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There exists a multitude of computational models for turbulent flows. Most belong to three families: the Reynolds-
averaged Navier–Stokes (RANS) methods solve for the large scale mean flow using an ad hoc form for the Reynolds
stress; large eddy simulations (LES), as the name suggests, simulate both the mean flow and the larger turbulent eddies,
but do not resolve down to the Kolmogorov length-scale but rely on a model for the small scales; and direct numerical
simulation (DNS) calculates a single realisation of the full velocity field from the unaveraged Navier–Stokes equations,
resolving them until the finest scale. The latter is by far the most computationally expensive method, requiring long
runs on supercomputers and being therefore limited to moderate Reynolds numbers. Schemes of the RANS family are
comparatively inexpensive to run but their accuracy depends critically on the performance of the Reynolds stress model.
Large eddy simulations represent a compromise between the two other familites that seeks an accuracy improvement
compared to RANS models but at a fraction of the cost of full DNS.

22.1 RANS models

As derived previously, the RANS equation reads:

ρ

(
∂ū

∂t
+ (ū · ∇)ū

)
= −∇p̄+

∂

∂xj
(τ̄ij + τRij ),

where τ̄ij = 2ρνĒij , and Ēij = 1/2 (∂ūi/∂xj + ∂ūj/∂xi). This equation requires a model for the Reynolds stress τRij
derived from the form of the averaged velocity field ū. The simplest (and most popular) model introduces an eddy
viscosity, νT , and the Boussinesq equation:

τRij = 2ρνT Ēij −
ρ

3
〈u′ku′k〉δij .

22.2 Mixing length models

The earliest and simplest model for the eddy viscosity, νT , was originally suggested by Prandtl from an analogy with
molecular viscosity. The molecular viscosity, ν, is proportional to the product of the molecular speed and mean-free
path, thus one might expect that:

νt ∼ |u′|lm, (1)

where |u′| is the speed of the smallest eddies and lm is the mixing length, i.e., the effective distance over which the
eddies move. He further reasoned (through a rather questionable argument) that in a shear flow

|u′| ∼ lmγ̇,

where γ̇ is the shear-rate of the mean-flow, so that

νT = l2mγ̇.

This can be generalised to other three-dimensional flows using the Smagorinsky law:

γ̇ =
(
2ĒijĒij

)1/2
,

or the Baldwin and Lomax law:
γ̇ =

(
2Ω̄ijΩ̄ij

)1/2
.

This model is not complete as the mixing length, lm, has not been specified. However, for certain geometries, such
as turbulent boundary layers in aeronautics, there are well-established specifications for lm in terms of distance from
walls, pressure gradients, etc. Another issue with this model is that Reynolds stress is determined only from the local
instantaneous velocity gradient and takes no account of history effects due to the transport of turbulent energy. As a
consequence this model is of limited use for general flows.



22.3 Kinetic energy models

One weakness of the mixing length model lies in the approximation made for |u′|. Both Kolmogorov and Prandtl
independently suggested that a better way to estimate this quantity is from the turbulent kinetic energy density per
unit mass:

k(x, t) =
1

2
〈u′iu′i〉.

Proceeding as we did for the Reynolds stress, we can find an evolution equation for k from the fluctuating part of the
Navier–Stokes equation:
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]
=

1

ρ
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ijE
′
ij〉 −

∂

∂xi

(
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〈u′iu′ju′j〉+
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ρ
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.

This, of course, has the same closure problem as the Reynolds stress. However, we can identify the second term on the
right-hand-side, ε(x, t) = 2ν〈E′

ijE
′
ij〉 as the rate of dissipation by the turbulent eddies (per unit mass) and the final

term as a flux of kinetic energy:

Ti =
1

2
〈u′iu′ju′j〉+

1

ρ
〈p′u′i〉 − 2ν〈u′jE′

ij〉.

By analogy with the Fourier law for the thermal energy, T can be approximated as a diffusive flux:

T = −(νT + ν)∇k.

The dissipation ε is estimated from the energy generation rate U3/L as

ε = CD
k3/2

lm
, (2)

so that
D̄k

D̄t
= ∇ · (ν + νT )∇k +G− ε, (3)

where

G =
τRij Ēij

ρ
, (4)

τRij = 2ρνT Ēij −
2ρ

3
kδij . (5)

Whilst this model does now include the effects of flow history it is still incomplete.

22.4 The k − ε model

The models introduced so far are incomplete in the sense
that we need to define a mixing length lm in an ad hoc way.
If, instead of regarding equation (2) as a definition for ε, we
viewed it as a definition of the mixing length in terms of ε,
we can define the eddy viscosity as:

νT = Cµ
k2

ε
, (6)

for some constant Cµ. In fact, direct numerical simulations
show that νT ε/k

2 is approximately constant, except in the
region close to the wall.

We require a second transport equation for ε. Whilst the k transport equation (3) can be justified as a closure
approximation to the exact equation, the equation for ε is entirely empirical and usually taken to be:

D̄ε

D̄t
= ∇ · (ν +

νT
σε

)∇ε+ C1
Gε

k
− C2

ε2

k
. (7)

The constants σε, C1 and C2 are determined by comparing with experiments and DNS.



The k− ε model is arguably the simplest complete turbulence model and is widely used in engineering applications.
The full problem reads:

∇ · ū = 0, (8)

ρ

(
∂ū

∂t
+ (ū · ∇)ū

)
= −∇p̄+

∂

∂xj
(τ̄ij + τRij ), (9)

where:

τ̄ij = 2ρνĒij , (10)

Ēij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (11)

τRij = 2ρνT S̄ij −
2ρ

3
kδij , (12)

νT = Cµ
k2

ε
, (13)

together with:
∂k

∂t
+ (ū · ∇)k = ∇ · (ν + νT )∇k +G− ε, (14)

where G = τRij Ēij/ρ, and:

∂ε

∂t
+ (ū · ∇)ε = ∇ ·

[
(ν +

νT
σε

)

]
∇ε+ C1

Gε

k
− C2

ε2

k
. (15)

The model constants are usually

Cµ = 0.09 σε = 1.3, C1 = 1.44, C2 = 1.92.

These values are determined so that the k− ε model gives reasonably accurate answers in for a range of flow geometries.
However, it is can be wildly inaccurate in some cases such as in regions close to solid boundaries.

Since a complete turbulence model only requires two quantities of different dimensions, other two-variable eddy-
viscosity models have been proposed. For example, the k − ω model replaces the equation for ε with one for ω, the
dissipation rate. The resulting model is, in particular, better at handling flows at lower Reynolds numbers and near
solid boundaries.

There are also other, more complex, RANS models that model the Reynolds stress anisotropically and which require
more fitting parameters. A recent development in RANS models is the use of machine learning from DNS to develop
Reynolds stress models.

22.5 Large eddy simulation models

Large eddy simulations can be regarded as a middle way between RANS and full DNS. The idea is to simulate the larger
scales, which contain most of the energy, but not resolve the finer scale structures responsible for viscous dissipation.
As with the RANS model, we separate the velocity field: u = ū + u′, but, here, we use a spatial filter to average over
the small scales:

ū(x, t) =

∫
G(x,x′)u(x′, t) d3x′, (16)

where G(x,x′) is a filter function with the property that∫
G(x,x′) d3x′ = 1.

Popular choices include the Gaussian filter:

G(x,x′) =
1

π3/2L3
exp

[
− (x− x′)2

L2

]
,

which smooths out eddies with length-scales less than L, and the box filter:

G(x,x′) = 1/L3,

for points x′ within a cube of volume L3 centred around x. The filtered variables contain all the eddies with length
scales bigger than the cut-off scale L. Therefore, the resolution of the numerical scheme must be chosen so that we are



able to resolve scales down to L. LES is computationally intensive, as we want to resolve down to the smallest eddy
size we can manage.

The decomposition into filtered ū and residual fields u′ appears to be similar to the averaged and perturbed
quantities in the RANS equations, however, unlike for the RANS decomposition, u′ 6= 0 here. Nevertheless, filtering
the Navier–Stokes equation results in an equation with the same terms as its Reynolds-averaged counterpart:

ρ

(
∂ū

∂t
+ (ū · ∇)ū

)
= −∇p̄+ ρν∇2ū +∇ · τR, (17)

except that the definition of τRij , the residual stress, is slightly different:

τRij = ρ (ūiūj − uiuj) . (18)

In practice, though, this makes no difference since we usually model this term with an eddy viscosity:

τRij = 2ρνT Ēij +
1

3
δijτ

R
kk. (19)

We still need to specify νT , but this is less important than in RANS as this concerns only the scales with the least
amount of energy. Consequently, it is common to use a simple mixing length model such as the Smagorinsky model
with L as the mixing length:

νT = C2
sL

2
(
2ĒijĒij

)1/2
. (20)

Here, Cs is the Smagorinsky constant and Cs = 0.1 is a popular choice. Note that νT is small for small L, which is
fine since we only need a small eddy viscosity to damp down small eddies. Moreover, the isotropy assumption is not
problematic since it tends to hold well on small scales (at least away from boundaries), while the anisotropy of the larger
scales is handled by the resolved modes. The downside of LES is its computational cost: even with filtering, the flows
are unsteady and three-dimesional. LES is usually performed on high performance parallel computing facilities. The
LES model does not work so well near boundaries, so some codes introduce ad hoc modifications to νT near boundaries.
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