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Lecture 4: Some exact solutions of the Navier–Stokes equation

4.1 Plane Poiseuille flow

Let us consider the steady flow along an infinite channel driven
by a pressure gradient. We define the following Cartesian coor-
dinates: x is the streamwise direction and y is the wall-normal
direction bounded by y = ±h, and z is the spanwise direction.

The fluid velocity, u satisfies the no-slip boundary condition at the walls, so that u = 0 at y = ±h. We further assume
that the flow is one-dimensional and only varies in the wall-normal direction:

u = (u(y), 0, 0).

Note that this automatically satisfies ∇ · u = 0. Furthermore, (u · ∇)u = 0 and, since the flow is steady, ∂u/∂t = 0.
Thus, the Navier–Stokes equation reduces to: 

0 = −∂p
∂x

+ µ
d2u

dy2

0 = −∂p
∂y

0 = −∂p
∂z

The dynamic pressure, p, is therefore a function of x alone, so the x-component of the Navier–Stokes equation implies
that

µ
d2u

dy2
=

∂p

∂x

= −G

for some constant G, which is the pressure gradient that drives the flow. Integrating the equation for u and applying
the boundary conditions at y = ±h, we obtain the solution

u(y) =
G

2µ

(
h2 − y2

)
,

where the pressure in the channel is given by p(x) = p0 −Gx.
The fluid exerts a viscous force on the boundaries at y = ±h. On the top boundary, the unit normal is ŷ and the

viscous force is in the x̂ direction. The viscous force acting on the fluid is thus Ff = τxy = 2µExy = µ∂u/∂y = −Gh.
As a result, the force exerted by the fluid onto the top wall is Fw = Gh. Due to the opposite direction of the outward-
pointing normal at the bottom wall, the viscous force on that wall is equal to that acting on the top wall.

4.2 Hagen–Poiseuille flow

We consider pipe flow which we describe using the cylindrical polar coordinates (R,φ, z), with z in the streamwise
direction and R = a the pipe wall. We assume that the flow takes the simple form (0, 0, w(R)), where w is a function
of R to be determined. The flow is steady, and we can easily verify that (u · ∇)u = 0, so there is no acceleration.

The R and φ components of the Navier–Stokes equation imply that p is a function of z only and:

∂p

∂z
= µ

1

R

d

dR

(
R
dw

dR

)
= −G, with G = cst.

It follows that the general solution is

w = − G
4µ
R2 +B lnR+ C.



To keep the solution physical at R = 0, we impose B = 0. Furthermore, C = Ga2/4µ to satisfy the no-slip boundary
condition w = 0 at R = a. The solution is

w = G
4µ (a2 −R2),

p = p0 −Gz.

The flow rate in thus: ∫ a

0

2πRw(R) dR =
πGa4

8µ
.

This formula works well for slow/viscous flows, but if the flow regime changes to become turbulent, for example, then
this result overestimates the actual flow rate.

4.3 Taylor–Couette flow

Taylor–Couette flow is the flow between two concentric rotating
cylinders of outer radius R = b and inner cylinder radius R = a. In
general, both cylinders can rotate but we look here at the simplest
configuration, where the outer cylinder is at rest and the inner
cylinder rotates at angular velocity Ω. We use cylindrical polar
coordinates, with z being the streamwise direction and assume
that u = U(R)φ̂, so that there is no streamwise flow.

The Navier–Stokes equation has axisymmetric solutions if p is independent of φ and z. The projections of the Navier–
Stokes equation onto the R and φ directions lead to:

−ρU
2

R
= − ∂p

∂R
, (1)

∇2U − U

R2
= 0. (2)

Expressing the Laplacian in cylindrical coordinates:

∇2U − U

R2
= 0

⇒ 1

R

d

dR

(
R
dU

dR

)
− U

R2
= 0.

This equation is a Cauchy equation, so we look for a solution in the form U = Rn. The general solution is

U = AR+
B

R
.

Applying the boundary conditions (U = 0 at R = b and U = Ωa at R = a), we finally obtain:

U =
Ωa2b2

R(b2 − a2)
− Ωa2R

b2 − a2
.

We can obtain the pressure from equation (1). The surface force exerted by the outer cylinder onto the fluid is:

τRφ = µ

(
dU

dR
− U

R

)
= −2µB

R2

= − 2µΩa2b2

R2(b2 − a2)
.

Hence, the torque per unit length in the z direction is

T =
4πµΩa2b2

(b2 − a2)
.

This gives a convenient method to measure viscosity (the Couette viscometer).



4.4 Stokes first problem: Acheson, p.35–38

Consider the flow above a solid wall at y = 0. Initially, the fluid
is at rest but, at time t = 0, the wall starts moving at velocity U
in the x direction.
We assume that flow is one-dimensional and independent of the
streamwise and spanwise directions so that u = (u(y, t), 0, 0).
Since this flow is exclusively driven by the motion of the boundary,
we can assume that ∂p/∂x = 0.

The Navier–Stokes equation reduces to

ρ
∂u

∂t
= µ

∂2u

∂y2
, (3)

together with: the boundary conditions, u = U on y = 0 and U → 0 as y → ∞; and the initial condition, u = 0 at
t = 0.

The streamwise velocity hence satisfies the diffusion equation with diffusivity ν = µ/ρ, where ν is called the kinematic
viscosity. This problem is equivalent to that of finding the temperature distribution in a semi-infinite bar, when the
temperature of one end is suddenly increased to a different constant. There exists a number of different methods for
solving diffusion problems but, in this case, we shall find the solution by seeking a similarity solution. We observe that
the equation and boundary conditions are conserved under the transformation y 7→ ay, t 7→ a2t, which suggests that
solutions exist of the form

u(y, t) = f(η), where η = yt−1/2.

Substituting into the equation (3), we obtain
d2f

dη2
+

η

2ν

df

dη
= 0.

Substituting v = df/dη, this equation becomes

dv

dη
+

η

2ν
v = 0

⇒ v = A exp

(
− η

2

4ν

)
.

Integrating again, we get

f = A

∫ η

0

exp

(
− η

2

4ν

)
dη +B.

The above integral can be expressed in terms of the error function:

erf(x) =
2√
π

∫ x

0

exp
(
−y2

)
dy.

Substituting y = η/(2
√
ν), we have

f = A
√
νπerf

(
η

2
√
ν

)
+B,

so that:

u(y, t) = A
√
νπerf

(
y

2
√
νt

)
+B.

In order to satisfy the boundary conditions on y = 0, B = U and, since erf(x)→ 1 as x→∞, A
√
νπ = −U :

u(y, t) = U

[
1− erf

(
y

2
√
νt

)]
. (4)

Finally, we need to check that u(y, 0) = 0 for all
y > 0, so that the initial condition is verified.
This condition holds because the error function
tends to 1 when its argument tends to 0.

The velocity is approximately zero wherever y/(2
√
νt) is large. So, for a fixed value of y, the velocity remains lower than

0.01U until a time t such that y ≈ 4
√
νt. Hence, at time t, the fluid is only moving within a narrow region of height



4
√
νt. This narrow region is called the viscous boundary layer. Note that the boundary layer thickness is independent

of U .
For example, let us consider water (ν ≈ 10−6m2s−1) in the vicinity of an suddenly moved boundary. After 1s, the

boundary layer thickness is around 4mm and, after 100s, it is still only 4cm thick. The effects of the boundary are only
felt in this narrow boundary layer.
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