Constructors’
and/or Drivers’ Championship. A team will have the best chance of winning at least one
of the championships if they can provide their drivers with both a good car and good race
strategies.

The aim of this project is to study how we can model a car’s lap time around a race track.
This will involve modelling how tyres wear out over time and how much the fuel load affects
the lap time. With the model we create, we will work towards finding the fastest possible way
of completing a race of N laps. While it is possible for a car to complete a whole race without
stopping, cars are able to make pit stops, where fuel is added and the tyres are changed at the
cost of losing time in the pit lane. We will see what conditions are required so that it is faster
to make a given number of pit stops in the races, rather than driving non-stop from start to
finish.

Using our lap time model, we will “become” a Strategy Engineer for a Formula 1 team at a
given race, where we will find the best strategy for this race according to the data we acquire.[1]

This involves analysing lap time data from the race to estimate all the necessary values. Once
we find the fastest strategy, we will compare it to the race winning strategy and also fit the race
winning strategy using our model. We will discuss ways in which we can adapt or extend the
simple model we create, as well as other factors that can influence the strategy decisions that
are made in a real life situation.

The rest of this project will cover the F1 Strategy Competition run by Cédric Beaume, which
involves creating a virtual team by allocating a fixed budget into 4 separate components, hiring
drivers through a drafting process, and then putting our race strategies to the test against 12
other competitors. Using Python, we will use Monte Carlo simulations to give ourselves what
we think is the best possible chance of winning the team championship. After the season is
complete, we will discuss how we could have altered our initial budget allocation in order to
give ourself the best chance of winning against the 12 other teams.

In Chapter 2, we will develop our lap time model and use it to formulate race strategies. Chapter
3 will be focused around a real life race, for which we will create an optimal race strategy using
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data from the race, followed by a discussion on areas our model can be improved. Chapter 4 will
cover the preparation for the F1 Strategy Competition, discussing the budget allocation process
and how we can give ourselves what we believe is the best chance of winning the championship.
Chapter 5 will review the events of the competition, discussing what we did well, what did not
go well, and what we could have done differently.
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Chapter 2

Lap time modelling

In this chapter, we will start by introducing how we can model the time it takes for a driver to
complete a lap, depending on a few simple factors. We will then use this model to determine
what strategy can be used in order to complete a race in the quickest time possible.

2.1 The simple lap time model

When modelling the time taken for a driver to complete a lap of a track, there are two important
variables: the amount of fuel onboard the car and the level of tyre wear. A car with more fuel
will be a heavier car, and will therefore experience greater inertia when attempting to accelerate
and decelerate which has the effect of slowing a car down. As tyres are used for more and more
laps, they begin to wear out. A worn set of tyres will provide less grip than a new set, thus
slowing the car down.

We can therefore model a lap time [2] by writing

t = tb + pt + pf , (2.1)

where the separate components, all measured in seconds, are defined:

t: The total time taken to complete a lap;
tb: The base lap time around the given track, assuming minimal fuel and no tyre wear;
pt: Time penalty due to tyre wear;
pf : Time penalty due to fuel level.

During a Formula 1 race weekend, which consists of 3 practice sessions, a qualifying session and
a race, strategy engineers for each team will be tasked with estimating these components. The
base lap time will be a constant, whereas the fuel component will be a decreasing function of laps
completed and the tyre wear component will be an increasing function of laps completed.
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Example 2.1

Suppose that at a given race weekend, a strategy engineer estimates each of the above components
with:

tb = 90;

pt(l;T ) = T l;

pf (l;F, lmax) = F (lmax − l).

=⇒ t = 90 + T l + F (lmax − l), l = 0, 1, . . . , lmax − 1.

Here, T > 0 is the additional time penalty per lap due to tyre wear, F > 0 is the additional
time penalty per lap of fuel onboard the car, l is the number of laps completed in the current
stint and lmax is the total number of laps in the stint. When l = lmax, every lap in the stint
has been completed, so there is no fuel in the car. At this point, either the race will have been
completed, or we would make a pit stop to change tyres and acquire more fuel.

If we let T = 0.05, F = 0.1, lmax = 20, then on the 11th lap (i.e. l = 10 since only 10 laps have
been completed), the lap time according to this model would be

t = 90 + 0.05 · 10 + 0.01 · (20− 10)

=⇒ t = 91.5 seconds

2.2 Extending to a stint

The obvious extension to having a model for calculating a driver’s lap time around a circuit
is to consider the set of lap times across a stint, which is simply a set of successive laps. The
notion of a stint has already been encoded by the use of the variable l in our lap time model, as
the tyre wear and fuel load penalties are a function of the number of laps completed in the stint.
We will see how the time to complete a stint of laps is of interest to a strategy engineer when
multiple tyre compounds are available to choose from, although for now we will just consider
methods for calculating the time taken to complete a stint.

To define a way of calculating the time taken to complete a stint, we will be using the following
lap time model:

tl+1 = tb + T l + F (lmax − l), l = 0, 1, . . . , lmax − 1, (2.2)

where T, F > 0 are the tyre wear and fuel level time penalties respectively, and tb, l, and lmax are
the same as defined in (2.1). Here, tl+1 is simply just the lap time on lap l + 1, at which point
only l laps have been completed in the stint. We assume a linear law for the tyre wear penalty
for simplicity, although other laws, such as quadratic or exponential, may be appropriate. In
reality, there are many factors that influence the wear rate of a tyre, which we will discuss later,
but a linear law can occur in some circumstances. A linear law for the fuel load penalty is
appropriate here because the weight of the car is significantly larger than the weight of the fuel
that is burned across a single lap. As a result, the percentage change in weight of the car after a
lap of fuel has been used will be close to a constant value, therefore the change in lap time will
be effectively linear. If there were a motorsport with incredibly light vehicles, the percentage
change in weight of the car after a lap of fuel is used would increase more noticeably, making a
linear law for the fuel load penalty less appropriate.
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Proposition 2.2

Suppose we have a stint of length lmax, and let tb be the base lap time, T the tyre wear
time penalty and F the fuel load penalty. Then, the total time to complete the stint is

tS =

lmax−1∑
l=0

tl = lmaxtb +
lmax

2
[T (lmax − 1) + F (lmax + 1)] . (2.3)

Proof. We have

ts =

lmax−1∑
l=0

tl =

lmax−1∑
l=0

tb + T l + F (lmax − l)

= lmaxtb + T (0 + 1 + · · ·+ (lmax − 1)) + F (lmax + (lmax − 1) + · · ·+ 2 + 1)

= lmaxtb + T
(lmax − 1)lmax

2
+ F

lmax(lmax + 1)

2

=⇒
lmax−1∑
l=0

tl = lmaxtb +
lmax

2
[T (lmax − 1) + F (lmax + 1)] .

Example 2.3

Let T = 0.05, F = 0.1, tb = 90, and suppose we wish to complete a stint of lmax = 20 laps. Then,
the total time to complete this stint is

lmax−1∑
l=0

tl = 20 · 90 +
20

2
[0.05(20− 1) + 0.1(20 + 1)]

= 1830.5s.

2.3 Extending to a full race

According to Article 24.4k of the 2021 Formula 1 Sporting Regulations, in a dry race drivers
a required to use at least 2 of the 3 available dry-weather tyre compounds else they would be
disqualified from the race results.[3] As a result, at least one pit stop is required at some point
during the race in order to change the tyres. We will later consider ways of modelling the time
required to make a pit stop, as they are highly susceptible to any mistakes made by the pit crew
or driver. For now, we will assume that there are no errors made during a pit stop, and that
the only effect on the time taken is the amount of fuel that is being added to the car. When
devising a strategy for a given race, a Strategy Engineer would need to consider the time taken
to make a pit stop. For instance, making more pit stops throughout the race allows a driver to
have lower fuel and freshers tyres on average, but they would lose a significant amount of time
in the pit lane relative to someone making fewer stops throughout the race.

We will see how we can find the fastest possible race strategy and also how we can compare
different strategies. For simplicity, we will also assume that there is only one tyre compound
available to the drivers and so, we will also lift the requirement for a pit stop to be made.
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Definition 2.4

Let l1, l2, . . . , lr ∈ N be the laps on which a pit stop is made, with l0 = 0 < l1 <
l2 < · · · < lr, and suppose the race has lr+1 laps, with lr < lr+1. Then, the intervals
[l0 + 1, l1], [l1 + 1, l2], . . . , [lr + 1, lr+1] are the r + 1 stints that make this strategy. The
r + 1 stints define an r-stop strategy.

Example 2.5

Suppose we have a race of 40 laps. An example of a 3-stop strategy is one that stops on laps
l1 = 10, l2 = 20, and l3 = 30, with l4 = 40 being the length of the race. The 4 stints in this
strategy consist of laps 1-10, 11-20, 21-30, 31-40. An alternative 2-stop strategy could have
l1 = 15, l2 = 30, and l3 = 40, where the 3 stints are made of laps 1-15, 16-30, 31-40.

With a formalised definition of a race strategy for any number of pit stops, we can now work
towards a method for calculating the total race time for a given strategy.

Proposition 2.6

Let T, F > 0 be the respective tyre wear and fuel load penalties at a given track, and
suppose we wish to wish to use an r-stop strategy at a race of lr+1 laps where the base
lap-time is given by tb. Then, the total time required to complete the race, according to
the simple model, is

(2.4)

tR(l1, . . . , lr+1;F, T, ts, tb) = lr+1tb + F
l1(l1 + 1)

2
+ T

l1(l1 − 1)

2

+
r+1∑
i=2

[
ts +

1

2
(li − li−1) + F

(li − li−1)(li − li−1 + 1)

2

+ T
(li − li−1)(li − li−1 − 1)

2

]
.

Here, we have assumed that the time required to make a pit stop is given by

tp = ts +
1

2
(li − li−1), (2.5)

where ts is some constant, in seconds, and we add half a second to the stop time for every
lap of fuel that is added to the car. We interpret ts as the time required to drive through
the pit lane without making a pit stop.

We first notice that the base lap time tb is counted on every lap, and so we can simply add
it to the total sum lr+1 times. The other terms outside the summation are simply the total
tyre wear and fuel load penalties for a stint of length l1. The summation is used to calculate
the individual stint times for the remaining r stints in the race after the first stint has been
completed where the tyre wear and fuel load penalties are equivalent to those found in (2.3).
We have also included the time required to make the necessary pit stop in between each stint,
as given by (2.5).

Example 2.7

Let T = 0.05, F = 0.1, tb = 90, ts = 15, and suppose we wish to complete a 60 lap race with
the following 2-stop strategy: l1 = 20, l2 = 40, hence l3 = 60. Then, the total race time for this
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strategy is

tR = 60 · 90 + 0.1
20 · 21

2
+ 0.05

20 · 19

2

+

(
15 +

1

2
(40− 20) + 0.1

(40− 20)(40− 20 + 1)

2
+ 0.05

(40− 20)(40− 20− 1)

2

)

+

(
15 +

1

2
(60− 40) + 0.1

(60− 40)(60− 40 + 1)

2
+ 0.05

(60− 40)(60− 40− 1)

2

)

=⇒ tR = 5400 + 21 +
19

2
+

(
15 + 10 + 21 +

19

2

)
+

(
15 + 10 + 21 +

19

2

)
= 5541.5s

= 1hr 32m 20.5s.

Therefore, this driver’s race would take just over 1 hour and 32 minutes according to this 2-stop
strategy.

We can compare this to a 3-stop strategy. Let l1 = 15, l2 = 30, l3 = 45, and hence l4 = 60. This
strategy would give a total race time of 5536.5 seconds, which is a 5 second improvement on
the 2-stop strategy!

Being able to calculate the time it would take for a driver to complete a race given a race
strategy is one thing, but a Strategy Engineer would want to know how to find the best possible
strategy. As such, we would want to minimise the value of tR with respect to the laps on which
pit stops are made.

Theorem 2.8

Let l1, . . . , lr define an r-stop strategy in a race of lr+1 laps, with lr < lr+1. Let F be
the time penalty per lap of fuel onboard the car, and T be the time penalty per lap
completed on the tyres. Let ts be the time required for the car to drive through the pit
lane and suppose it takes half a second to add a lap of fuel in a pit stop.

Then, starting with the fixed race length lr+1, the optimal laps on which to make a pit
stop can be found recursively with the following formula:

li =
i

i+ 1
li+1 +

1

2(i+ 1)(T + F )
, ∀i = 1, . . . , r (2.6)

Proof. Since we aim to minimise the fuel penalty across the race, we want to find the li that
minimises (1.7). Starting with l1, we take the partial derivative of tR with respect to l1, and
set to 0.
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∂tR

∂l1
=
F

2
l1 +

F

2
(l1 + 1) +

T

2
l1 +

T

2
(l1 − 1)−

1

2
−
F

2
(l2 − l1 + 1)−

F

2
(l2 − l1)

−
T

2
(l2 − l1 − 1)−

T

2
(l2 − l1) = 0

=⇒ 0 = 4l1(T + F )− 2l2(T + F )− 1

=⇒ l1 =
l2

2
+

1

4(T + F )
.

For the remaining li, we expand the sum so as to only consider terms with li. Again, we take
the partial derivative of tR with respect to li, and set to 0.

∂tR

∂li
=

∂

∂li

[(
ts +

1

2
(li − li−1) + F

li − li−1

2
(li − li−1 + 1) + T

li − li−1

2
(li − li−1 − 1)

)

+

(
ts +

1

2
(li+1 − li) + F

li+1 − li
2

(li+1 − li + 1) + T
li+1 − li

2
(li+1 − li − 1)

)]

=⇒
∂tR

∂li
=
T

2
(2li − 2li−1 − 1− 2li+1 + 2li + 1) +

F

2
(2li − 2li−1 + 1− 2li+1 + 2li − 1) = 0

=⇒ 0 = (T + F )(4li − 2li−1 − 2li+1)

=⇒ 2li = li−1 + li+1. (?)

Using this relationship, we can find all the li. We use the fact that l1 =
l2

2
+

1

4(T + F )
and that

the race length, lr+1, is fixed.

Substituting l1 into (?), and setting i = 2, we find that

2l2 =
l2

2
+

1

4(T + F )
+ l3

=⇒ l2 =
2

3
l3 +

1

6(T + F )
.

Now, for i = 3, we find that

2l3 =
2

3
l3 +

1

6(T + F )
+ l4

=⇒ l3 =
3

4
l4 +

1

8(T + F )
.

As we increase i up to r, we find that this pattern holds, thus giving the recurrence formula

li =
i

i+ 1
li+1 +

1

2(i+ 1)(T + F )
.

It should be noted that the optimal stopping laps are not affected by the time taken to complete
the pit stop, as we are effectively minimising the total fuel load and tyre penalty on track. When
comparing strategies with the same number of stops, ts is a constant penalty, regardless of when
the pit stops are made.
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Example 2.9

Suppose we want to find the fastest 2-stop strategy at a race of 25 laps. Let F = 0.1, T =
0.1, ts = 15, tb = 90. By setting l3 = 25, we find that

l2 =
2

3
· 25 +

1

2(3)(0.1 + 0.1)

= 17.5

=⇒ l1 =
1

2
· 17.5 +

1

2(2)(0.1 + 0.1)

= 10.

Therefore, the optimal laps on which to make the pit stops for this 2-stop strategy are laps
l1 = 10 and l2 = 17.5. Of course, we cannot stop halfway through the lap, so we will use (2.8)
to determine whether pitting on lap 17 or 18 is the better strategy.

l2 = 17 : tR = 2250 +
11

2
+

9

2
+

(
15 +

1

2
(17− 10) + 0.1

7 · 8
2

+ 0.1
7 · 6

2

)
+

(
15 +

1

2
(25− 17) + 0.1

8 · 9
2

+ 0.1
8 · 7

2

)
= 2308.8;

l2 = 18 : tR = 2250 +
11

2
+

9

2
+

(
15 +

1

2
(18− 10) + 0.1

8 · 9
2

+ 0.1
8 · 7

2

)
+

(
15 +

1

2
(25− 18) + 0.1

7 · 8
2

+ 0.1
7 · 6

2

)
= 2308.8.

Therefore, it does not matter whether the second pit stop is made on lap 17 or 18 as they both
have the same overall race time! In fact, in cases where the recursive formula yields an exact
half-lap as the optimal stopping lap, it does not matter whether we round up or down when
selecting the strategy.

Example 2.10

In the same race of 25 laps, suppose we want to find the fastest 1-stop strategy for the given
tyre wear and fuel level penalties. With l2=25, we find that

l1 =
1

2
· 25 +

1

2(2)(0.1 + 0.1)

= 13.75.

Therefore, stopping on lap 14 would provide the optimal 1-stop strategy for this race. To show
this, we will compare the total race time when stopping on lap 14 with the race time when
stopping on lap 13.
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l1 = 13 : tR = 2250 + 9.1 + 7.8 +

(
15 +

1

2
(25− 13) + 0.1

12 · 13

2
+ 0.1

12 · 11

2

)
= 2302.3;

l1 = 14 : tR = 2250 + 10.5 + 9.1 +

(
15 +

1

2
(25− 14) + 0.1

11 · 12

2
+ 0.1

11 · 10

2

)
= 2302.2.

Therefore, stopping on lap 14 results in a race time that is 0.1s quicker than stopping on lap 13.
The optimal 1-stop strategy is also 6.6s faster than the optimal 2-stop strategy! When deciding
which strategy to use in a race of a given length, the best approach is to find the optimal r-stop
strategy for each r (up to some maximum value) and then compare the total race times for each
of these optimal strategies.

Note

Our method for finding the optimal laps to stop essentially splits the race into two separate
components: the first stint and the remaining r stints. When we choose r ≥ 2, our method
finds the optimal lap on which to make the first pit stop, and then divides the remaining laps
into r stints of equal length. We can see this by considering a simple rearrangement of (?) from
the proof of Theorem 2.8:

2li = li−1 + li+1 =⇒ li =
li−1 + li+1

2
.

Clearly, the optimal stop laps are the halfway point between the preceding and successive stops
(or race length, if i = r).

For instance, suppose we have a race of 60 laps with T = 0.05, F = 0.1 and we wish to complete
a 3-stop strategy. According to (2.6), we would make our pit stops on laps 18, 32, and 46.
Hence, the first stint consists of 18 laps, while the 3 remaining stints are 14 laps each.

2.4 Modelling a pit stop

In the previous section, we assumed a simple model for the time taken to complete a pit stop,
which depended on only 2 variables:

tp = ts +
1

2
(li − li−1), (2.7)

where ts is the base pit lane time, and every lap of fuel added to the car takes an additional
0.5 seconds. As mentioned previously in Proposition 2.6, we interpret ts as the time required to
drive through the pit lane without making a pit stop, which depends only on the track.

In this section, we will consider three possible modifications in order to offer a more “realistic”
model for the time taken to complete a pit stop.

Relationship between fuel flow and track length

Article 5.3 of the 2021 Formula 1 Sporting Regulations state that the race length (in terms of
laps) is the minimum number of laps to ensure at least 305km has been driven.[3] For instance,
the Silverstone Circuit in Great Britain is 5.891km[4] in length. Each race at Silverstone consists
of 52 laps, resulting in the total race distance being 306.198km, which is just over the required
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305km. Note that this is slightly less than the distance covered by 52 laps of the circuit
(306.332km) as the start line is around 130m away from the timing line where the race ends.
By comparison, the Red Bull Ring in Spielberg, Austria, is only 4.318km[5] in length, resulting
in a race of 71 laps. The rules also state that cars are required to use no more than 110kg of
fuel during a race. Therefore, assuming teams fill up the cars entirely at the start of a race,
and then finish the race with no fuel, each lap of the Silverstone Circuit uses fuel at a rate of
2.115kg/lap, whereas at the Red Bull Ring fuel is used at a rate of 1.549kg/lap. In general,
longer laps have a higher rate of fuel usage per lap.

When devising strategies for different tracks, one thing that a Strategy Engineer can assume
to be constant is that rate at which fuel is added to the car (in kg/s) during a pit stop. By
assuming this to be constant, the time taken to add a single lap of fuel is dependent on the
length of the track or, equivalently, the number of laps in the race. In the 2021 Formula 1
Season, there are scheduled to be 1394 racing laps at 23 circuits, giving an average of ≈ 60.61
laps/race. For simplicity, we will assume that the average number of laps in a race is 60 laps,
and that the amount of time required to add a single lap of fuel during a pit stop at a race
of 60 laps is 0.5 seconds, as in the original pit stop model. Using this, we can make a simple
modification to the pit stop model:

tp = ts +
1

2
· 60

lr+1
(li − li−1), (2.8)

where lr+1 is the number of laps in the race. With this model, tracks with fewer than 60 laps
will see the time required to add a single lap of fuel increased above 0.5s, and vice versa for
races with more laps.

Influence of changing tyres

Historically, when refuelling was permitted during Formula 1 races, pit crews were able to
change the tyres at the same time as refuelling the car. This is also the case in many forms
of motorsport, for which our simple model can be adapted if necessary. Because F1 tyres are
only connected to the car with one lug nut, according to Article 12.8.2 of the 2021 Technical
Regulations [6], tyre changes are completed long before the fuel is added in its entirety. In other
motorsports, however, this is not necessarily the case, so there may be occasions where the time
to change the tyres is greater than the time to add the fuel to the car. As such, our model can
be simply adapted to the following:

tp = ts + min

(
tt,

1

2
(li − li−1)

)
, (2.9)

where tt is the time taken to change the tyres, which for now we assume to be some constant.
We have also assumed that fuel is added to the car at a rate of 0.5s/lap, in contrast to the
modification in (2.8).

The case when refuelling is banned

According to Article 30.1c in the 2021 Formula 1 Sporting Regulations, refuelling is not permitted
during the race[3], so at pit stops only tyres need to be changed. As such, teams aim to change
the tyres on the car as quick as possible. For instance, the fastest pit stop in Formula 1 history
was completed at the Brazilian Grand Prix in 2019, where Red Bull Racing changed the tyres
on Max Verstappen’s car in 1.82 seconds.[7] In order to model this, we need to consider the time
taken to drive through the pit lane ts and the time taken to change the tyres. The latter can
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be described by a random variable. If we assume the time taken to change the tyres in a pit
stop is normally distributed, then we could write our pit stop model as

tp = ts +XT , (2.10)

where ts is the same as in (2.7), and XT ∼ N
(
µ, σ2

)
is a random variable that describes the

time taken to change the tyres in a pit stop, which we have assumed to be normally distributed
with mean µ and variance σ2. A Strategy Engineer would need to estimate the values of µ and
σ2, although a simple estimate could be µ̂ = 2.5 and σ̂2 = 0.252. With these estimates, we
would expect 95% of all pit stops to have the tyre change completed within 2 to 3 seconds.

2.5 Example: 10-lap race

Suppose we have a race of lr+1 = 10 laps around some circuit. A team’s Strategy Engineer
estimates that the tyre wear penalty is T = 0.15 seconds per lap completed on the tyres, and
that each lap of fuel onboard the car adds an additional F = 0.2 seconds to the lap time.
Suppose the base lap time is tb = 90 seconds, and that it takes ts = 5 seconds to drive through
the pit lane. We will assume the simple pit stop model (2.7). We wish to find the fastest
strategy for this race.

In a race of 10 laps, we can make up to 9 pit stops (we cannot pit on lap 10), so we will find
the optimal laps to pit for strategies with up to 9 stops. Using (2.6), we find that the following
strategies are optimal for the given number of stops:

1 stop: l1 = 6

2 stops: l1 = 4, l2 = 7

3 stops: l1 = 4, l2 = 6, l3 = 8

4 stops: l1 = 3, l2 = 5, l3 = 7, l4 = 8

5 stops: l1 = 3, l2 = 4, l3 = 6, l4 = 7, l5 = 9

6 stops: l1 = 3, l2 = 4, l3 = 5, l4 = 6, l5 = 8, l6 = 9

7 stops: l1 = 2, l2 = 4, l3 = 5, l4 = 6, l5 = 7, l6 = 8, l7 = 9

8 stops: l1 = 2, l2 = 3, l3 = 4, l4 = 5, l5 = 6, l6 = 7, l7 = 8, l8 = 9

9 stops: l1 = 1, l2 = 2, l3 = 3, l4 = 4, l5 = 5, l6 = 6, l7 = 7, l8 = 8, l9 = 9

Now that we have optimal strategies for each number of stops, we can calculate the total race
times for each of these using (2.8), and then compare them to see which is the fastest strategy.
We will also be considering the 0-stop strategy whereby the race is simply treated as one 10-lap
stint.

Figure 2.1 shows a plot of the total race times for each of the strategies described above. The
fastest of these strategies is simply the one that minimises the total race-time, hence for this
track a 1-stop strategy is the fastest with a total race time of 916.35 seconds. We can also
see that a 0-stop strategy is only slightly slower at 917.75 seconds. We can clearly see that
completing more than 2 pit stops results in a significantly slower race time.
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Figure 2.1: (2.5 - Example) Total race times of optimal r-stop strategies for r ≤ 9.
Race consists of 10 laps with tb = 90, F = 0.2, T = 0.15, ts = 5.

2.6 Sensitivity to parameters

We have shown how to find the optimal laps on which to make pit stops for an r-stop strategy,
as well as how we to many the best number of pit stops to make during a race. However, a
Strategy Engineer may be interested in knowing how the optimal strategy is affected by the
various parameters we have considered so far.

We have four variables that affect the optimal strategy for a given race: lr+1, T, F, and ts.
Some simple intuition tells us we would expect changing these variables to have the following
effects:

lr+1 : Increasing lr+1 is likely to increase the optimal number of stops. This is because a longer
race will require the car to carry more fuel and have worse tyres on average, which slows
the car down. Making more stops reduces the amount of tyre wear and fuel in the car on
average, thus reducing the overall fuel load and tyre wear penalty.

T : Increasing T means there is a greater penalty for using a given set of tyres for more laps
in the race. A large T would make it desirable to have fresh tyres more often during the
race, meaning more pit stops may have to be made.

F : Increasing F means there is a greater penalty for carrying large amounts of fuel. As a
result, it is desirable to carry as little fuel as possible, meaning the optimal number of
stops is likely to increase.

ts : Increasing ts would mean pit stops would take longer to complete. As a result, it is
desirable to make fewer stops so as to waste as little time in the pits as possible. We
would expect the optimal number of stops to decrease as ts increases.

For all of the above, the opposite indeed holds. For instance, a race with fewer laps would likely
see the optimal strategy having fewer stops.

To demonstrate the effects of changing these parameters, we will make some modifications to
the race defined in the previous example.
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Increasing the race length

We will double the length of the race to 20 laps. As said previously, we would expect more
stops to be necessary in a longer race.

Figure 2.2: Race length has been doubled to 20 laps.

Figure 2.2 shows that completing either 2 or 3 stops will result in the fastest total race time for
this extended race of 20 laps. It turns out that the optimal 2-stop strategy has a total race time
of 1840.3 seconds, whereas the optimal 3-stop strategy is only 0.05s slower at 1840.35 seconds!
The optimal 1-stop strategy now has a total race time of 1845.35 seconds, which is just over 5
seconds slower than the fastest possible strategy at this track.

Decreasing tyre wear penalty

We will decrease the effect of tyre wear by reducing the penalty to T = 0.05. Because there is
less of a penalty for running longer stints, we would expect the optimal number of stops in the
race to decrease as a result of this change.

After reducing the tyre wear penalty, we can see on Figure 2.3 (blue) that the fastest strategy
for this race would be a 0-stop strategy. The total race time for the 0-stop strategy is 913.25s,
which is 4.5s faster than the 0-stop strategy in the original example. The optimal 1-stop strategy,
which would involve making a pit stop on lap 6, has a total race time of 914.25s which is 1
second slower than the 0-stop strategy. With the reduced tyre wear, this 1-stop strategy is
quicker than the optimal 1-stop strategy in the original example, as we would expect. We can
also see that as we increase the number of pit stops, the race times for the original and reduced
tyre wear races converge. This is because the tyre wear penalty is not applied on the first lap
of the stint, so on the 9-stop strategy where every lap is completed on fresh tyres, the lap times
for this race and the original are the same.

Increasing fuel penalty

We will now increase the fuel penalty to F = 0.5. If we interpret this as the cars requiring more
fuel to complete a lap, then across the race the cars will be carrying more fuel on average. We
would therefore expect more stops to be made.

Figure 2.3 (orange) shows that for this race, the optimal strategy is still the 1-stop strategy, but
we can see that it is only just quicker than the 2-stop strategy. Conversely, the 0-stop strategy
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Figure 2.3: Combined plot of all changes that have been made separately. Original
example (grey); tyre wear penalty has been reduced to T = 0.05 (blue); fuel load
penalty has been increased to F = 0.5 (orange); pit stop base time has been
increased to ts = 15 (green).

is now significantly slower than making 1 or 2 stops, making it even worse than completing
a 4-stop strategy! With the increased fuel penalty, the optimal 1-stop strategy now involves
making a pit stop on lap 5, rather than lap 6, and the total race time is increased to 925.5s. The
optimal 2-stop strategy has a total race time of 925.8s, which is 0.3s slower than the optimal
1-stop strategy. Similarly for the race with reduced tyre wear, the race times for the race
with the higher fuel penalty begin approach the original race times as the number of pit stops
increases. However, because the fuel penalty is considered on every lap in the stint, the race
times are never able to converge. In the 9-stop strategy, where every stint is exactly one lap,
each lap in the race with the additional fuel penalty is 0.3s slower than the original race.

Increasing pit stop time

By increasing the base pit lane time to ts = 15 seconds, we would expect fewer pit stops to be
made as there is now a greater penalty for making a pit stop.

Figure 2.3 (green) shows us that the 0-stop strategy is now the fastest strategy after the pit
lane time had been increased. Because this change just adds 10 seconds to the total race time
in the original example for each pit stop that is made, the 0-stop strategy avoids this additional
penalty altogether. As such, the race time for the 0-stop strategy is 917.75 seconds, as in the
original example, whereas the race time for the 1-stop strategy has been increased by 10 seconds
to 926.35 seconds. We can also clearly see how much slower the races are with multiple stops
when compared to the original race.

2.7 Example: N-lap race

Having seen the method for finding the best strategy for a short race, we can very easily extend
it to find the best strategy for a race of a more typical length.

Suppose we wish to complete a race of 63 laps of a given track, where a Strategy Engineer has
estimated the following parameters: T = 0.05, F = 0.13, ts = 17, tb = 75. Considering strategies
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with at most 8 pit stops, and assuming the simple pit stop model (2.7), we wish to find the
fastest strategy for this race.

Figure 2.4: Total race times of optimal strategies for given number of pit stops.

Figure 2.6 shows us that the optimal 3-stop strategy is the fastest strategy for this race. This
strategy involves stopping on laps 18, 33, and 48 (notice that each stint is 15 laps, apart from the
first), and the total race time is 4890.93s. We can see that the optimal 4-stop strategy (pitting
on laps 15,27,39, and 51) is only slightly slower, as its race time is 4891.61s. Completing either
2 or 3 pit stops in this race is clearly the best option.

2.8 Summary

� We can model a car’s lap time around a track by using

t = tb + T l + F (lmax − l), l = 0, 1, . . . , lmax − 1,

where t is the lap time, tb is the base lap time with minimal fuel and fresh tyres, T is the
tyre wear penalty per lap completed on the tyres, F is the fuel load penalty per lap of fuel
in the car, lmax is the number of laps in a stint, and l is the number of laps completed.

� The time taken to complete a stint of lmax laps is given by

tS =

lmax−1∑
l=0

tl = lmaxtb +
lmax

2
[T (lmax − 1) + F (lmax + 1)] , l = 0, 1, . . . , lmax − 1,

where tl is the lap time on lap l, at which point only l − 1 laps have been completed in
the in the stint.

� A race of lr+1 laps can be split into r + 1 stints: [l0 + 1, l1], [l1 + 1, l2], . . . , [lr + 1, lr+1],
where pit stops are made on laps l1, l2, . . . lr. The laps on which pit stops are made define
an r-stop strategy.
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� The time taken to complete a race of lr+1 laps using an r-stop strategy is given by

tR(l1, . . . , lr+1;F, T, ts, tb) = lr+1tb + F
l1(l1 + 1)

2
+ T

l1(l1 − 1)

2

+
r+1∑
i=2

[
ts +

1

2
(li − li−1) + F

(li − li−1)(li − li−1 + 1)

2

+ T
(li − li−1)(li − li−1 − 1)

2

]
.

� Given a race of lr+1 laps, if we wish to complete an r-stop strategy, the optimal laps on
which to pit can be found recursively using

li =
i

i+ 1
li+1 +

1

2(i+ 1)(T + F )
, ∀i = 1, . . . , r.

� The time taken to complete a pit stop is

tp = ts +
1

2
(li − li−1),

where tp is the time taken to complete the pit stop, ts is the time taken to drive through
the pit lane without changing tyres or adding fuel, and it takes 0.5s to add a single lap of
fuel to the car in the pit stop.

� The optimal race strategy is affected by the race length lr+1, the tyre wear penalty T , the
fuel load penalty F , and the pit lane base time ts.

17



Chapter 3

Applying the simple model

In this chapter, our aim is to apply our simple to a real life Formula 1, as if we were a strategy
engineer for a given team. We will first estimate the necessary parameters in the model and
then devise a number of strategies for the race. These strategies will then be compared to the
winning strategy for the race.

In order to apply our model, we need to choose a Formula 1 race that meets the following
criteria:

1. The race must have been dry throughout, so no wet tyre compounds have been used.

Currently, we have not modelled the effect of the weather on lap times as there is great
variability in the effect of rain on the lap time around a track.

2. The race must not have featured either the Safety Car or Virtual Safety Car.

In the event of a crash or some other scenario that may endanger drivers or marshals on
the track, either the SC or VSC can be deployed. The SC groups all cars together to
the same point on track at a reduced speed, whereas the VSC essentially puts a speed
limit on all cars for a given amount of time. If either of these occur at some point during
the race, it gives teams the opportunity to make a pit stop without losing as much time
as they would normally. This is because the pit lane speed limit remains the same but
cars are travelling slower around the track. For instance, it may take 25 seconds for a car
to pit and change tyres, and this is the same for normal racing conditions and when the
SC/VSC is deployed, but the lap time may increase from 80s to 120s because of the SC or
VSC. As a result, pit stops are relatively quicker under the VSC or SC, thus making new
strategies viable. These events are highly situational, hence it is very difficult to create a
model that adequately captures the effects of either the SC or VSC on race strategies.

3. There must not have been a red flag.

When red flags are deployed on a race track, all cars must return to the pits immediately.
This typically happens after a large crash or torrential rain. During a red flag, F1 teams
are allowed to change the tyres on the car without penalty, as there is no time loss when
doing so. As such, red flags can greatly alter the strategies used by teams in a race.

With these criteria, our race of choice will be the 2020 70th Anniversary Grand Prix, held at
Silverstone Circuit in Great Britain. This race consisted of 52 laps and saw Max Verstappen
take victory in the Red Bull Racing car ahead of Lewis Hamilton and Valtteri Bottas, both of
whom drove for Mercedes.[8] During the race, refuelling was not permitted, and drivers were
required to use at least 2 of the available 3 dry tyre compounds at some point in the race. This
race was notable due to the generally high levels of tyre wear that were expected during the
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race as Pirelli, the tyre suppliers for Formula 1, opted to use softer tyre compounds than what
would normally be expected for a track such as Silverstone. The tyre compounds that were
chosen by Pirelli were the C2 (hard), C3 (medium), and C4 (soft) compounds.

3.1 Extraction of data

To estimate the tyre wear and fuel load penalties, we will be considering the lap times[9] from
various drivers throughout the race where possible. We will first find an estimate for F so all
lap times can be ‘fuel-adjusted’.

Finding F

In order to find a good estimate for F using data from the race, we will look for stints of a
similar length on the same tyre compound. Formula 1 drivers regularly adapt their driving
style throughout the race depending on various circumstances.[10] If they have been asked to
complete a long stint on a set of tyres, they may then have to drive more conservatively in
order to ensure the tyres last as long as necessary. By driving conservatively, drivers will brake
earlier, carry less speed through corners, and be more careful when accelerating out of a corner
which combine to give a slower lap time than what may be possible. Conversely, if a driver has
been asked to perform a shorter stint on a set of tyres, they would likely drive more aggressively.
As a result, by finding stints of similar length on equivalent tyre compounds, we can assume
that the drivers have employed a similar driving style across the stint, thus making the stints
directly comparable (or as close to directly comparable as possible).

An additional consideration when choosing stints to estimate the value of F is the amount
of traffic a car is in. The speed of a Formula 1 car is highly dependent on its aerodynamic
performance, and when a car follows another car closely (typically within 2 seconds), turbulence
from the car ahead negatively affects the airflow for the following car, which slows the following
car through corners. As a result, by attempting to find drivers who were in clear air for the
majority of a stint, their lap times will be more directly influenced by the fuel load and tyre
wear.

We are also looking for sets of lap times that appear to follow the same trend. That is, if we
find a stint where the lap times are generally getting slower, then we should aim to compare
these laps to another set of laps that also appear to be getting slower at a similar. This will
help to find sets of lap times where the driver is employing a similar driving style, allowing the
laps to be more directly comparable.

In our chosen race, Valtteri Bottas completed two separate stints on the hard compound tyres,
with the stints being 19 and 20 laps respectively. To find our estimate of F , we will find the
average difference between lap times in each of these stints, and then divide this difference by
the number of laps between the first lap in each stint. We will then check this for other drivers
in the race who also completed multiple stints on the same compound with the same length.
Because of the nature of Formula 1 circuits, we will be disregarding the in-laps (laps on which
the driver entered the pit lane for a pit stop) and out-laps (laps on which the driver exited the
pit lane after a pit stop).

A plot of Bottas’ lap times across these stints is given in Figure 3.1, although we have discarded
the last 3 laps of Bottas’ third stint as they were both noticeably slower than the other laps in
the stint, and also the first 2 laps and last 3 laps of Bottas’ second stint as they were noticeably
faster than the preceding laps.
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Figure 3.1: Lap times for Valtteri Bottas at the 2020 70th Anniversary Grand Prix.
Both stints were completed on the C2 (hard) tyre compound, with stint 2 (blue)
being completed before stint 3 (orange). First lap of stint 2 was lap 17, while first
lap of stint 3 was lap 34.

Our estimate of F is given by

F̂ =

1

L1

L1∑
i=1

l1,i −
1

L2

L2∑
j=1

l2,j

Ldiff
=
l1 − l2
Ldiff

, (3.1)

where l1,i is the ith lap time from stint 1, l2,j is the jth lap time from stint 2, L1 is the number
of laps in stint 1 (excluding in-laps, out-laps, and other discarded laps), L2 is the number of
laps in stint 2, and Ldiff is the number of laps in the race between the start of stint 1 and stint
2.

Using Bottas’ lap times, we find the following estimate for F

F̂ =
92.1581 . . .− 90.5570 . . .

17
= 0.09418 . . .

=⇒ F̂ = 0.0942 (4d.p.).

Therefore, we would expect lap of fuel onboard the car to increase the lap time around the track
by 0.0942s. To check this, we will check perform the same calculation for a number of other
stints from other drivers.
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Driver Tyres Stint 1 average Stint 2 average Ldiff F̂

Bottas Hard 92.1581 90.5570 17 0.0942
Verstappen Hard 91.7294 90.1294 22 0.0724
Hamilton Hard 92.0592 89.468 27 0.0960

Hulkenberg Medium 92.1593 91.2494 15 0.0607
Albon Hard 92.7129 90.3248 24 0.0995

Ricciardo Medium 93.1727 92.3204 14 0.0609
Kvyat Hard 93.7914 92.1758 19 0.0850
Norris Hard 92.6939 91.4611 17 0.0725
Sainz Hard 93.3286 91.1454 34 0.0642

Table 3.1: Estimates of F̂ from various drivers. Note that the column names ‘Stint
1’ and ‘Stint 2’ do not necessarily mean these were the driver’s first and second
respective stints in the race, and also note that some lap times have been excluded
from the full set of times to give us more comparable lap times.

If we take the mean of the estimates of F̂ , we get F̂ = 0.0784. Some estimates are noticeably
smaller than others, such as Hulkenberg’s, Ricciardo’s, and Sainz’s which lowers the average.

If we were to discount these estimates, we would get F̂ = 0.0866, from which we could use the
estimate F̂ = 0.09. However, according to analysis from some F1 teams, the time penalty per
lap of fuel is around F = 0.112 seconds![11] There may be a number of reasons for this difference.
For instance, our calculation relies on drivers being clear of traffic ahead for a long portion of
a stint, which is a reasonably rare occurrence. Of course, it is a race, so if a driver knows there
is another car not too far ahead, they will likely try to overtake the other driver (if they have
good reason to do so), thus forcing them to follow closely for a number of laps before being
able to make an overtake. Additionally, towards the end of races, where cars tend to be more
spread out, a team may instruct a driver to ease off a little in order to ensure the car makes it
to the end of the race. This means the lap times in the final stint are potentially slower than
what they could be if the driver where to drive were to drive how they did earlier in the race.
The slower lap times means there is a smaller difference in the average lap time between stints,
which in turn lowers the estimate of F .

Considering the estimate of F from the table above and that this is likely to be an underestimate,
we will use F̂ = 0.1 as our estimated value of the fuel load penalty.

Finding T

In the model described in the first chapter, we only had one value of T to consider, as we assumed
there was only one tyre compound available. However, as mentioned previously, F1 teams can
choose between 3 different tyre compounds which each have their own unique characteristics.
The three compounds at each track are referred to as ‘hard’, ‘medium’, and ‘soft’ tyres. The
hard tyres are the most durable, but are initially the slowest of the 3 compounds. The soft
tyres are the fastest outright, but quickly wear out, eventually becoming slower than the other
two compounds. The medium tyres provide a middle ground between the hard and soft tyres,
and typically offer the best compromise between speed and durability.

One way of modelling the differences between the 3 compounds is a simple adjustment to
(2.2):

tl = tb + Tcl + F (lmax − l) + pc, (3.2)

where Tc is the per lap tyre penalty for tyre compound c, and pc is the constant time penalty
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for tyre compound c. Using this model, we would set pS ≡ 0, meaning the soft tyre compound
has no constant lap time penalty. We would also assume that pS ≤ pM ≤ pH , meaning the soft
tyres are quicker than the medium tyres, which are quicker than the hard tyres, at the start of
a stint (i.e. l = 0). We would also expect TH ≤ TM ≤ TS to ensure the hard tyres have the
lowest tyre wear rate while the soft tyres have the highest.

To begin finding an estimate for Tc and pc for each compound c, we need to find some candidate
stints to find the data. As before when estimating F , we will ideally use stints in which the
driver was not affected by traffic ahead, or only minimally so. After finding the candidate stints,
we will then “fuel-adjust” them, whereby we subtract

F̂ (lr+1 − L)

from each lap time, where F̂ = 0.1 is our previous estimate of F , lr+1 is the number of laps in the
race, and L is the number of laps completed in the race. After this, we will fit a linear regression
model to the lap times to find Tc, which is given by the coefficient β1 from y = β0 + β1x, where
x is the number of laps completed in the stint. To find pc, we will first need to find an estimate
for the base lap time, tb.

Hard tyres (C2)

Our estimate of TH will come from Verstappen’s first stint in the race, where we consider laps
14 to 25.

Figure 3.2: Plots of Verstappen’s raw (left) and fuel-adjusted (right) lap times from
his second stint on the medium tyres. Orange line shows fitted values of linear
regression model.

Figure 3.2 shows that the fuel-adjusted lap times on the hard tyres tend to increase over
time. For this fitted regression model, we find that T̂H = 0.0065979. This can be rounded
to T̂H = 0.007 which suggests that the hard tyres get slower by 0.007s for every lap completed
on them.

Medium tyres (C3)

Our estimate of TM will come from Sainz’s second stint in the race, where we consider laps 24
to 33.
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Figure 3.3: Plots of Sainz’s raw (left) and fuel-adjusted (right) lap times from his
first stint on the hard tyres. Orange line shows fitted values of linear regression
model.

Much like with the hard tyres, we can see from Figure 3.3 that the fuel-adjusted lap times tend
to increase for the medium tyres. We find that T̂M = 0.11568485 which can be rounded to
T̂M = 0.116.

Soft tyres (C4)

Unfortunately for this race, the soft tyres were only used by one driver for one stint. If we were
to use the method as for the other tyre compounds, we would find that T̂S ≈ 0.13, which is only
slightly larger than our estimate of TM . These laps were completed at the end of the race when
the driver’s position was essentially fixed for the rest of the race, as the cars ahead were too
far ahead to catch up, and he was under no threat from behind. As such, the driver was likely
being conservative to ensure the car made it to the end of the race, meaning the tyres were not
wearing down as quick as they would normally, thus reducing the estimate of TS .

However, we are able to use the lap times from the free practice sessions[12],[13] (which is actually
the where these values would be obtained from) to acquire further estimates of TS . Of course,
we do not know exactly how much fuel is onboard each car in the practice sessions, but our
fuel-adjustment method will alter the lap times so that they were completed with the same
amount of fuel (not necessarily no fuel), which enables us to estimate TS as before.

For our calculations, we will be using Sebastian Vettel’s lap times from the second practice
session, specifically laps 15 to 21 from his session, as he had the longest clean stint on soft tyres
throughout the session.

Figure 3.4 shows that the soft tyres quickly lose pace, with our estimate being T̂S = 0.39732143
which we could round to T̂S = 0.4. This is much greater than T̂M = 0.116 and is in agreement
with our knowledge that the tyres chosen for this race were arguably too soft.

Overall, we have found that T̂H = 0.007, T̂M = 0.116, T̂S = 0.4.

Finding tb and pc

To find tb, we simply take a driver’s lap times and subtract the fuel and tyre penalties using the
values we have calculated. However, each car will have a different base lap time due to different
engines, aerodynamics, etc., so we will need to estimate the average pace difference between
each of the different cars and drivers. To do this, we will take the gap from the leader to the
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Figure 3.4: Plots of Vettel’s raw (left) and fuel-adjusted (right) lap times from his
FP2 stint on the soft tyres. Orange line shows fitted values of linear regression
model.

lead driver of a given team at the end of the race and divide by the number of laps the driver
completed. For instance, Hamilton was the lead Mercedes car in the race and finished 11.326s
behind Verstappen in the Red Bull, meaning he lost ≈ 0.218s per lap on average.

We will find a number of base lap times for each tyre compound (where possible) to find both
tb and pc for c = S,M,H. We will take the average lap time from a tyre wear and fuel-adjusted
stint from a number of drivers.

Driver Team adjust Tyre Laps Average adjusted lap time t̂b
Verstappen 0 Hard 14-25 88.1784 88.1784

Leclerc 0.5634 Hard 20-44 88.8490 88.2856
Norris 1.2605 Hard 32-40 89.8538 88.5933

Hamilton 0.2178 Hard 43-51 88.8330 88.6152
Kvyat 1.340 Hard 2-18 89.4284 88.0884

Leclerc 0.5634 Medium 2-17 87.7176 87.1542
Sainz 1.2605 Medium 24-33 89.3796 87.9551

Ricciardo 1.2456 Medium 2-13 87.8687 86.6231
Norris 1.2605 Medium 2-11 88.1137 86.8532
Stroll 0.8180 Medium 2-17 87.5105 86.6925

Hulkenberg 0.8180 Soft 46-52 88.7703 (excl. lap 51) 87.9523

Table 3.2: Estimates of the base lap time tb for each tyre compound. Average lap
time is found for each driver in the given lap range, which is then adjusted according
to the average amount of time they lost to the leader per lap in the race.

If we take the average base time for each tyre compound from Table 3.2, we get t̂b = 88.3522 from
the hard tyres, t̂b = 87.0557, while the estimate from the soft tyres, t̂b = 87.9523, is not very
useful considering there is only one value. From this, we could say that the medium tyres are
about 1.3 seconds quicker than the hard tyres when brand new. According to data from Pirelli,
the hard tyres are around 0.7s slower than the medium tyres, which are a further 0.6s slower
than the soft tyres in qualifying, although this would be different under race conditions.[14]

Given the level of variability within the data, it is very difficult to accurately say what tb
and pc are, although we can make some very rough estimates. If we say that t̂b = 86.5, then
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p̂S = 0, p̂M = 0.6, p̂H = 1.8, then we would argue, according to estimates of Tc, that after just 2
laps the soft tyres would be worse than the medium tyres, and after around 5 laps they would
be worse than the hard tyres. Meanwhile, it would take the medium tyres around 12 laps before
they become slower than the hard tyres.

Finding ts

To find an estimate for ts, we need to consider both the in-lap and out-lap. Currently, our
model assumes that the time taken to complete a pit stop is simply added to the lap on which
the pit stop is made. However, because the pit entry is before the timing line and the pit exit
is after, time is lost on 2 laps whenever a pit stop is made. To account for this, we will simply
estimate the lap time on both the in-lap and out-lap, and then find the difference between these
and the lap times recorded in the race. We will then add these differences together to find the
total time lost due to a pit stop.

To make calculations easier, we can make use of the fact that our tyre wear and fuel load laws
are linear, and so we can add T − F to the previous lap time to find an estimate for the in-lap
time. For instance, we have F̂ = 0.1 and T̂M = 0.116. Therefore, every lap completed on the
medium tyres should be about 0.016s slower than the previous lap, as the fuel load decreases
but the tyre wear penalty increase. For the hards, we hard expect each lap to be about 0.093s
quicker than the previous, and for the softs we would expect each lap to be about 0.3s slower
than the previous lap.

Driver
In-lap Out-lap

Total time lost
Actual Estimated Actual Estimated

Raikkonen 92.973 93.692 113.308 93.126 19.463
Grosjean 92.097 92.500 116.257 92.310 23.544

Verstappen 90.444 90.989 111.315 91.582 19.188
Hulkenberg 91.426 91.270 110.849 90.593 20.412

Bottas 90.071 90.344 110.959 91.091 19.617
Norris 92.315 92.843 112.180 92.440 19.212
Albon 90.440 91.040 111.242 91.138 19.504
Russell 92.492 93.346 111.343 92.068 18.421

If we take the average of the final column, we get t̂s = 19.920 . . . , so we could choose our
estimate of the time taken to complete a pit stop as t̂s = 20 seconds.

Other considerations

One additional aspect we need to consider for our strategy calculations is the additional time
taken to complete the first lap of the race. Because Formula 1 races begin with a standing
start, the cars have to accelerate to their normal speeds while under racing conditions, so they
will lose time when compared to a regular racing lap. To estimate this, we will consider the
additional lap 1 time penalty for the leading car by estimating their first lap if they were to
start the race at full speed. Valterri Bottas was in the lead at the end of the first lap with a
lap time of 92.486s and his second lap was 91.384s. Because he started on the medium tyres,
we would expect his first lap to be 0.016s quicker than his second lap, which would be 91.400s.
Therefore, we estimate that he lost about 1.1 seconds on the first lap because of the grid start.
When finding the race time of the fastest possible strategy, we will add p̂lap 1 = 1.1s onto the
first lap time.
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3.2 Finding the optimal strategy

To find the optimal race strategy, we will use the following values:

� t̂b = 86.5, t̂s = 20, lr+1 = 52;

� F̂ = 0.1;

� T̂S = 0.4, T̂M = 0.116, T̂H = 0.007;

� p̂S = 0, p̂M = 0.6, p̂H = 1.8;

� p̂lap 1 = 1.1.

Because we have multiple tyre compounds available to us, we cannot use (2.6) to find the optimal
strategy. Instead, we will calculate the total stint time for all possible stints, and then, using
Python, find the combinations of stints that minimise the total race time. We should note that
because refuelling is not allowed, the time taken to complete a pit stop will be exactly t̂s = 20
seconds, ignoring any random error time as discussed in Section 2.4. We also need to ensure
that the strategy we select uses at least 2 of the available tyre compounds, as per the current
rules in F1.

After considering all possible strategies that feature at least 2 of the available tyre compounds,
we find that the following strategy is the quickest: M13 H52. Because refuelling is not allowed,
the strategy H39 M52 would be equally fast according to our calculations. After considering
the additional lap 1 penalty of 1.1 seconds, the total race time for this strategy would be
tR = 4749.135s, which is equal to 1hr 19mins 9.135s. If we compare this to the race winning
time of 1hr 19mins 41.993s, we can see that our optimal strategy is just over 30s quicker than
the race winning strategy!

If we were to consider the fastest 2-stop strategy, we would pick M12 M24 H52 (or any
rearrangement). The total race time for this strategy would be 1hr 19mins 16.7s, which is
quicker than the race winning strategy by around 25 seconds.

We can also calculate the race time of the race winning strategy (H26 M32 H56) using our
estimated values, 1hr 19mins 28.645s. This is just 13.348s off the true value: which is an error
of only 0.28%! This suggests to us that this model fits this race well.

3.3 Goodness of fit

To see how well our model fits, we will compare the race winning strategy to our optimal and
fitted strategies in more detail.
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Figure 3.5: Race winning strategy compared to fitted and optimal strategies. Plot
shows lap by lap gap to the winning strategy (seconds) for the other strategies. A
negative delta means a given strategy is ahead of the winning strategy on that lap.

Figure 3.5 shows where the fitted and optimal strategies deviate from the race winning strategy.
We can clearly see how far ahead the optimal strategy is compared to the winning strategy,
while the fitted winning strategy is less far ahead. Considering only the fitted strategy, in the
first stint of the race our model falls behind Verstappen across the first 11 laps, but loses very
little until the first pit stop is made. When on the medium tyres, our model predicts that
Verstappen would drive much faster than he did, so our fitted model catches up until the final
pit stop is made. After the final pit stop, our fitted model overtakes Verstappen and then
gradually pulls away towards the end of the race. At this point in the real race, Verstappen was
comfortably in the lead, and so had little reason to push to the extent we predicted the tyres
would allow.

From Figure 3.5, we see that our model is unable to capture some features in Verstappen’s race,
such the points in the race where he is pushing (laps 1-11) and also when he is backing off (laps
32-52). These sets of laps that deviate from our predicted lap times can be explained by the
presence/absence of other cars close to Verstappen. At the start of the race, Verstappen was
closely following Hamilton and Bottas who were both on the medium tyres, and so he may have
felt the need to push to make sure he could keep up with them. His laps in this part of the race
closely match the optimal strategy, which used medium tyres for the first stint, demonstrating
the extent to which he was pushing. After making his first stop, Verstappen had come out
ahead of both Hamilton and Bottas, so he only needed to maintain his lead over them both.
Bottas and Verstappen both made their final stop at the same time, leaving Hamilton out in the
lead. If Hamilton were to pit, he would have ended up behind Verstappen, so Verstappen only
needed to match the pace of Hamilton to guarantee himself track position once Hamilton pitted.
After Hamilton did pit, he emerged so far behind Verstappen that he was not able to threaten
Verstappen for the lead, so Verstappen was able to ease off for the rest of the race.

The drop off in Verstappen’s lap times at the end of the race can be summarised with the
following quote from Alain Prost: “It is ideal to win the race at the lowest speed possible.” [15]
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3.4 Extending the model

Now that we have applied our model to a real life scenario and also discussed where it fails to
capture certain features in a driver’s lap times, we can consider ways of extending this model
to improve how well it fits.

Relation between fuel load and tyre wear

When a car is carrying more fuel, it experiences greater inertia when accelerating, decelerating,
and changing direction which in turn demands more grip from the tyres. As a result, the
tyres on a car will wear out quicker when the car is heavier. We can model this with a simple
adjustment to (2.2):

tl = tb + T l + F (lmax − l) + αT
l∑

n=1

(lmax − n), (3.3)

where α is some positive constant. This works by adding a cumulative sum for every lap that
is completed on the tyres that is based on the number of laps of fuel remaining in the car. As

the stint progresses, the additional term converges to αT
(lmax − 1)lmax

2
. If a team were to use

this model, they would become discouraged from running excessively long stints on a single set
of tyres, as the additional penalty per lap is an increasing function of the number of laps in the
stint.

Driving style

Should the situation necessitate it, a Formula 1 driver may choose to driver more aggressively
or more cautiously at some stages in a race. By driving more aggressively, faster lap times
can be achieved but tyre wear may be increased which will slow the car down in the long run.
Conversely, by driving more cautiously, lap times are slowed in the short term but tyre can be
reduced, enabling a driver to prolong a stint. We can model this with the following

tl = tb + dPT l + F (lmax − l) + β(1− dP ), (3.4)

where dP is the “driver-push factor” that can take values between, say, 0.8 and 1.2, and β is
an adjustment constant for the additional lap penalty 1 − dP which we can interpret as the
driver aiming for lap times that are some constant amount slower or faster than normal. This
model assumes that a driver will push at the same rate throughout a stint, although it would be
possible to adapt this to the driver pushing on a subset of laps within a stint. With this model,
if a driver were to drive more aggressively, meaning dP > 1, they would be faster at the start
of the stint, but as the stint progresses the additional tyre wear begins to dominate, resulting
in ultimately slower lap times and vice versa for dP < 1.

Variable fuel consumption

Because refuelling is banned in Formula 1 races, drivers need to manage their fuel consumption
during the race. At some stages of the race, such as when chasing a car ahead, it may be worth
using more fuel than normal. This comes at the cost of needing to save fuel later in the race.
One reason for using a fuel at a decreased rate could be to save some time in the pits as less fuel
needs to be added. Of course, lap times will be slower as the engine will be turned down, but
in some cases the immediate track position may be worth it. We can apply this to our simple
model with the following modification:
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tl = tb + T l + F

(
lmax − l

lmax

lmax +D

)
+

αD

lmax +D
, (3.5)

where D ∈ Z is the stint length adjustment constant. If D > 0, then we would extend the
length of the stint by D laps by using less fuel in each lap, and vice versa for D < 0. Instead

of using 1 lap of fuel per lap, we use
lmax

lmax +D
laps of fuel which ensures all fuel is used by the

end of the stint. The additional constant term measures the effect on lap time from having the
engine turned up or down, and it is tuned by the constant α. This constant is proportional to
the ratio between D and the length of the stint, as a larger ratio suggests more extreme engine
settings would need to be used to either save or use extra fuel, in turn affecting the lap time
more significantly. We assume that the engine mode is fixed throughout the stint, and so the
lap time effect is fixed across the stint.

3.5 Real life strategies

Figure 3.6: Strategies used at the 2020 70th Anniversary Grand Prix.[16]

Figure 3.6 shows a summary of the strategies used at the 2020 70th Anniversary Grand Prix.
We can see that Verstappen completed 26 laps on a used set of hard tyres, then did 6 laps on
mediums before finishing the race with a 20 lap stint on hard tyres. Conversely, the Mercedes
drivers of Hamilton and Bottas started on used mediums before completing 2 stints on the
hard tyres. We can see from the chart that most teams completed the majority of the race on
hard tyres, as these were generally considered to be the best race tyre at this race. Only Nico
Hulkenberg used the soft tyres during this race, as mosts teams found them to have overly high
wear rates, thus making them largely unsuitable for the race.

Focusing on Verstappen, we see that he completed a very short stint on the medium tyres,
whereas most other drivers completed significantly more laps on this compound. As the race
was progressing, the Red Bull team realised that the hard tyres offered the best performance
in the race, and thus used the medium tyres for a short a stint as they could, with this stint
involving Verstappen driving aggressively to get the most out the tyres before pitting again.
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Track position is incredibly important in F1 races, as cars in free air are able to both drive
quicker and also keep their car and tyres cool. We will discuss how strategists acted both
reactively and proactively throughout various stages of this race.

3.5.1 Undercuts and overcuts

When one driver is closely following another, the team has two options: pit before the car
ahead, or pit after. Pitting before the car ahead, typically by a lap or two, is referred to as an
“undercut”.[17] The motive for doing this is that by pitting sooner, a car has fresh tyres while
the car they were following is still on worn tyres. Then, when the car ahead does pit, the car
behind should have used their fresh tyres to “overtake” the other car through the strategy, as
the car that was ahead would come out of the pits behind the car that made the undercut.
This strategy is very common in Formula 1 under the current rules, as it is often worth risking
being slightly slower towards the end of the race in order to be ahead of the car in front after
pit stops are made.

The opposite of this is the “overcut”. This involves staying out a few laps longer than the
car ahead. While this is less common in current F1, it is often used in cases where there is a
risk of coming out in traffic after a pit stop, or if they would come out behind a car they were
battling before the leading car made a pit stop. Often, when two drivers are battling and the
car behind attempts an undercut, the car ahead may delay making a pit stop for several laps.
This is because if they pit the lap after the car behind them did, they may end up behind them,
leaving them in traffic and thus slowing them down. By delaying the pit stop, they open up
other strategy options (possibly making one less stop during the race) and also keep themselves
in clean air, thus maximising on track performance for the remainder of the stint. This strategy
is less common in the current F1 rules, but in previous years when refuelling was allowed during
the race, it was a much more common strategy. When two cars are battling and one makes a pit
stop, they are then carrying significantly more fuel than the car that stayed out. This results in
a large pace difference between the two cars, so when the second car makes a pit stop a number
of laps later, they may come out of the pits ahead of the car that pitted earlier!

In Figure 3.2, we can see that Giovinazzi makes a pit stop on lap 7, changing from the medium
tyres to the hard tyres. At the start of lap 7, Magnussen led Giovinazzi, Russell, and Latifi.
Giovinazzi came into the pits first on lap 7, then Russell pitted on lap 8, followed by Magnussen
and Latifi on lap 9. After all four drivers had made their pit stop, Giovinazzi was ahead of
Russell, Magnussen and Latifi. By pitting earlier, both Giovinazzi and Russell gained positions
because of the undercut!

In the first stint of the race, Bottas was in the lead ahead of Hamilton and Verstappen. Bottas
then made the first pit stop on lap 13, followed by Hamilton on lap 14. Mercedes may have made
these pit stops in order to prevent Verstappen from using the undercut. However, Verstappen
decided to stay out for another 12 laps. By staying out longer, Verstappen used the clear air
to open up enough of a lead ahead of Bottas and Hamilton so that when he did make his first
stop, he actually came out ahead of them both! This successful overcut allowed Verstappen to
eventually win the race.

3.5.2 Other potential factors to model

Tyre temperature

Throughout the course of a race, there are many variables that can affect the performance of
a car along with the tyre wear and fuel load. One such variable is the temperature during the
race, specifically the track temperature. When track temperatures are low, tyres are less able
to generate temperature and thus provide less grip, resulting in slower lap times. Conversely,
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when track temperatures are high, tyres are more likely to overheat which also slows the cars
down. There is a temperature window in which the tyres perform at their best, resulting in the
quickest lap times. The trouble that teams face is that the 3 compounds at each race often have
different operating windows and so when the temperature changes, a tyre that was performing
well may find itself being either too hot or too cold, thus slowing down. In general, harder
tyre compounds perform better when it is hot, while softer tyre compounds perform better in
cooler conditions. Teams need to pay attention to significant temperature changes throughout
the race, as being on the right tyre at the right time is vital to performing well in a race.

We can imagine that the effect of tyre temperature on lap time takes the form of exp
(
−(τ − τopt)2

)
,

with τ being the tyre temperature and τopt being the optimal tyre temperature. There is
therefore a clear optimal peak in performance with declining performance on either side when
the temperature is too high/low.

Track grip

As a race track is used more and more, the rubber from the tyres is laid down onto the track,
resulting in the track being “rubbered-in”. This results in the track providing more grip for
the cars, allowing for faster lap times. When a track is “green”, which is the opposite of a
rubbered-in track, teams may opt to use softer tyre compounds as the tyres will be less able to
generate temperature due to the reduced grip. As the race progresses, harder tyre compounds
become increasingly more viable as the track provides more grip allowing the tyres to get up to
the required temperature more easily. This effect is most apparent on street circuits, as they
are very rarely used for racing meaning the track surface is significantly less grippy at the start
of a weekend.

Similarly, new track surfaces tend to provide very little grip, as the bitumen and oils can seep
from the tarmac causing the track to be more slippery. As the surface is used more and more,
these oils and bitumen are gradually removed, resulting in the track providing more grip.[18] This
was a significant issue at the 2020 Turkish Grand Prix, where a 2-week old track surface and
cold conditions resulted in the track being incredibly slippery at first, but lap times managed
to decrease by 6.5 seconds within just a few hours of usage.

The level of grip on a track surface can take the form of 1 − exp(−x), where x > 0 is some
measure of track usage (e.g. laps completed). Here, grip increases very quickly when the track
is first being used, but over time the improvement in grip becomes negligible.
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Chapter 4

F1 Strategy Competition -
Preparation

4.1 Introduction

In the F1 strategy competition, run by Cédric Beaume, a number of participants will create a
virtual F1 team in which they will need to allocate a budget of 8i on various components.[19]

The teams will then be assigned drivers through a drafting process, and then the season will
begin. 10 races will take place across the season, with each team needing to determine a race
strategy for their two drivers. At the end of each race, finishing drivers will be assigned points
based on their finishing position. These points will be totalled for each team at the end of the
season to determine the winner.

The goal of this competition is clear: win the team championship.

While it is possible to allocate the budget and determine race strategies using intuition alone,
we will make use of various techniques to find the budgets and strategies that give the best
chance of winning the championship.

4.2 The budget problem

Each team has a budget of 8i that they can spend in 4 areas: Reliability, Marketing, Chassis,
and Engine. A team’s reliability budget affects the probability that a driver finishes a race, with
an increased budget resulting in a decreasing likelihood of retirement. The marketing budget is
used to assign drivers. A team with a higher marketing budget, relative to the other teams, is
more likely to hire the best drivers. The chassis and engine budgets have a guaranteed influence
on performance, as they contribute directly to the performance of the car at each race.

A team can invest their budget to 1 decimal place (e.g. 1.1i into reliability, 3.0i into marketing,
3.1i into engine, and the remaining 0.8i into chassis). The goal is to find the best way to allocate
the budget into the given areas to give the best chance of winning the competition.

4.2.1 Reliability

The reliability budget will determine the probability of a driver retiring in any given race.
A greater investment into the car’s reliability will result in it having a lower probability of
retirement. The probability of a car retiring in any race is defined as follows:
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pDNF(R) =

(
1− erf(1.5R− 1.8)

2

)4

, (4.1)

where R is a team’s reliability budget, and erf(z) is the error function.[20]

Figure 4.1: Retirement probability pDNF as a function of R.

As shown in Figure 4.1, we can see that the probability of retirement quickly approaches 0 as
the reliability budget increases. In each race, a driver either finishes the race or they do not.
Since we have a retirement probability pDNF for each team, and each team has 20 opportunities
to retire (10 races with 2 cars), we can define a binomial distribution. We can therefore calculate
the expected number of retirements a team will experience in a single season, as well as the
cumulative probabilities for amounts of retirements for each team:

Let Nret be the number of retirements for a team across a season. Then,

E[Nret|R] = 20pDNF(R); (4.2)

P[Nret ≤ Nmax|R,Nmax ≤ 20] =

Nmax∑
n=0

(
20
n

)
pDNF(R)n(1− pDNF(R))20−n. (4.3)

Example 4.1

Suppose a team invests R = 0.9i into reliability. Then, for each of their drivers in each race,
the probability of retiring is pDNF(0.9) ≈ 0.296. Hence,

E[Nret|R = 0.9] = 20pDNF(0.9)

≈ 6.

Therefore, we would expect the team experience around 6 retirements across the 10 race season.
Equivalently, we would expect each driver in the team to retire from around 3 races across the
10 race season. A plot of the cumulative probabilities P[Nret ≤ Nmax|r = 0.9, Nmax ≤ 20] is
shown in Figure 4.2.
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Figure 4.2: Cumulative probability plot of number of retirements with R = 0.9.

While it may be desirable for a team to not experience any retirements across the season, this
requires a greater investment into reliability which would take away from the car’s performance.
A trade-off exists in the sense that a more reliable car is an ultimately slower car. Therefore, it
may be a better approach to “allow” a certain number of retirements across the season in order
to maximise the performance of the car. Of course, investing too little into reliability would
result in too many retirements across the season. At the moment, it is difficult to determine
what is the optimal value of R for a team, and we will need to consider the other aspects of the
budget before determining how much to allocate towards reliability.

4.2.2 Marketing

The process in which the drivers are assigned is not deterministic, as there is a random element.
Once each team has determined their marketing budget, they will be assigned a probability of
hiring the next driver, with the drivers being assigned in decreasing order of performance. This
probability is given by

pi =
m4

i

N∑
j=1

m4
j

, (4.4)

where mi is the marketing budget of team i and N is the number of teams with at least one
empty seat at that stage in the draft.

The probabilities for each team will be summed cumulatively, thus partitioning the interval (0, 1)
into N intervals, Mt ⊆ (0, 1), with t = 1, . . . , N , where N is the number of teams with at least
one empty seat. A uniformly distributed number, xRNG, in the interval (0, 1) will be chosen. If
xRNG ∈ Mt, then team t will be assigned the next driver. Once a team has been assigned two
drivers, they will be removed from the drafting process, and the probabilities for each team will
be recalculated. This process is repeated until all drivers have been assigned.

Example 4.2

Suppose we have 3 teams who choose the following marketing budgets: MA = 2.2, MB = 4.5,
MC = 0.3. The 6 drivers that are to be assigned have the following performance ratings:
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5.0, 4.0, 3.0, 2.0, 1.0, 0.0. At the first stage in the drafting process, where all teams are present,
the teams have the following driver assignment probabilities according to (4.4)

pA =
2.24

2.24 + 4.54 + 0.34
= 0.05403 . . .

pB =
4.54

2.24 + 4.54 + 0.34
= 0.94594 . . .

pC =
0.34

2.24 + 4.54 + 0.34
= 0.00001 . . . .

Clearly, Team B has the best chance of being the first and second drivers. The first random
number is xRNG = 0.465 . . . which is in the interval (pA, pA + pB) = (0.05403 . . . , 0.99998 . . . ).
Therefore, the first driver with 5.0 performance is assigned to Team B. The next random
number is xRNG = 0.091 . . . , which is the same interval as before, meaning the second driver
(4.0) is also assigned to Team B, which has now got two drivers, so Team B are removed from
the drafting process. We now recalculate the driver assignment probabilities.

pA =
2.24

2.24 + 0.34
= 0.99965 . . .

pC =
0.34

2.24 + 0.34
= 0.00034 . . . .

Team A is now highly likely to be assigned the next 2 drivers. The next random number
we draw is xRNG = 0.784 . . . which is the interval (0, pA) = (0, 0.99965 . . . ), so the driver with
performance 3.0 is assigned to Team A. The fourth random number we draw is xRNG = 0.351 . . .
which is also in the same interval as before, so the driver with performance 2.0 is assigned to
Team A. There are now only 2 drivers remaining in the draft, and Team C has 2 seats available,
so both these drivers are automatically assigned to Team C.

In summary, Team A was assigned the drivers with performance 3.0 and 2.0, Team B was
assigned the drivers with performance 5.0 and 4.0, and Team C was assigned the drivers with
performance 1.0 and 0.0.

Given the random nature of this process, an analytical solution cannot be found. Therefore,
Monte Carlo simulations will be used in order to find the optimal solution to this problem. This
will involve assigning marketing budgets to 13 teams, at random, according to some distribution,
and then performing the drafting process to assign drivers to the teams. The drivers that are
assigned to each team will be recorded, and we will track both the average driver performance
and the top driver’s performance for each team, where each driver is assigned a performance
value between 0 and 5, to 1 decimal place. For each budget distribution we consider, we will
repeat the budget assignment and drafting process n = 1, 000, 000 times.

An important consideration when choosing the marketing budget is “return on investment”. A
team that spends more of their budget on marketing has less budget to spend on the chassis,
engine, or reliability of their car, meaning a trade-off exists. As such, when performing these
Monte Carlo simulations, we are interested in the “expected performance” of the car which is the
sum of the mean top/average driver performance and the remaining budget not spent towards
marketing. It should be noted that maximising return on investment does not necessarily mean
a team has the best chance of winning the championship, as relative return on investment to
the other teams would determine which teams gained.
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Example 4.3

Suppose a team allocates M = 2.4 of their budget towards marketing and is assigned two drivers,
A and B, with performance 4.2 and 3.8 respectively, the expected performance for these drivers
would be

E(PA) = 4.2 + (8− 2.4−R) = 9.8−R;

E(PB) = 3.8 + (8− 2.4−R) = 9.4−R,

where R is the budget allocated towards reliability.

Clearly, a team would want the performance of their drivers to be greater than the budget
they allocated towards marketing, else they could have simply used this budget in a way that
guarantees additional performance.

Assumption of budgets

The first step in the Monte Carlo process is to consider how much of a team’s budget may be
allocated to marketing. A näıve assumption may be that each team chooses a uniform random
value between 0 and 8, to 1 decimal place.

Figure 4.3: Raw results of drafting process assuming Unif(0,8) distribution.

Figures 4.3 and 4.4 shows the results of the Monte Carlo simulation for this budget assumption.
We can see from the Figure 4.4 that expected performance is maximised when the marketing
budget is close to 0. Therefore, should we assume this to be the true assumption, we would
expect a low marketing budget to offer the best “return on investment” for a team.
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Figure 4.4: Expected performance for average and top drivers as a function of the
marketing budget assigned assuming Unif(0,8) distribution.

However, it is easy to see that a uniform distribution is unlikely to be the true distribution.
Firstly, it implies that teams have a 37.5% chance of choosing a marketing budget above 5i. No
team would realistically choose such a marketing budget as it would be an immediate waste of
the available budget, as it is impossible to have a driver performance above 5. Secondly, we are
able to study the marketing budgets that were chosen in previous seasons of this competition,
as seen in Table 4.1.

Season 1 Season 2

2.6 0.2
2.5 2.8
2.3 2.8
3.2 2.5
2.6 2.7
2.6 2.7
3.0 2.6
1.6 1.8
5.0 2.0

N/A 0.0
N/A 0.0

Table 4.1: Marketing budgets for teams in previous seasons[21],[22]

While we only have 20 marketing budgets to consider, we can see that most teams seem to
focus their marketing budget around 2.5, with only 3 teams having a marketing budget above
3. In previous seasons, each team had a total budget of 7i compared to 8i this season, but
car reliability was fixed in previous seasons. We have already seen how a reliability budget
of r = 0.9 seems to provide a reasonable level of reliability across a season, so the choice of
marketing budget is largely unaffected by the overall increase in available budget.

With the data from previous seasons, we can find the mean budget and the variance so we can fit
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a normal distribution. We find that µ̂ = 2.275, σ̂2 = 1.282875. However, when picking a random
number according to a N (2.275, 1.282875) distribution, we have a chance of picking a number
either less than 0 or greater than 5. In this case, we simply select either 0 or 5 respectively as
the marketing budget. As before, we will pick n = 1, 000, 000 sets of 13 marketing budgets to
see if a pattern emerges.

Figure 4.5: Raw results of drafting process assuming N (2.275, 1.282875)
distribution.

Figure 4.6: Expected performance for marketing budgets assigned assuming a
N (2.275, 1.282875) distribution.

Figures 4.5 and 4.6 shows that there appears to be two distinct peaks in the average driver
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Figure 4.7: Uniform distribution and normal distribution shown on top of a
histogram of the true data.

performance depending on the chosen marketing budget. One peak appears to be close to 0
while the other is around 2.8. The peak where the marketing budget is above the mean is
expected, as we would expect teams that opt for an above average marketing budget to be
allocated better drivers. The decline for high marketing budgets is likely due to the cap on
driver performance. With our assumed distribution, teams have a ∼14% chance of choosing a
budget over 3.5 which, given the method for calculating the driver assignment, means a team
bidding over 3.5 is very likely to be assigned at least one of the first few drivers. As a result,
investing too much into marketing will have diminishing returns, which explains the apparent
reduction in the return on investment.

As for the smaller peak at the lower marketing budgets, this may be because of the drivers
assigned at the end of the process. The 6 lowest driver performances available are: 0.9, 0.7, 0.6,
0.4, 0, 0. When these drivers are being assigned, it is likely that only 3-5 teams remain in the
process, which increases each team’s probability of being assigned the next driver. As a result,
teams with a low marketing budget have a reasonable chance of being assigned drivers with a
performance greater than their marketing budget, resulting in a positive return on investment.
The dip between this peak and the greater peak may be because teams choosing these budgets
fall into a “no man’s land”. These teams are very unlikely to be assigned the best available
drivers, and are unlikely to benefit from occasions where few teams remain in the process, as is
the case for very low marketing budgets.

Assuming a normal distribution for the marketing budgets appears to provide a more realistic
distribution, although we should check to see how it actually compares the true data.

Figure 4.7 clearly shows the improvement of the normal distribution over the original uniform
distribution. However, we can also see where it fails to fully capture the marketing budgets
from the previous seasons. For instance, the normal distribution places too much weight on
marketing budgets between 0.3 and 1.5, as well as between 3.2 and 5. It also fails to capture
the peaks near 0 and 2.6.

To obtain a more accurate distribution, we need to define our own distribution that is based
on the data available to us. We first split the interval [0,5] into a number of sub-intervals, each
with a given probability of being selected.
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P(a ≤M ≤ b) =



0.1, a = 0, b = 0.3

0.05, a = 0.4, b = 1.3

0.1, a = 1.4, b = 2

0.6, a = 2.1, b = 3

0.1, a = 3.3, b = 4

0.05, a = 4.1, b = 5

0, otherwise.

(4.5)

Then, each possible value within each subinterval has an equal chance of being chosen, giving
the probability distribution

P(M = m) = Im∈[a,b]

P(a ≤M ≤ b)
10(b− a+ 0.1)

∀m ∈ [0, 5], (4.6)

where m is given to 1 decimal place, and

Im∈[a,b] =

{
1, if m ∈ [a, b]

0, otherwise.

For instance, the probability of randomly selecting a marketing budget of M = 2.6 is

P(M = 2.6) =
P(2.1 ≤M ≤ 3)

10(3− 2.1 + 0.1)
= 0.06,

where we have simply divided the total probability in the interval [2.1,3] by the number of
possible values within the interval (i.e. 10).

Figure 4.8: Custom distribution shown on top of a histogram of the true data.
Probability of choosing a budget within each shaded area is indicated.

Figure 4.8 shows how this distribution fits to the true data. We can see how 60% of marketing
budgets will be between 2.1 and 3, and that the density reduces as the marketing budget
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increases/decreases. There is also a slight peak at very low marketing budgets which reflects
data from past seasons. Of course, this is again unlikely to be the true distribution (especially
since this data is from a slightly different rule-set), but the usage of this data gives us some
basis for our further study. In reality, the choice of marketing budget is more closely linked
to game theory, as we have a number of rational individuals taking part in a non-cooperative
game. Each player is aiming to predict what the others are doing, and thus predict what choice
they can make to give themselves the best outcome. This is beyond the scope of this project,
but it justifies the custom distribution we have defined.

For instance, a team may predict that one other team will submit a low marketing bid, say 0.1.
This then makes submitting a low marketing bid (such as 0.2) more worthwhile, as they are
more likely to see a positive return on investment, as explained previously. However, if every
team thinks in this way, every team could end up submitting a low marketing bid. A team could
then predict this would happen and realise they could get away with submitting a marketing
bid of around 1.2 and still have a very good chance of being assigned the best drivers. This
process of teams trying to outsmart others can continue indefinitely.

Figure 4.9: Raw results of drafting process assuming the custom distribution
described in (4.5) and (4.6).

Figures 4.9 and 4.10 shows that, assuming the custom distribution described in (4.5) and (4.6),
we see a pattern similar to the results for the normal distribution. The two distinct peaks appear
to be more accentuated when assuming this distribution, and we can see that a team would
expect the best return on investment if they were to choose M ∈ [2.7, 3.2] as their marketing
budget. The peak close to 0 also suggests there may be a valid reason to choose a very low
marketing budget.
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Figure 4.10: Expected performance for marketing budgets assigned assuming the
custom distribution described in (4.5) and (4.6).

From this points onwards, we will be using the custom distribution described in (4.5) and (4.6)
in future calculations/simulations that involve assigning the marketing budgets for teams.

4.2.3 Chassis and engine

The remaining 2 aspects of the budget allocation are closely linked, so we will discuss them
together. In this competition, each track has a different “balance” that influences the performance
of a car and driver around that track. For instance, a track may favour cars with a strong
chassis, or it may be completely balanced thus valuing each aspect of the car’s performance
equally. Each track is assigned 3 track balance coefficients cd, cc, ce which relate to the Driver,
Chassis, and Engine respectively. The track performance of a driver from a given team is given
by the following formula

Pdriver =
3(cdD + ccC + ceE)

cd + cc + ce
, (4.7)

where D is that driver’s performance rating (out of 5), C is the team’s chassis budget, and E
is the team’s engine budget.
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Track cd cc ce
Spain 1 1 1
France 1 1 1
Monaco 2 1 1
Belgium 1 2 2

Italy 1 1 2
Hungary 1 2 1

USA 1 1 2
Japan 2 2 1

Canada 1 1 1
Australia 1 1 1

Table 4.2: Track balance coefficients for each track.

Table 4.2 shows the track balance coefficients cd, cc, ce for each of the 10 tracks in the competition.
For instance, Spain is a balanced track, Monaco favours the driver performance, and Belgium
favours the chassis and engine performance.

Example 4.4

Suppose a team’s drivers (A and B) have a performance rating of 4.2 and 2.5 respectively, and
that they invested C = 2.4 and E = 3.0 into their chassis and engine. The track performance
of each driver, according to (4.7), at Hungary is therefore

PA =
3(4.2 + 2 · 2.4 + 3.0)

1 + 2 + 1
= 9;

PB =
3(2.5 + 2 · 2.4 + 3.0)

1 + 2 + 1
= 7.725.

By comparison, the track performance of these drivers at Monaco is

PA =
3(2 · 4.2 + 2.4 + 3.0)

2 + 1 + 1
= 10.35;

PB =
3(2 · 2.5 + 2.4 + 3.0)

2 + 1 + 1
= 7.8.

Driver A has a track performance that is 1.275 greater than driver B’s at Hungary, but at
Monaco, which favours driver performance, this track performance difference increases to 2.55.

When allocating their budget, a team would want to know how split their budget between the
chassis and engine which is influenced directly by the track balance coefficients in Table 4.2. To
determine whether it is worth investing more into either the engine or chassis, we will consider
the weighting of each component at each track.
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Track cd weight cc weight ce weight

Spain 1/3 1/3 1/3
France 1/3 1/3 1/3
Monaco 1/2 1/4 1/4
Belgium 1/5 2/5 2/5

Italy 1/4 1/4 1/2
Hungary 1/4 1/2 1/4

USA 1/4 1/4 1/2
Japan 2/5 2/5 1/5

Canada 1/3 1/3 1/3
Australia 1/3 1/3 1/3

Average 0.3183 . . . 0.3383 . . . 0.343 . . .

Table 4.3: Weighted track balance coefficients for each track.

By calculating the average weight for each of the performance components, we can see from
Table 4.3 that the engine coefficient is slightly larger than the other 2. This may suggest to a
team that investing more of their budget into the engine would result in the best performance
across the season, but maybe only marginally so.

The obvious question is how much more of their budget should a team invest into the engine
compared to the chassis. For instance, if a team invests 1.1 into reliability and 2.6 into marketing,
how should they split the remaining 4.3 between the chassis and the engine? Should they put it
all into the engine, or should it be closer to a 50:50 split? While it is difficult to predict exactly
what is better, we can at least discuss the advantages of doing one or the other. In the next
section, we will use Monte Carlo simulations to see what split between engine and chassis yields
the best results.

If a team were to invest heavily into their engine, thus investing very little into their chassis,
they would likely see very strong performance on any track that gives extra weight to the engine,
but they would lose out on tracks that place extra weight on the chassis. It is important to
note that on balanced tracks, how a team splits the budget between the engine and chassis will
have no effect on the performance of the car. Across the season, there are two tracks that see
the engine have a higher weight than the chassis (Italy and USA), while there are two tracks
that see the chassis have a higher weight than the engine (Hungary and Japan). Conversely, if
a team were to split their budget between the chassis and engine more evenly, they would have
more consistent performances across the season. If they were to do a 60:40 split in favour of the
engine (or some similar split), they would not gain much at engine-favoured tracks, but they
would also not lose out too much at chassis-favoured tracks.

Whether it is worth prioritising consistent results over more variable results is dependent on
the points system.
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Figure 4.11: Points distribution for the competition with 26 drivers.

Figure 4.11 shows that the points distribution in this competition is weighted towards the
better finishing positions. For instance, the points difference between finishing in 1st and 2nd

is 5 points, whereas between 11th and 12th, it is only 1 point. As a result, one could argue
that it is worthwhile for a team to allocate their budgets in a way that gives them a chance of
getting closer to the better positions in some, even if it sacrifices positions in other races. As
mentioned previously, a team that heavily focuses on their engine would likely have a better
chance of getting the best finishing positions in some races, but would lose out in other races.
It is difficult to assess whether this is a worthwhile decision at this stage.

Another thing for a team to consider is how other teams may split their budget between the
chassis and the engine. This is closely linked to game theory, much like the marketing budget.
While it may be optimal to invest more into the engine budget, if every team does so, the benefit
from doing so is reduced. It may even be worthwhile for a team to invest into the chassis instead,
as they would have a very good chance of getting a strong result at the two tracks that emphasise
the chassis performance above the engine. Again, it is difficult to determine what a team should
do in the event of all other teams allocating their budgets in the supposedly optimal way.

4.3 Solving the budget problem

Having discussed potential effects of allocating the budget between the 4 components in various
ways, we will now use Monte Carlo simulations to find the optimal budget allocation. This
will involve a) generating random team budgets according to predetermined distributions; b)
assigning drivers to the teams using the drafting process; c) simulating each race in a season to
find the championship winner.

We will create a population of 20,000 team budgets and, at each stage, randomly select 13 of
these budgets to compete in a championship. At the end of each championship, we will record
which team won the championship. For each set of 13 teams, we will repeat the championship
10 times to help account for anomalistic results. We will repeat this until each team has taken
part in around 10,000 seasons. At this point, we will sort the team budgets by the proportion
of championships they have won to see if there is any similarity between teams that won the
greatest proportion of championships.
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Allocation of budgets

When randomly choosing a budget for each team, it is done in the following steps:

1) Reliability budget: R.

We choose R according to the following distribution

R ∼ N (1, 0.252).

We have already found that a team choosing a reliability budget of R = 0.9 would expect
to see around 6 retirements across a season, and this reduces to around 4 for a reliability
budget of R = 1. We would therefore expect teams to choose a reliability budget around
1 with some variance. By choosing a random number according to this distribution and
then rounding to 1 decimal place, we give each team their reliability budget, although we
restrict this budget to be between 0.5 and 1.5 by rounding up or down where necessary.

2) Marketing budget: M .

We choose M according to the distributions described by (4.5) and (4.6).

3) Chassis and engine budgets: C and E.

The remaining budget of 8 − M − R is split uniformly between C and E. While we
discussed how prioritising E may provide the best results, we do not yet know if this is
actually the case.

Simulating races and seasons

Once we have assigned drivers to each team, we can start simulating the 10 races in the season.
This is done by calculating the track performance of each driver at each track. In Example 4.3,
we saw how the track performance of drivers is calculated given the track balance coefficients,
driver, engine, and chassis rating. We do this for each driver in each team, and then sort the
drivers according to their track performance. The driver with the highest track performance
rating is declared as the winner, with the second highest finishing second, and so on. The points
are given to each driver according to the points distribution shown in Figure 4.8. These points
are then summed across the season of 10 races, with the driver and team with the most points
being declared the winner! We are interested in the team that is declared the winner as, after
all, this is a team-based competition. Each season is then repeated 10 times, with each team
being assigned (hopefully) different drivers each time.
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Figure 4.12: Summary of 100,000 simulated seasons with 13 fixed teams. Each team’s finishing position distribution is shown as a
percentage and as a plot. Team budgets are shown at the bottom.
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Example 4.5

Figure 4.12 shows the summary of 100,000 seasons with 13 fixed teams. Here, we have performed
the driver allocation process at the start of each season, and recorded each team’s finishing
position at the end of the season. Out of these 13 teams, we would determine that teams A, C,
and M are the “best”, as they have the highest proportion of championship victories. Teams
F, J, and K had the fewest number of championship victories. One thing of interest to us
is the shape of the distribution curves for each team. Considering the marketing budgets for
each team, we see that teams with a high marketing budget tend to have relatively flat curves.
Conversely, teams with lower marketing budgets tend to have a noticeable bulge. Team J is one
such team, although its marketing budget is not that much lower than the other teams. As for
the reliability budgets, team E has a very high reliability budget and sees themselves finish in
last 25.3% of the time! The point marked between the percentages and distribution plot shows
the teams average finishing position in the simulated seasons. Interestingly, team I has the best
average finishing position but they only win the championship on in 5.6% of the seasons.

While this example is not exhaustive of every possible effect on a team’s finishing position, it
demonstrates some of our findings from the previous section.

Results of simulations

Having sorted the 20,000 teams in order of the proportion of championships they won, we can
look for any similarities between teams near the top.

Rank R M C E Champs. won Seasons entered Win rate

1 1.1 2.9 0.2 3.9 1819 10380 0.175
2 1.1 2.8 0.0 4.1 1844 10580 0.174
3 1.1 2.8 0.1 4.0 1734 10030 0.173
4 1.2 2.7 0.0 4.1 1804 10460 0.172
5 1.1 2.7 0.2 4.0 1854 10760 0.172
6 1.2 2.9 0.1 3.8 1803 10570 0.171
7 1.1 2.8 0.0 4.1 1765 10360 0.170
8 1.1 2.8 0.1 4.0 1788 10500 0.170
9 1.1 2.9 0.1 3.9 1753 10330 0.170
10 1.1 2.7 0.0 4.2 1816 10730 0.169
...

...
...

...
...

...
...

...

Table 4.4: Top 10 teams according to championship win rate after Monte Carlo
simulations.

Table 4.4 shows the top 10 teams from the Monte Carlo simulations, ranked according to their
championship win rate. We can see a pattern in how the budgets have been allocated among the
best teams: reliability around 1.1; marketing around 2.8; chassis around 0.1; and engine around
4.0. These results are in agreement with our previous discussions, although the reliability budget
may be a little larger than we expected. Our study of the marketing budgets with the custom
distribution suggested that a marketing budget in the interval [2.7,3.2] appears to result in the
greatest return on investment for a team, which may give them an advantage over other teams
in the competition, thus giving them a better chance of winning overall. We can also see that
teams who invest heavily in the engine instead of the chassis are more likely to win.

To further our analysis of these results, we will consider each aspect of the budget individually.
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Figure 4.13: Ranking of teams plotted against their reliability budgets. Ranking
closer to 0 is better. Points are slightly transparent, so darker areas indicate more
densely packed points.

Figure 4.13 compares the reliability budgets assigned to teams and their finishing positions. By
looking at the darker areas for each R, we can see where teams finished when using the given
reliability budget. We can see that for R ∈ [1, 1.3], these teams are closely packed towards the
top of the plot, which indicates better performance. Conversely, teams with R < 0.9 tended to
finish towards the back, as they have a worse ranking. The best performing reliability budgets
appear to be R = 1.1, 1.2. R = 1.0 may also be valid, albeit a little more risky. As discussed
previously, it may be worthwhile to risk a slightly worse reliability record in order to have a
slightly better performing car.

Figure 4.14: Ranking of teams plotted against their marketing budgets.

Figure 4.14 shows the ranking of teams according to their marketing budget. As before, darker
colours towards the top of the plot suggests better performance. We can see that the best
performing teams have M ∈ [2.6, 3] which is what we expected following our previous analysis.
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We can also see how teams that how a marketing budget close to 0 also perform better than
those with M ∈ [0.4, 1.3], but we can see that they generally have a low chance of winning
championships. Also, teams who invest very highly in marketing perform very poorly, which is
likely a result of them having little budget remaining for their chassis and engine. There are
also some interesting gaps in the middle of the plot, which can be explained by the high density
of teams with low marketing budgets that are ranked in the lower 50% of all teams.

Figure 4.15: Ranking of teams plotted against their chassis (top) and engine
(bottom) budgets.

Figure 4.15 shows the ranking of teams according to their chassis budget and engine budget.
While there appear to be fewer clusters of teams, we can see two small clusters at the top of the
plot. Considering the chassis plot, the first cluster is in the interval C ∈ [0, 0.7], with the other
in the interval C ∈ [3.4, 4]. The first interval is cases where the teams decide to prioritise their
engine budget over their chassis budget (the inverse can be seen on the engine plot). We can
also see that the highest ranking occurs when the engine is prioritised, although the difference is
only marginal. This tells us that teams with low chassis/high engine budgets are more likely to
win championships. These plots show noticeably less clustering in the data, which is indicative
of a greater variance in the results, suggesting that the choice of chassis/engine budget is less
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influential on the win rate than the choice of marketing and reliability budgets.

It is also important to note that there is a slight dip in both plots for both C,E ∈ [1.2, 2.8]
relative to the 2 apparent peaks on each plot. This tells us opting for a more even split between
the engine and chassis reduces the chance of winning the championship.

Example 4.6

Returning to the previous example, we have changed the budget of Team A to see the effects
on the overall standings. Figure 4.16 shows the same summary plot as before, although Team
A has had its marketing budget decreased to M = 0.2 and its engine budget increased to
E = 6.3. We can clearly see the bulge on the density plot, which suggests that team A now
finishes more consistently. We can also see from the marked point that team A has the best
average finishing position of all teams. However, it has the lowest number of championship
wins! Clearly, reducing the marketing budget has resulted in this team being more consistent,
but ultimately less successful than before. Considering the other teams, team C is now the
most successful while team J has performed slightly worse. Interestingly, team C has the best
chance of winning even though they favoured the chassis over the engine.

We have learnt that a team with a low marketing budget may have a smaller chance of winning
championships, but may instead finish more consistently around a certain position, dependent
on the other teams.
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Figure 4.16: Summary of 100,000 simulated seasons with 13 fixed teams. Team B-M are the same as in Example 4.5, while Team A
has had its marketing budget reduced and its engine budget increased.
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4.4 Final budget

Having considered the results from our Monte Carlo simulations, the budget we choose will be
based around the following observations:

� Reliability

We have seen that choosing R ≈ 1.1 is likely to give the best chance at winning a
championship, although there was some justification for choosing R = 1. Choosing R = 1
would either result in a slightly improved chance of acquiring the best drivers, or it would
leave extra budget available for the chassis or engine. This does, however, come at the
expense of a greater chance of retiring from more races throughout the season. Given that
the extra risk is relatively small, we will be choosing R = 1 to give a chance at slightly
improved car performance.

� Marketing

While there is valid reason to opt for a low marketing budget, we have seen that to
maximise the chance of winning the teams championship, a marketing budget of M ∈
[2.7, 3] is suggested. We will choose M = 2.8 for our marketing budget, although choosing
any of the others in the previous interval would likely provide similar results. We could
say that the 0.1i saved on the reliability budget has gone into the marketing budget, which
is arguably a slightly high-risk strategy. By doing this, we give ourselves a better chance
at being allocated better drivers, thus taking them away from other teams, which will in
turn give us a better chance at winning the championship.

� Chassis and Engine

With the remaining 4.2i available to us, we need to decide how to split this between the
chassis and the engine. Our analysis of the Monte Carlo simulations tells us that investing
more into the engine gives the best chance of winning the championship. If we were to
opt for a more even split, we would expect more consistent results across the season,
as discussed previously. Given that we have already taken some risks with our budget,
particularly with the reliability budget, we will choose C = 0.5, E = 3.7.
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Chapter 5

F1 Strategy Competition -
Participation and review

5.1 Race strategies

Lap time model

In the F1 Strategy Competition[19], the lap time model being used is very similar to our simple
model (2.1). There is an additional random error term which is simply added to the lap time,
as well as a driver performance term.

t = tb + tperf + pt + pf +Rlap. (5.1)

The separate components, all measured in seconds, are defined as follows:

tb: The base lap time around the given track
tperf: The combined effect of the performance of the car, driver, and car setup
pt: Time penalty due to tyre wear
pf : Time penalty due to fuel level

Rlap: Random component

The tyre wear penalty, pt, can be one of three distinct functions corresponding to the tyre
compound that a driver is using in a stint (either soft, medium, or hard). These functions are
unique to each track and thus need to be considered on a track by track basis. In general, soft
tyres are quickest at the start of the stint but wear out quickly, hard tyres are slower at the
start of a stint but are much more durable, while medium tyres find a middle ground between
the two.

The fuel penalty, pf , has the same form as in our simple model (2.2), where each lap of fuel
onboard the car adds a penalty of F seconds to the lap time.

The driver performance tperf term is given by

tperf = −0.15(Psetup + Pdriver), (5.2)

where Pdriver is the track performance of a driver given in (4.7) and Psetup is the setup rating
for each driver. Each team is given a uniform random number in the interval [-0.5,0.5] which
is the team setup rating. Then each driver also drivers a uniform random number in the same
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interval [-0.5,0.5] giving the driver setup rating. These ratings are combined for each driver to
give Psetup which can take values between -1 and 1, with each driver from a team being no more
than 1 setup rating apart. A team would want to have the highest combined value for Psetup

and Pdriver, as they are multiplied by the negative constant -0.15.

To emulate driver inconsistencies in real life races, the random term Rlap is added to the lap
time. This is given by

Rlap = 4(xRNG − 0.4)3 + 0.3xRNG − 0.4, (5.3)

where xRNG ∼ Unif(0, 1).

When making a pit stop, the time taken to complete the pit stop is a modification of (2.7) given
by

tp = ts +
1

2
(li − li−1) +Rpit, (5.4)

where ts is some constant that is interpreted as the time taken to drive through the pit lane
without changing tyres or adding fuel, Rpit is a random variable given by Rpit = 2xRNG where
xRNG is uniform random number between 0 and 1, and it takes 0.5s to add a single lap of fuel
to the car.

Across a stint, both tb and tperf are constant for a driver, while Rlap is a random variable that
is the same for all drivers. As a result, when it comes devising our strategies for each of the
races, both pf and pt will be of significant importance. Unfortunately, given that pt rarely takes
the form of (2.2), that is, the tyre wear law is rarely described using a constant T plus some
additional constant to differentiate between the tyre compounds as in (3.2), so we need to use
alternative methods for finding the optimal strategies around a given race track.

For each track, we will create a library of stint times for each tyre compound and of each length.
Then, to find the total race time for a given strategy, we will simply combine the separate stint
times plus the time taken to make the pit stops in between each stints. We will then focus on
the strategies that have the quickest race time, and make adaptations where necessary. One of
the rules in this competition states that any team that has both drivers pitting on the same
lap will see the second driver receive a time penalty of ts seconds at the end of the race. As a
result, we will need to choose strategies that do not clash, so suboptimal strategies will need to
be used by at least one of drivers.

Philosophy of strategies

In section 3.5, we discussed what factors may govern the strategies a Formula 1 team will use
in a race, outside of the tyre wear and fuel load penalties. Generally for this competition, the
overcut is the preferable choice as refuelling is allowed during the races. If the optimal strategy
involves making the first pit stop on lap 24, it may be worth extending the first to lap 25 or
26, or even beyond, to take advantage of a potential overcut. Unfortunately, we are unable to
be reactive to other team’s strategies in this competition, as the strategies are fixed before the
race. Therefore, we have to “predict” the strategies other teams may use during the race.

Each track is given an “overtake delta” which essentially determines how easy/difficult it is
to overtake at a given track, where a higher value suggests it is more difficult to overtake.
For instance, Monaco has a 1 second overtake delta, while Italy’s is 0.7s. At tracks where
the overtake delta is high, securing track position in the short term is often more important
than having a quicker potential race time. As such, at these tracks we generally go for more
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conservative strategies that either make one less pit stop, or attempt to make use of an overcut.
There is a strong argument for qualifying on softer tyre compounds than what would be optimal,
as this will likely lead to a better grid position, helping to limit the amount of traffic a car would
experience in the first stint.

5.2 Season report

In this section, we will discuss the strategies we use at each of the races, along with some
extended discussion of some of the races. We will also cover the chances of our team being
successful when compared to the other teams in the competition both before and after the
drivers have been assigned to each team.

Comparison of budgets

As discussed in the previous chapter, we have chosen the following budget for this competition:
R = 1.0,M = 2.8, C = 0.5, E = 3.7. To see our expected finishing position before and after the
driver drafting process has been completed, we will simulate n = 1, 000, 000 seasons with each
team’s budget given in Table 5.1, where Team A is our team.

Team R M C E Driver 1 Driver 2

Team A 1.0 2.8 0.5 3.7 4.4 3.7
Team B 1.1 2.0 1.9 3.0 5.0 3.5
Team C 1.2 0.3 0.3 6.2 1.4 1.1
Team D 0.9 0.2 0.0 6.9 0.9 0.7
Team E 2.2 0.0 2.3 2.3 0.0 0.0
Team F 1.3 0.1 0.0 6.6 0.6 0.4
Team G 1.4 0.8 0.0 5.8 2.2 2.0
Team H 0.8 1.1 3.0 3.1 2.9 2.7
Team I 1.3 0.5 3.0 3.0 2.6 1.8
Team J 1.3 0.4 0.0 6.3 1.6 1.5
Team K 1.2 2.8 2.0 2.0 4.0 3.9
Team L 1.3 1.5 2.7 2.5 3.4 3.2
Team M 1.2 2.4 3.8 0.6 4.8 4.2

Table 5.1: Teams and their assigned drivers in the F1 Strategy Competition.[23]

Figure 5.1 tells us that according to our simulations, our team has a high variability in its
predicted finishing positions, with an 8.5% chance of winning the championship. This is the 6th

best of all teams, while Team M has the best chance with a 26.7% win rate. However, according
to our simulations, our team has a 38.2% chance of finishing 7th or lower, which demonstrates
the extreme variability in our predicted results. The most frequent finishing position for our
team in our simulations was 3rd, which occurred 12.4% of the time. Given this variability, it is
very difficult to predict in what position we will finish.

Table 5.1 also shows the drivers that were assigned to each team by the drafting process
described in the previous chapter. Our budget of M = 2.8 into marketing yielded a positive
return on investment for both drivers, who have a performance rating of 4.4 and 3.8 respectively.
This is one of the strongest driver pairings on the grid and it exceeds our expected driver
performance ratings, according to Figure 4.10, although this has come at a cost to our chassis
and engine budgets. We can now see how our team is likely to perform with the drivers we have
been assigned.
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Figure 5.1: Summary of 1,000,000 simulated seasons with budgets given by Table 5.1, before the drivers have been allocated. The
budget chosen in Chapter 4 has been assigned to Team A.
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Figure 5.2: Summary of 1,000,000 simulated seasons with budgets given by Table 5.1, after the drivers have been allocated. The budget
chosen in Chapter 4 has been assigned to Team A.
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Figure 5.2 shows that the predicted finishing positions teams have much less variability after the
drivers have been assigned. Unfortunately for us, our team now has a very low chance of winning
a championship, and we are very unlikely to finish in 4th or above. Now, our team is most likely
to finish between 5th and 11th, with 7th being the most likely result. The championship fight is
now expected to be between teams B and M, with no other team winning any notable number
of championships in our simulations.

One reason for our team now having next to no chance of succeeding is largely down to the
driver assignment. Because it is a random process, the “luck of the draw” plays a pivotal role
in the success of teams. From Table 5.1, we can see that teams B and M both had a lower
marketing budget than our team, but ended up with better drivers on average. This gives us
an immediate disadvantage to these teams, as they have gained a large amount of expected
performance for each race compared to our team, thus reducing our chance of winning the team
championship.

Race discussions

Race Optimal Strategy Driver 1 Strategy Driver 2 Strategy

Spain H24 M48 M52 M66 H25 M46 M66 H26 M46 M66

France
H17 M27 M37 H16 M27 M38 H17 M28 M39
M48 M59 M70 M49 M59 M70 M50 M60 M70

Monaco H30 S46 S62 S78 H34 M56 M78 M34 M56 M78
Belgium H18 M31 M44 M15 S25 S35 S44 H20 S31 M44

Italy H23 S35 H53 M18 S30 S42 S53 S15 S28 S41 S53
Hungary H27 S40 S53 M70 H28 S42 S56 S70 H31 H52 M70

USA H20 H37 H54 H71 H88
H18 S30 H45

H22 H39 H56 H72 H88
H60 H75 M88

Japan H26 S38 H53 H27 M41 S53 H23 S33 S43 S53
Canada H22 S34 S46 S58 S70 M21 S34 S46 S58 S70 H26 S39 M57 S70

Australia H28 S43 S58 M24 M43 S58 M26 S42 S58

Table 5.2: Summary of strategies across the season with optimal and used strategies
given for each driver. ‘H25 M46 M66’ indicates the driver started the race on the
hard tyres, pitted on lap 25 for mediums, then pitted again for mediums on lap 46
for the final stint, completing the race of 66 laps.

Race Winning Strategy
Driver 1 Driver 2

Quali. Race Quali Race

Spain H26 M46 M66 23 8 19 16
France H12 H29 H43 H56 H70 11 4 11 11
Monaco M31 M54 M78 10 3 10 5
Belgium H20 H35 S44 25 15 14 9

Italy H23 H40 S53 7 9 3 12
Hungary H28 H49 H70 23 8 17 12

USA S13 H31 H49 H68 H88 15 DNF 12 9
Japan H26 S38 M53 18 8 13 9

Canada H24 H47 H70 10 5 9 11
Australia H29 H58 21 11 20 17

Table 5.3: Qualifying and race results for both drivers at each race along with the
winning strategy.
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Tables 5.2 and 5.3 shows a summary of the race results across the season for our drivers.
In general, the optimal strategy consists of starting on the hardest tyres and then usually
splitting the remaining laps into some number of equal (or nearly equal) stints on the same
tyre compound, with only a few exceptions. As mentioned before, we cannot pit both drivers
on the same lap, else the second driver would receive a penalty, so deviations from the optimal
strategy are required.

Across the season, the philosophy behind the strategy choices was adapted according to results
in previous races by seeing what worked and what did not. At Spain and France, where the
strategies were both decided before any race had been completed, more conservative strategies
were used that had potential race times close to the fastest possible strategy. In these races, we
qualified on the hard tyres with both cars, which had a negative effect on qualifying performance,
but the race performances were noticeably better. As these were balanced tracks, our results
were largely as expected when considering the budgets and drivers of the other teams.

Monaco is a track where overtaking is notoriously challenging and as a result, the fastest strategy
may in fact be terrible for the race! By making 3 pit stops, as suggested by the optimal strategy,
track position would be sacrificed when the pit stops were made, and it may not have been
possible to overtake enough cars to make up for this, due to the nature of the track. The
importance of track position also increases the importance of qualifying, as it is inherently
better to start closer to the front. This justifies qualifying on faster tyres, even if it results in
a slower strategy. As a track that rewards the better drivers, we expected and achieved strong
results at Monaco with both drivers, including a podium, as our team had one of the strongest
driver line-ups.

Each of Belgium, Italy and USA rewarded teams with large engine budgets, which we opted for
in favour of the chassis budget. However, the teams that chose a low marketing budget were
rewarded much more than our team at these races, as they generally had a much larger engine
budget as a result. At Italy we opted for an aggressive strategy with an additional pit stop
compared to the optimal strategy as overtaking was easier at this track. Unfortunately, this
did not result in strong finishing positions. This may be a combined result of a poor strategy
choice and other teams gaining more from the engine bias at these tracks. Our result at USA
was hampered by an unfortunate retirement for one of our drivers while he had the potential
to score a good number of points.

Both Hungary and Japan rewarded teams with high chassis budgets, which we decided to opt
against. This was the case for a number of other teams, however, so our performances were
largely unaffected by this. The last 2 races were both balanced tracks, like the first 2, so our
results were again as expected, even with the terrible qualifying results on the medium tyres at
Australia.

5.3 Post-season discussion

Overall, our team collected 131 points which was enough to secure P5 in the Constructors’
Championship which is around where we expected to finish. Our drivers collected 80 and 51
points respectively, enough to finish in P4 and P16. According to our predictions, we only had
a 10.5% chance of finishing in P5 or better, so we performed about as well as we could given
the competing teams and driver draw.

We could argue that our team was particularly unlucky with the driver draw, as the two teams
with better driver line-ups both had a lower marketing budget which put our team on the
back foot before the season even had even started. Of course, we could have used different
strategies at each of the races, evidenced by the fact that the winning strategies were often
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different to the strategies we used, although it would be very difficult to find a strategy that
is able to overcome the deficit to teams with outright quicker cars/drivers. Team M won the
Constructors’ Championship, and given that they opted for a similar marketing budget, this
justifies the budget we chose. They were, however, the only team that prioritised the chassis
heavily. This, combined with their strong driver line-up, gave them an immediate advantage
at Monaco, Hungary, and Japan, and their overall strong car gave them an advantage at the 4
balanced tracks.

At Belgium and Australia, our results in the race were hampered by poor qualifying results.
When devising strategies for a race, it is near enough impossible to predict exactly how much
traffic our cars will experience in each stint. As a result, when a driver qualifies poorly, they
are unable to make the most of their tyres as they end up stuck in traffic for at least the first
stint. By qualifying better, drivers are less likely to be stuck in track simply because there are
fewer cars ahead of them. We could argue that we were particularly unlucky at these races, and
if they were run again we could see significantly different results. Of course, this is the same
for all teams, as occasions on which we qualified well could have been helped by other teams
qualifying poorly.

5.4 Adjustments to strategy with perfect knowledge

With our knowledge of the budgets of the other teams, we can use Monte Carlo simulations to
find the optimal team budget(s) for competing against the 12 other teams in the competition.
We will consider 7,500 possible budgets, allocated by the same method as in section 4.3, and then
simulate 2,000 seasons with each of these budgets against the 12 other teams in the competition.
We will then order these budgets by the number of championships they won (equivalent to win
rate as all teams took part in 2,000 seasons) and look for any patterns between the teams that
perform best.

Rank R M C E Champs. won Win rate

1 1.1 1.4 5.5 0.0 707 0.353
2 1.0 1.4 5.6 0.0 683 0.342
3 1.2 1.9 4.9 0.0 667 0.334
4 1.1 1.8 5.1 0.0 666 0.333
5 1.0 1.8 5.1 0.1 665 0.333
6 1.1 1.7 4.9 0.3 664 0.332
7 1.2 1.7 5.0 0.1 663 0.332
8 1.0 1.3 5.0 0.7 661 0.331
9 1.1 1.5 4.8 0.6 656 0.328
10 1.1 1.5 5.3 0.1 653 0.327

Table 5.4: Top 10 teams according to championship win rate after Monte Carlo
simulations with 12 of the teams fixed across all simulations. Each team in the
table competed in exactly 2,000 seasons.

Table 5.4 shows the randomly selected teams that performed best against the 12 other teams
in the competition. Clearly, opting for R = 1.1 is one of the best options, as we noticed in the
previous chapter. This is because such a reliability budget appears to provide the best balance
between pace and reliability. It is important to note that this reliability budget is lower than the
majority of the other teams in the competition, which shows that this team would have a little
more budget to allocate to other aspects of the car without risking too many more retirements.
This would give this team a slight advantage in performance relative to the other teams.
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Figure 5.3: Probability of having the best return on investment on driver
performance out of all teams (left) and average return on investment (see Example
4.3) for both average and top driver performance rating (right). The marketing
budgets for teams B to M have been fixed, and we have repeated the driver draft
process 1,000,000 times for each MA ∈ [0.0, 3.5], where MA is the marketing budget
of team A. The erratic nature of the curves can be explained by the unequal
differences between the ordered driver performances.

We can see that the best option would have been to opt for a marketing budget of M ≈ 1.4
and also focusing heavily on the chassis rather than the engine. This is a much lower marketing
budget than we originally predicted to be optimal which is largely a result of many teams opting
for a relatively low marketing budget. Figure 5.3 (left) shows the probability of getting the best
return on investment on the drivers given the marketing budget. We can see that this peaks
for the average driver performance around M = 1.8, but when M = 1.4 the probability p is
only slightly lower. For the top driver performance, the curve is slightly altered, and even a
little erratic, but we can also see that at M = 1.4, the probability p is only slightly lower than
the apparent peak. From this, we can say that a team can choose M = 1.4 and have a good
chance at getting the best performance gain from the driver draw. Getting the best return
on investment gives a team an advantage over the other teams which increases their chance of
winning the championship.

The right plot in Figure 5.3 shows the expected return on investment given the marketing budget
of team A. Interestingly, this peaks at a slightly lower budget than the probability plot. This
tells that hoping for the best return on investment may not necessarily ensure greater success
in the competition, as what matters is the return on investment compared to the other teams,
not just the return on investment in absolute terms.

By allocating the majority of the remaining budget towards the chassis, we would have had
by far the largest chassis budget which would have resulted in very strong performances at
the chassis-biased tracks. The main competition comes from team M who have a lower chassis
budget and a similar engine budget. As a result, at chassis-biased tracks, this optimal team
would have an immediate advantage over the strongest team in the competition, while at engine
tracks they would not lose out by much, if at all. At tracks that favour the driver, team M are
likely to gain due to their better chance of being allocated the better drivers, but their drivers
would need to have a high enough performance rating to overcome the chassis and engine deficit.
The same can be said about balanced tracks, although this time team M would need even
stronger drivers to overcome the performance deficit. Overall, the high chassis budget would
give the team a much greater chance of winning the competition, as they would outperform the
previous best team in most situations.
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Figure 5.4: Summary of 1,000,000 simulated seasons with optimal budget from Table 5.4 (Team A) against 12 other teams in the
competition.
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From Figure 5.4, we can clearly see how successful this optimal budget is when competing
against the other teams. Across 1,000,000 seasons, the best budget from Table 5.4 won around
34.6% of the championships they took part in, even with the drivers being redrawn each time.
This is much greater than the win rate for any team taking part in the original competition,
where the best team would only have won around 25% of the time. Team M, who won the
championship in the competition, now only wins 15.7% of the time when the optimal budget is
included, and they are not even the second most successful team! Team B now has the second
best chance of winning with an 18% success rate. Team M loses out when this optimal budget is
included because Team A would very likely have the best performance at chassis-biased tracks,
and possibly balanced tracks too, thus worsening Team M’s results across the season. This
further demonstrates the relationship between every teams’ budget and the performance of
each team, and shows that a successful team in one set of budgets may not be successful in
another.

Clearly, opting for one of the budgets in the table above would have resulted in a very good
chance of winning the championship. In some ways, we could have predicted that opting for a
high chassis budget would have been optimal, as we had good reason to expect most teams to
favour the engine. However, it would have been very difficult to predict the marketing budgets
of every team, so we could not realistically have expected such a low marketing budget to be
so successful.
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Chapter 6

Discussion

In this project, we have developed a simple lap time model and used it to formulate strategies
for a given race. We then used our model in a real-life scenario by taking on the role of a
Strategy Engineer at the 70th Anniversary Grand Prix, held at Silverstone in 2020. Having
used the lap times of a number of drivers from the race and practice sessions, we were able to
devise an “optimal” strategy that would have beaten the race winner. We also compared our
optimal strategy to both the winning strategy and the fitted winning strategy to see how they
deviate. By calculating the total race time for the winning strategy using our model, we found
it to be accurate within 0.3% of the winning time. Having seen our model applied in a real
world scenario, we covered various in which we could improve the model to capture features in
a driver’s lap time that were previously ignored.

The remainder of this project covered both the preparation and participation of the F1 Strategy
Competition, run by Cédric Beaume. We used Monte Carlo simulations to choose a budget
allocation that we felt gave us the best chance of winning the teams championship, involving a
number of assumptions about how other teams may act when choosing their own budgets. We
finished this project with an analysis of the results of the competition where we discussed our
race strategy decisions, and compared our budget allocation to that of the other teams. With
our knowledge of every other team’s budget, we used further Monte Carlo simulations to find the
budget allocation that would have given the greatest chance at success in the competition.

One area into which we could study further is more advanced extensions and modifications to
our simple lap time model. We have already discussed a number of possible modifications to our
model, for which we could study their direct effect on the strategies that a team would use in a
race. For instance, we could consider the effect of the car’s setup on its performance on a single
lap and across a stint. When creating the model, we did not even mentioned car setup, but it
arguably plays the most significant role on a car’s lap time. Across a race weekend, drivers and
engineers work to find the best car setup that balances qualifying and race performance. A car
with a bad setup could be too slow in a straight line or in the corners, or it may experience
greater tyre wear rates. We could adapt our model to consider the effect of the setup on the
tyre wear of the car, for example.

When selecting our race for the study in Chapter 3, we discarded any races that featured wet
weather conditions as we were unable to model it. This was an unfortunate but necessary
decision, as strategic decisions in changeable conditions are often some of the most crucial
decisions in a whole season. By being on the right tyre at the right time in the wet, a driver
can gain several seconds per lap! Given the rarity of wet races in Formula 1, it is very difficult
to calculate exactly how much an effect rain has on lap time, and ultimately all that matters is
whether you are quicker than everyone else. This, along with other extensions we have suggested
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are certainly not an exhaustive list, but they leave plenty of opportunity for further study into
their combined effect on a driver’s lap time. The end goal for a Strategy Engineer is to have
an exhaustive model that considers every possible effect on lap time, but such a model would
be unwieldy at best, and it likely does not even exist. After all, the joy in all sport comes from
what we fail to predict.

Regarding the strategy competition, when discussing the budgets, we mentioned that it was
closely linked to game theory, as we have incomplete information about the decisions other
teams would make. We saw in the competition that the winning team prioritised the chassis
budget, when we predicted that prioritising the engine budget would result in a greater chance
of winning the championship. This is another example of incomplete information, as we did
not know how the other teams would split their budget between the chassis and the engine.
When we performed a retrospective analysis of the chosen budgets, we were able to easily find
a budget that would comfortably outperform all other teams in the competition. It was also
particularly interesting to see that our optimal budget resulted in the previous best budget now
falling behind some of the other teams. Clearly, the success rate of a team is highly dependent
on its competitors; we have established that the success rate is governed by relative performance
compared to other teams, and not the absolute performance. Going into further detail about
the relationship between our budget and the other teams’ budgets may have resulted in our
team performing better in the competition, although there was no guarantee of success.

66



Bibliography

[1] Formula 1, Ruth Buscombe On The Role Of The F1 Strategy Engineer, https://www.

youtube.com/watch?v=K7EEBE-2Wf4&ab_channel=FORMULA1, accessed on 16/04/21.

[2] Cédric Beaume, F1 Strategy Competition - Oct 2020, http://cbeaume.com/download/

MATH3001_Formula1.pdf, accessed on 16/04/21.

[3] FIA, 2021 Formula One Sporting Regulations - May 2020, https://www.fia.com/sites/
default/files/2021_formula_1_sporting_regulations_-_iss_2_-_2020-05-27_0.

pdf, accessed on 16/04/21.

[4] Silverstone, https://www.formula1.com/en/racing/2020/Great_Britain/Circuit.

html, accessed on 21/04/21.

[5] Red Bull Ring, https://www.formula1.com/en/racing/2020/Austria/Circuit.html,
accessed on 21/04/21.

[6] FIA, 2021 Formula One Technical Regulations - May 2020, https://www.fia.com/sites/
default/files/2021_formula_1_technical_regulations_-_iss_7_-_2020-12-16.

pdf, accessed on 06/05/21.

[7] DHL, DHL Fastest Pit Stop Award, https://inmotion.dhl/en/formula-1/

fastest-pit-stop-award/, accessed on 16/04/21.

[8] Keith Collantine, 2020 70th Anniversary Grand Prix interactive data:
lap charts, times and tyres, https://www.racefans.net/2020/08/09/

2020-70th-anniversary-grand-prix-interactive-data-lap-charts-times-and-tyres/,
accessed on 19/04/21.

[9] Lap Time Data, https://www.kaggle.com/cjgdev/formula-1-race-data-19502017,
accessed on 15/10/20.

[10] Mark Hughes, How shrewd race craft and brilliant tyre management allowed Hamilton
to snatch victory in Portugal, https://www.formula1.com/en/latest/article.

how-shrewd-race-craft-and-brilliant-tyre-management-allowed-hamilton-to.

4kTjQpByG0SYoqiKf7cbJQ.html, accessed on 03/05/21.

[11] RaceFans.net, Silverstone - circuit information, https://www.racefans.net/

f1-information/going-to-a-race/silverstone-circuit-information/, accessed
on 21/04/21.

[12] Formula 1, https://twitter.com/F1/status/1291759508876865537/, accessed on
21/04/21.

[13] FIA, 70th Anniversary GP Event and Timing Information, https://

www.fia.com/events/fia-formula-one-world-championship/season-2020/

formula-1-70th-anniversary-grand-prix, accessed on 20/04/21.

67

https://www.youtube.com/watch?v=K7EEBE-2Wf4&ab_channel=FORMULA1
https://www.youtube.com/watch?v=K7EEBE-2Wf4&ab_channel=FORMULA1
http://cbeaume.com/download/MATH3001_Formula1.pdf
http://cbeaume.com/download/MATH3001_Formula1.pdf
https://www.fia.com/sites/default/files/2021_formula_1_sporting_regulations_-_iss_2_-_2020-05-27_0.pdf
https://www.fia.com/sites/default/files/2021_formula_1_sporting_regulations_-_iss_2_-_2020-05-27_0.pdf
https://www.fia.com/sites/default/files/2021_formula_1_sporting_regulations_-_iss_2_-_2020-05-27_0.pdf
https://www.formula1.com/en/racing/2020/Great_Britain/Circuit.html
https://www.formula1.com/en/racing/2020/Great_Britain/Circuit.html
https://www.formula1.com/en/racing/2020/Austria/Circuit.html
https://www.fia.com/sites/default/files/2021_formula_1_technical_regulations_-_iss_7_-_2020-12-16.pdf
https://www.fia.com/sites/default/files/2021_formula_1_technical_regulations_-_iss_7_-_2020-12-16.pdf
https://www.fia.com/sites/default/files/2021_formula_1_technical_regulations_-_iss_7_-_2020-12-16.pdf
https://inmotion.dhl/en/formula-1/fastest-pit-stop-award/
https://inmotion.dhl/en/formula-1/fastest-pit-stop-award/
https://www.racefans.net/2020/08/09/2020-70th-anniversary-grand-prix-interactive-data-lap-charts-times-and-tyres/
https://www.racefans.net/2020/08/09/2020-70th-anniversary-grand-prix-interactive-data-lap-charts-times-and-tyres/
https://www.kaggle.com/cjgdev/formula-1-race-data-19502017
https://www.formula1.com/en/latest/article.how-shrewd-race-craft-and-brilliant-tyre-management-allowed-hamilton-to.4kTjQpByG0SYoqiKf7cbJQ.html
https://www.formula1.com/en/latest/article.how-shrewd-race-craft-and-brilliant-tyre-management-allowed-hamilton-to.4kTjQpByG0SYoqiKf7cbJQ.html
https://www.formula1.com/en/latest/article.how-shrewd-race-craft-and-brilliant-tyre-management-allowed-hamilton-to.4kTjQpByG0SYoqiKf7cbJQ.html
https://www.racefans.net/f1-information/going-to-a-race/silverstone-circuit-information/
https://www.racefans.net/f1-information/going-to-a-race/silverstone-circuit-information/
https://twitter.com/F1/status/1291759508876865537/
https://www.fia.com/events/fia-formula-one-world-championship/season-2020/formula-1-70th-anniversary-grand-prix
https://www.fia.com/events/fia-formula-one-world-championship/season-2020/formula-1-70th-anniversary-grand-prix
https://www.fia.com/events/fia-formula-one-world-championship/season-2020/formula-1-70th-anniversary-grand-prix


[14] Pirelli, https://twitter.com/pirellisport/status/1292023053778587649/, accessed
on 21/04/21.

[15] IMDB, Alain Prost - Biography - Personal Quotes, https://www.imdb.com/name/

nm1169354/bio?ref_=nmbio_ql_dyk_1#quotes, accessed on 05/05/21.

[16] Pirelli, https://twitter.com/pirellisport/status/1292480389525594117/, accessed
on 19/04/21.

[17] Autosport, F1 terms explained: what box, marbles, DRS,
undercut and more mean, https://www.autosport.com/f1/news/

f1-terms-explained-what-box-marbles-drs-undercut-and-more-mean-5477591/

5477591/, accessed on 06/05/21.

[18] Edd Straw, What caused F1’s no-grip Friday? The
big questions answered. https://the-race.com/formula-1/

what-caused-f1s-strangest-friday-the-big-questions-answered/, accessed on
03/05/21.

[19] Cédric Beaume, F1 Strategy Competition - Oct 2020, http://cbeaume.com/download/

F1StratCompetition.pdf, accessed on 11/12/20.

[20] Wikipedia, Error function, https://en.wikipedia.org/wiki/Error_function, accessed
on 11/12/20.

[21] Cédric Beaume, F1 Strategy Competition - Season 1 Report, http://cbeaume.com/

download/Teaching_F1_S1.pdf, accessed on 17/02/21.

[22] Cédric Beaume, F1 Strategy Competition - Season 2 Report, http://cbeaume.com/

download/Teaching_F1_S2.pdf, accessed on 17/02/21.

[23] Cédric Beaume, F1 Strategy Competition - Season 3 Report, http://cbeaume.com/

download/Teaching_F1_S3.pdf, accessed on 11/12/20.

68

https://twitter.com/pirellisport/status/1292023053778587649/
https://www.imdb.com/name/nm1169354/bio?ref_=nmbio_ql_dyk_1#quotes
https://www.imdb.com/name/nm1169354/bio?ref_=nmbio_ql_dyk_1#quotes
https://twitter.com/pirellisport/status/1292480389525594117/
https://www.autosport.com/f1/news/f1-terms-explained-what-box-marbles-drs-undercut-and-more-mean-5477591/5477591/
https://www.autosport.com/f1/news/f1-terms-explained-what-box-marbles-drs-undercut-and-more-mean-5477591/5477591/
https://www.autosport.com/f1/news/f1-terms-explained-what-box-marbles-drs-undercut-and-more-mean-5477591/5477591/
https://the-race.com/formula-1/what-caused-f1s-strangest-friday-the-big-questions-answered/
https://the-race.com/formula-1/what-caused-f1s-strangest-friday-the-big-questions-answered/
http://cbeaume.com/download/F1StratCompetition.pdf
http://cbeaume.com/download/F1StratCompetition.pdf
https://en.wikipedia.org/wiki/Error_function
http://cbeaume.com/download/Teaching_F1_S1.pdf
http://cbeaume.com/download/Teaching_F1_S1.pdf
http://cbeaume.com/download/Teaching_F1_S2.pdf
http://cbeaume.com/download/Teaching_F1_S2.pdf
http://cbeaume.com/download/Teaching_F1_S3.pdf
http://cbeaume.com/download/Teaching_F1_S3.pdf

	Introduction
	Lap time modelling
	The simple lap time model
	Extending to a stint
	Extending to a full race
	Modelling a pit stop
	Example: 10-lap race
	Sensitivity to parameters
	Example: N-lap race
	Summary

	Applying the simple model
	Extraction of data
	Finding the optimal strategy
	Goodness of fit
	Extending the model
	Real life strategies
	Undercuts and overcuts
	Other potential factors to model


	F1 Strategy Competition - Preparation
	Introduction
	The budget problem
	Reliability
	Marketing
	Chassis and engine

	Solving the budget problem
	Final budget

	F1 Strategy Competition - Participation and review
	Race strategies
	Season report
	Post-season discussion
	Adjustments to strategy with perfect knowledge

	Discussion
	Bibliography

