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Lecture 6: Dynamical similarity and the Reynolds number

6.1 Dynamical Similarity: Tritton, p.89–96; Kundu, p.143–151

Suppose we are interested in the flow past an obstacle such as a cylinder. We might then solve the Navier-Stokes
equations

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u,

∇ · u = 0,

usually numerically. The input parameters are the flow speed far from the cylinder, the radius of the cylinder, the
density and the viscosity of the fluid.

Having solved the problem for one set of parameter values, we might be interested in its solution for other parameter
values. The logical way to do so is to rerun the code using the new setup. The aim of dynamical similarity is to reduce
the number of system parameters so that each numerical run provides as much information as possible.

6.2 Nondimensionalization

To make the problem dimensionless, we need to choose suitable units for each problem variable. Let us consider the
flow past a cylinder. The velocity far away from the cylinder is uniform, U0x̂, and the axis of the cylinder of radius
a is in the z-direction. A sensible unit for the velocity is, therefore, U0: u = U0u

∗, where the asterisk denotes the
dimensionless variable. The dimensionless velocity far away from the cylinder is: u∗ = x̂. The radius of the cylinder,
a, is a natural quantity to use for nondimensionalizing distances. From these two units, we can define a unit of time:
a/U0: t = at∗/U0. Since the coordinates x, y and z have units of length, we write x = ax∗, y = ay∗, z = az∗. The
nabla operator then becomes:(
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Upon replacing the dimensional variables in the Navier–Stokes equation and dividing by ρ, we get
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We simplify this equation by multiplying by a2ρ/µU0:
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At this stage, the pressure p is still dimensional. We can nondimensionalize by anything that has the right dimensions,
but setting p = µU0p

∗/a, i.e. the unit of pressure is µU0/a (dimensions ML−1T−2, i.e, it is a force per unit area) would
make the resulting equation friendlier:
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= −∇∗p∗ +∇∗2u∗,

which only shows one dimensionless group, the Reynolds number: Re = U0aρ/µ. Dropping the asterisks, we obtain a
nondimensinoal version of the Navier–Stokes equation:

Re

(
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+ (u · ∇)u

)
= −∇p+∇2u.

This equation highlights the fact that, fo rthe flow pas a cylinder, there is only one important parameter: the Reynolds
number.



6.3 Reynolds number and dynamical similarity

Given the nondimensionalization performed in the previous Section, we now know that there is only one parameter in
the problem of the flow past a cylinder. This has important repercussions. If we know the solution for a given set of
parameter values, e.g. a = 0.1m, U0 = 1m·s−1, µ = 0.001 Pa·s and density ρ = 103 kg·m−3, it is pointless to solve
the problem again for a = 0.1m, U0 = 2m·s−1, µ = 0.002 Pa·s and ρ = 103 kg·m−3 because the Reynolds number
in both cases is the same. The nondimensional result in both cases will be the same and it is the conversion from
nondimensional to dimensional that will produce different dimensional results. Using dynamical similarity can save a
lot of unnecessary work.

Using dynamical similarity is not restricted to the flow past a cylinder (or to fluid dynamics!). In general, physical
problems are more complicated and involve more than one dimensionless parameter.

6.4 Flow past a cylinder at varying Reynolds number: Tritton, p.23, p.75–80

We consider the flow pas a cylinder. Below are sketch of the flow at various values of Re = ρUd/µ, where d is the
cylinder diameter.

• Re = 0.2: viscous effects dominate over inertia. This
is called Stokes flow or creeping flow. The flow is
steady and presents fore/aft and top/bottom symme-
tries.

• Re = 12: the flow is no longer dominated by vis-
cous effects and there is a balance between them and
inertia. The flow is still top/bottom symmetric but
has lost its fore/aft symmetry. Two recirculation rolls
have formed at the back of the cylinder that are con-
sequences of the detachment of the boundary layer on
the sides of the cylinder due to inertia.

• Re = 120: the flow is time-periodic and has lost all
its symmetries. The recirculation rolls are advected so
strongly that they alternately detach and travel down
the wake. This is known as a von Kàrmàn street or
von Kàrmàn vortices.

• Re = 30, 000: the flow is turbulent. The boundary
layers are laminar and detach early from the cylinder
to yield a large turbulent wake.

• Re = 500, 000: the flow is turbulent. the boundary
layers are turbulent and detach from the cylinder at
a point further downstream. The turbulent wake is
therefore thinner.

You will find some interesting results from numerical simulation of the flow past a cylinder at:
imechanica.org/files/Sato MDAC final 2232012.pdf.
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