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Lecture 21. Introduction to turbulence modelling
P. A. Davidson:- Turbulence, an introduction for scientists and engineers, OUP 2004. S. B. Pope:- Turbulent flows,

CUP 2000.
Turbulence is ubiquitous in high Reynolds number flows. It is characterised by unsteady, seemingly unpredictable

motion and a wide continuous range of lengthscales. Here, we will introduce basic ideas used to model turbulent flows
in applications.

In a turbulent flow, the fluid velocity u(x, t) fluctuates
rapidly in both time and space. Moreover, the system is
chaotic and two seemingly identical experiments will not
produce the same flow field. Consequently, it might be more
useful to view u(x, t) as a random variable, rather than a
deterministic quantity, and to discuss its averaged proper-
ties (in a similar way that u(x, t) is itself an average over
the random motion of individual fluid molecules). In partic-
ular, we are mainly interested in the large scale fluid motion
occuring on the lengthscale of the flow geometry. The small
scales are only interesting in the way they affect the large
scale motion.

20.1 Scales of turbulence

Due to nonlinearity, energy cascades down from large scale flows to small eddies. As it cascades down, the rate of energy
dissipation due to viscous effects increases until no energy is left at a cutoff wavelength. L.F. Richardson summed the
process up (borrowing from Swift’s original poem):

‘Large whirls have smaller whirls which feed on their vortic-
ity, small whirls have lesser whirls and so on until viscosity’

In a turbulent flow, the rate of viscous dissipation does not depend on the value of the viscosity. If the viscosity is
lowered, the turbulent cascade goes on to smaller lengthscales, and all the energy gets dissipated at these very small
scales. If you look at a photograph of a bonfire, and one of a large forest fire, the flames do not look different once the
scale is put aside. Looking more closely, you can see that the forest fire has a much greater range of scales than the
bonfire.

We can estimate the smallest scales in a turbulent flow from a scale analysis. Let U and L represent the typical
scales for the velocity and length in the large scale flow. The Reynolds number is Re = UL/ν, where ν is the kinematic
viscosity of the fluid. The kinetic energy per unit mass associated with this flow is of order U2 and the large scale
eddy turnover time is of order L/U . This provides a power input into the turbulence of order U2/(L/U) = U3/L per
unit mass. This must be balanced by the rate at which energy is dissipated by viscosity at the smallest scale, where
the effective value of the Reynolds number is unity and where the velocity and length scales are denoted by u and l
respectively. The dissipation rate per unit mass is:

ε ∼ ν
(u
l

)2
∼ U3

L
.

Hence combing with

Re =
UL

ν
, and

ul

ν
= 1,



we obtain estimates for the smallest length and velocity scales as

l = LRe−3/4, and u = URe−1/4.

The scales l and u are called the Kolmogorov scales of turbulence. If we have a flow of water with a length scale of
1 metre at 10 metres per second (Re = 104), we would need to resolve down to scales of 1 millimetre to capture the
full turbulent motion. Whilst this might just about to be possible with modern computers, flows with larger Reynolds
numbers are clearly impractical.

At sufficiently high Reynolds numbers, Kolmogorov hypoth-
esised that for intermediate lengthscales between L and l,
turbulence is self-similar. The kinetic energy density as-
sociated with the turbulent motion depends only on ε and
the intermediate lengthscale r. The square of the velocity
fluctuations at these (and smaller) scales, v2, must then be
proportional to ε2/3r2/3. This result is usually expressed via
the wavenumber, k ∼ 1/r and in terms of the energy density
E(k) = d

dk (v2). It follows that E(k) = αε2/3k−5/3, a law
known as Kolmogorov’s five-thirds law. This scaling law can
be found in well-developed turbulence at high Reynolds.

20.2 Averaged equations

All turbulence theories start by defining an averaging operator, 〈·〉, to obtain equations for the large scale dynamics.
We can write u = ū + u′ where ū = 〈u〉 is the average velocity and u′ = u − 〈u〉 is its fluctuation. The averaging
process is linear, so for any quantities a and b: 〈a + b〉 = 〈a〉 + 〈b〉. Also, we assume the averaging process commutes
with differentiating both in time and space, so that:

〈∂u

∂t
〉 =

∂

∂t
〈u〉, 〈∇u〉 = ∇〈u〉.

Lastly, 〈〈a〉b〉 = 〈a〉〈b〉.
We will assume that the flow is incompressible, so that ρ is constant and ∇ · (ū + u′) = 0. It follows that ∇ · ū = 0

and ∇ · u′ = 0, so both the mean flow and the fluctuations are individually incompressible.
The Navier–Stokes equation becomes

ρ

(
∂

∂t
(ū + u′) + (ū + u′) · ∇(ū + u′)

)
= −∇(p̄+ p′) + ρν∇2(ū + u′).

Upon averaging, we obtain:

ρ

(
∂ū

∂t
+ (ū · ∇)ū + 〈(u′ · ∇)u′〉

)
= −∇p̄+ ρν∇2ū. (1)

This is referred to as the Reynolds-averaged Navier–Stokes or RANS equations. The structural difference between this
and the usual Navier–Stokes equation is the additional term ρ〈(u′ · ∇)u′〉. Writing this term in its conservative form
and using the incompressibility condition, we get:

ρ〈(u′ · ∇)u′〉 = ρ
∂

∂xj
〈u′iu′j〉,

so this additional term can be thought of as the divergence of a stress, referred to as the Reynolds stress tensor:

τRij = −ρ〈u′iu′j〉. (2)

The Reynolds averaged Navier–Stokes equation can then be written as:

ρ

(
∂ū

∂t
+ (ū · ∇)ū

)
= −∇p̄+

∂

∂xj
(τ̄ij + τRij ), (3)



where τ̄ij = 2ρνĒij , and Ēij = 1/2 (∂ūi/∂xj + ∂ūj/∂xi).
The problem of predicting the large scale turbulent flow boils down to predicting this term accurately. In essence,

we require a constitutive equation that determines the Reynolds stress from the variables describing the large scale flow.
This has so far proved to be a difficult problem. Physically, the Reynolds stress represents the forcing on the mean flow
from the small-scale turbulent motion.

20.3 The moment closure problem

A natural idea, which unfortunately does not work, is to consider the fluctuations by subtracting off the averaged
Navier–Stokes equation from the full Navier–Stokes equation:

ρ

(
∂u′

∂t
+ (ū · ∇)u′ + (u′ · ∇)ū + (u′ · ∇)u′ − 〈(u′ · ∇)u′〉

)
= −∇p′ + ρν∇2u′.

We can write this as

ρ

(
∂u′i
∂t

+ (ū · ∇)u′i + (u′ · ∇)ūi + (u′ · ∇)u′i − 〈(u′ · ∇)u′i〉
)

= −∇ip′ + ρν∇2u′i

and a similar equation for u′j . Multiplying the u′i equation by u′j , the u′j equation by u′i, adding them together

and averaging, we obtain an equation for the second moment 〈u′iu′j〉 and, hence, the Reynolds stress, τRij . We get a
complicated equation (Davidson equation (4.8)) that starts by:

D̄

Dt
[ρ〈u′iu′j〉] = − D̄

Dt
τRij = τRik

∂ūj
∂xk

+ τRjk
∂ūi
∂xk

+
∂

∂xk

(
−ρ〈u′iu′ju′k〉

)
+ · · · .

This is an evolution equation for the quantity we want, however, the right-hand-side also contains derivatives of the
triple correlation 〈u′iu′ju′k〉 which is a 3rd order tensor we do not yet know anything about. Trying to get an equation for
this tensor in a similar way would require knowledge of a fourth order tensor, and so on. This recursive problem is called
a closure problem and shows that it is impossible to develop a predictive, statistical model of turbulence by simply
manipulating the equation of motion via averaging techniques. Since we cannot get an exact form for the Reynolds
stress, we have to model it somehow.

20.4 Eddy viscosity models

A simple approach to close the equations, dating back to Boussinesq and Prandtl, is to assume the Reynolds stress
term looks like the ordinary viscous term, but with a larger coefficient of viscosity, the eddy viscosity. This has a
number of key advantages. Since the extra term is of the similar form to the ordinary viscous term, the structure of
the Navier–Stokes equation remains the same. This term dissipates energy and Boussinesq suggested that the Reynolds
stress could be approximated by:

τRij = −ρ〈u′iu′j〉 (4)

= ρνT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− ρ

3
〈u′ku′k〉δij (5)

= 2ρνT Ēij −
ρ

3
〈u′ku′k〉δij . (6)

The last term on the right is needed since ∇ · ū = 0 but, since it is isotropic, it can be incorporated into the pressure.
This formula is the basis of many turbulence models, but it leaves unspecified how to choose the numerical value of the
eddy viscosity. The Reynolds averaged Navier–Stokes equations become

ρ

(
∂ū

∂t
+ (ū · ∇)ū

)
= −∇p∗ + (ν + νT )∇2ū, (7)

where p∗ = p̄ + ρ〈u′ku′k〉/3 is the modified pressure. Most turbulence models, including the k − ε model and “Large
Eddy Simulations” use this form of the averaged Navier–Stokes equation.

Whilst the idea of an eddy viscosity is somewhat empirical, Prandtl provided a physical justification based on an
analogy with the kinetic theory of gases. In a gas, molecules have a characteristic speed, v (which is of the order of the
sound speed), and travel an average a distance λ, the mean free path, before colliding and transferring their momentum
to another molecule. This leads to a kinematic viscosity: ν ∼ vλ. Prandtl’s idea was to think of the small-scale eddies
in a turbulent flow as small parcels of fluid with typical velocity |u′| travelling a distance l before interacting with other
eddies, and then transferring their momentum, hence giving |u′|l as the eddy viscosity. Although the eddies travel more



slowly than individual fluid molecules, their interaction distance is much longer than the mean free path and the eddy
viscosity is typically larger than the molecular viscosity.

The eddy viscosity model does have limited physical justification. The derivation of viscosity in kinetic theory relies
on the assumptions that the mean free-path is small compared to the flow lengthscales and that the velocities have
a distribution close to thermodynamic equilibrium. In particular, the latter assumption requires the velocities to be
isotropically distributed. This is not always true of turbulent flows, as there often is a preferred direction induced by
gravity, rotation or boundaries.

20.5 Turbulent flow near a wall

Just as with laminar flows, there is a boundary layer structure for turbulent flow near a rigid boundary. It is more
complex and is made up of multiple layers.

For a steady large scale flow, we can derive boundary layer equations equivalent to the laminar boundary layer
equations for the flow above a rigid boundary at y = 0. Within the boundary layer, we assume that averaged quantities
vary in the x direction over a lengthscale L that is much larger than the thickness of the boundary layer. The dominant
terms in the streamwise projection of the Reynolds averaged Navier–Stokes equation are:

ū
∂ū

∂x
+ v̄

∂ū

∂y
= −1

ρ

∂p̄

∂x
+ ν

∂2ū

∂y2
− ∂

∂y
〈u′v′〉. (8)

In this equation, the advection terms and the pressure gradient are of size U2/L and, as with the case of the laminar
boundary layer, the averaged pressure p̄ does not vary significantly over the thickness of the boundary. We can then
write:

−1

ρ

∂p̄

∂x
= Ū0

dŪ0

dx

where Ū0 is the averaged velocity in the x direction above the boundary layer.
The no-slip boundary condition implies that, at the wall, both the averaged and the fluctuating velocity must vanish.

Hence, close to the wall, we can neglect the advection (and pressure terms) and equation (8) reduces to

∂

∂y

(
ν
∂ū

∂y
− 〈u′v′〉

)
= 0. (9)

Within this region, we have:

ν
∂ū

∂y
− 〈u′v′〉 = ν

∂ū

∂y

∣∣∣∣
y=0

(10)

=
τw
ρ
, (11)

where τw is the wall shear stress. As a result, the sum of the tangential components of the viscous and Reynolds stresses
remains constant in this region. This result also provides a scale for the velocity perturbations, u∗ =

√
(τw/ρ), called

the friction velocity, and an associated lengthscale, ν/u∗, which represents the height above the wall where viscosity
is important. At sufficiently high Reynolds numbers, this lengthscale is much smaller than the total thickness of the
boundary layer, δ.

We can divide the boundary layer into a number of different sublayers:

• Viscous sublayer: 0 < y ≤ ν/u∗. This is the region closest to the wall where the fluid viscosity, ν, is important.
There, advection can be neglected. The mean flow, ū, only depends on the distance from the wall:

ū = u∗f
(yu∗
ν

)
, (12)



for some dimensionless function, f , such that f = 0 and f ′ = 1 at y = 0. This is sometimes known as the law of
the wall.

• Inertial sublayer: ν/u∗ � y � δ. In this region, the Reynolds stress dominates over viscosity, so the latter can
be neglected. This region links together the viscous sublayer and the outer boundary layers.

• Outer or defect layer: y ∼ δ. In this region, the Reynolds stress acts in a similar way to the viscous term in
the laminar boundary layer equations. Thus, on dimensional grounds, we expect that the departure of ū from the
outer flow U0 depends only on the turbulent intensity and the distance to the wall relative to the thickness of the
boundary layer, δ, so that:

ū− Ū0 = u∗F
(y
δ

)
, (13)

for some other function F such that F → 0 as y/δ →∞.

Due to the different dominating terms in the boundary layer equations, we can construct solutions in the viscous
sublayer and in the outer layer, which should them be matched in the inertial sublayer. Formally, this is a problem of
matched asymptotic expansions but von Kàrmàn was able to deduce the form of the solution in 1930, long before the
method of matched asymptotics was established.

We can obtain the solution in the inertial sublayer in two different ways. One way is to take the limit in the viscous
sublayer as yu∗/ν →∞; the other is to take the limit in the outer layer as y/δ → 0. From equation (13), the velocity
gradient reads

dū

dy
=
u∗
δ
F ′(η), where η =

y

δ
,

while, from equation (12), we have,
dū

dy
=
u2∗
ν
f ′(ξ), where ξ =

yu∗
ν
.

Equating these two expressions and multiplying by y/u∗, we have

ηF ′(η)|η→0 = ξf ′(ξ)|ξ→∞ .

Since η is independent of ν and since ξ is independent of
δ, both sides are equal to a constant, usually introduced as
1/κ, where κ is the dimensionless von Kàrmàn constant.
In the inertial sublayer:

dū

dy
=
u∗
κy
,

so that:
ū =

u∗
κ

log
(yu∗
ν

)
+ C.

This logarithmic behaviour is seen in experiments of high
Reynolds number turbulent flows and the prediction of this
logarithmic velocity profile was a major landmark in the
development of turbulence theory. Experiments also showed
that κ takes values around 0.4.

The complex structure of turbulent boundary layers presents a challenge for numerical simulations since, in many
cases, the viscous sublayer, in which the no-slip boundary condition is satisfied, is much smaller than the resolution of
the simulation can be. As a result, different boundary conditions, called wall functions, need to be used. Additionally,
the roughness of the boundary may exceed the height of the viscous sublayer (for example in atmospheric flows where
the roughness is due to trees or buildings). In this case, the logarithmic law still applies but the viscous lengthscale
ν/u∗ is replaced by the surface roughness.
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