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We propose a general strategy for determining the minimal finite amplitude disturbance
that triggers transition to turbulence in shear flows. This involves constructing a
variational problem that searches over all disturbances of fixed initial amplitude which
respect the boundary conditions, incompressibility and the Navier–Stokes equations, to
maximize a chosen functional over an asymptotically long time period. The functional
must be selected such that it identifies turbulent velocity fields by taking significantly
enhanced values compared to those for laminar fields. We illustrate this approach
using the ratio of the final to initial perturbation kinetic energies (energy growth) as
the functional and the energy norm to measure amplitudes in the context of pipe
flow. Our results indicate that the variational problem yields a smooth converged
solution provided that the initial amplitude is below the threshold for transition. This
optimal is the nonlinear analogue of the well-studied (linear) transient growth optimal.
At the critical threshold, the optimization seeks out a disturbance that is on the
‘edge’ of turbulence during the period. Above this threshold, when disturbances trigger
turbulence by the end of the period, convergence is then practically impossible. The
first disturbance found to trigger turbulence as the amplitude is increased identifies the
‘minimal seed’ for the given geometry and forcing (Reynolds number). We conjecture
that it may be possible to select a functional such that the converged optimal below
threshold smoothly converges to the minimal seed at threshold. Our choice of the
energy growth functional is shown to come close to this for the pipe flow geometry
investigated here.
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1. Introduction
Shear flows are ubiquitous in our everyday lives yet predicting their behaviour

remains an outstanding and important issue both scientifically and economically.
Typically such flows become turbulent even though there may be an alternative linearly
stable ‘basic state’, which is the simplest solution consistent with the driving forces
and boundary conditions. This bistability means that the problem of transition comes
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down to understanding the laminar–turbulent boundary in phase space that divides
initial conditions that lead to the turbulent state from those that relax back to the
basic state. This boundary has more generally been labelled the ‘edge of chaos’,
allowing for transient turbulence (Skufca, Yorke & Eckhardt 2006). There have been
notable recent successes in tracking parts of this boundary which, because it is a
hypersurface in phase space, can be approached by a simple bisection technique
(Itano & Toh 2001; Skufca et al. 2006; Schneider, Eckhardt & Yorke 2007; Duguet,
Willis & Kerswell 2008). As this technique is based upon integrating the governing
Navier–Stokes equations forward in time, only the parts of the edge near (relative)
attractors embedded in the edge are revealed by this tracking approach.

Interestingly, these attracting regions invariably seem to be on perturbation energy
levels well above those known to be sufficient to trigger transition. Viswanath &
Cvitanovic (2009) provide a good illustration of this in a short pipe of length π
diameters, which they numerically simulate with 85 715 degrees of freedom. By
only mixing three fixed flow fields, they identify initial conditions that experience
an O(104) magnification of the (perturbation) energy in approaching a travelling wave
thought to be embedded in the edge relative attractor (Pringle & Kerswell 2007;
Schneider et al. 2007): see their table 4 for Reynolds number Re = 2000. Duguet,
Brandt & Larsson (2010a) tackle the same question in plane Couette flow, finding
evidence for energy growth on the edge of over 102 at Re = 400 for a pair of oblique
waves (see their figure 9 where the plateau edge energy is O(5 × 10−3)). Initial
conditions with low energies on the edge represent energy-efficient targets to trigger
transition, as an infinitesimal perturbation of these states will lead to transition. The
most efficient of all perturbations will be the flow field having the lowest energy Ec

on the edge, hereafter called the ‘minimal seed’ for transition, which represents the
closest (in perturbation energy norm) point of approach of the edge to the basic state
in phase space. This represents the best way to disturb the basic state and as a result is
of fundamental interest, either from the viewpoint of triggering transition efficiently or,
conversely, in designing flow control strategies.

Currently, there are no accepted strategies for identifying minimal seeds beyond the
impractical ‘brute force’ approach of surveying all initial conditions. The purpose
of this paper is to continue to develop a new strategy initiated in Pringle &
Kerswell (2010), hereafter referred to as PK10, based upon identifying finite-amplitude
disturbance fields which, as they evolve via the full Navier–Stokes equations,
maximize a key functional over a period of time. This key functional is taken here to
be the energy growth of the disturbance over a time period, as suggested in PK10 and
Cherubini et al. (2010, 2011) in the boundary layer context. The rationale behind this
is the observation that the minimal seed must experience considerable energy growth
as it evolves in time up to the attracting plateau on the edge; note that Cherubini
et al. (2010, 2011) use the term ‘minimal seed’ differently, in a structural sense rather
than the energetic sense adopted here. In the special case of a unique steady relative
attractor on the edge – for instance, in a pipe ≈ 2.5 diameters long at Re = 2400
and within the symmetric subspace R2 ∩ Ω2 ∩ S (see § 3.6 Duguet et al. 2008),
the unique edge relative attractor is C3 1.25 (later renamed N2 in Pringle, Duguet
& Kerswell 2009) – the minimal seed will indeed be the optimal solution u∗0(x)
to the following variational problem: which initial condition on the edge (label this
set Σ) will experience, for asymptotically long times T , the largest energy growth,
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defined by

G (T) :=max
u0∈Σ

∫
u (x,T)2 dV∫
u (x, 0)2 dV

, (1.1)

where u(x, t) is the flow at time t evolved via the Navier–Stokes equations from the
initial condition u(x, 0) = u0(x) (incompressibility is tacitly assumed throughout) and
u= (u, v,w) is the perturbation velocity field obtained by subtracting the laminar state
from the total velocity field (invariably used hereafter). The problem with pursuing this
criterion is not the fact that the relative edge attractor may have a fluctuating energy,
as these fluctuations are typically small compared to the total growth, but confining
competitor fields to the hard-to-define edge set Σ . A more practical approach can be
manufactured by turning the problem around to consider the largest energy growth G
over all initial (incompressible) conditions of a given perturbation energy E0, that is,

G(T;E0) := max
u0:

∫
u2

0 dV=2E0

∫
u (x,T)2 dV∫
u (x, 0)2 dV

. (1.2)

At precisely E0 = Ec, where the edge touches the energy hypersurface at one velocity
state, this optimization problem considers the growth of this state (the minimal seed)
against the energy growth of all the other initial conditions below the edge. Given that
these latter initial conditions lead to flows that grow initially but ultimately relax back
to the basic state, it is reasonable to hypothesize that the minimal seed remains the
optimal initial condition for the revised variational problem (1.2) for large enough T .
A priori, the minimal seed energy Ec(Re; geometry) is unknown but a very interesting
quantity in its own right, as its behaviour indicates how the basin of attraction of the
basic state shrinks with increasing Re. Hence, the variational problem (1.2) must be
solved as an increasing function of E0 until Ec is reached. Knowing when this has
occurred motivates the following hypothesis.

Hypothesis. For asymptotically large T , the minimal seed will be given by the flow
field of initial energy E0 that experiences the largest energy growth such that for any
initial energies exceeding this E0 = Ec, the energy growth problem (1.2) fails to have a
smooth solution.

This is in fact a very strong statement containing two separate but related conjectures,
the first being a necessary condition for the second.

Conjecture 1. For T sufficiently large, the initial energy value Efail at which the
energy growth problem (1.2) first fails (as E0 is increased) to have a smooth optimal
solution will correspond exactly to Ec.

Conjecture 2. For T sufficiently large, the optimal initial condition for maximal
energy growth at E0 = Ec − ε2 converges (in the energy norm) to the minimal seed at
Ec as ε→ 0.

The idea behind the first conjecture is that the optimization algorithm (1.2), in
exploring the E0-hypersurface for the optimal solution, will detect any state on the
energy hypersurface that leads to turbulence, given that this leads to the highest values
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of G. Once the algorithm is dealing with a turbulent end state at time T , the extreme
sensitivity of the final-state energy at T to changes in the initial condition, due to
exponential divergence of adjacent states, will effectively mean non-smoothness and
prevent convergence. Crucially, if true, this means that the failure of the algorithm
solving (1.2) should identify Ec regardless of whether the minimal seed is the optimal
solution of (1.2) for E0 = Ec or not. The key feature for Conjecture 1 to hold is not
the precise form of the functional being maximized, but the fact that the functional
attains higher values for initial conditions that go turbulent than those in the basin of
attraction of the basic state. Other plausible choices include the final dissipation rate,
the total dissipation, which has recently been explored with success by Monokrousos
et al. (2011) in the context of plane Couette flow, or more general Sobolev norms that
emphasize strain rates. The second, stronger conjecture, however, proposes that the
optimal initial condition converged at E0 < Ec values approaches the minimal seed as
E→ Ec. This implies that the energy growth functional is then a special choice which
picks out the minimal seed. We present evidence in this paper to support both these
conjectures.

The variational problem (1.2) in the limit of infinitesimally small energy E0

reduces to the well-known (linear) transient growth problem (Gustavsson 1991; Butler
& Farrell 1992; Reddy & Henningson 1993; Trefethen, Trefethen & Reddy 1993;
Schmid & Henningson 1994). In this case, the evolution of the initial condition u0

is determined by the linearized Navier–Stokes equations and there are various ways
to proceed: for a matrix-based approach see, for example, Reddy & Henningson
(1993) and for a time-stepping approach see Luchini (2000). The optimal that emerges
typically shows energy growth factors G that scale with Re2 (when optimization is
also carried out over T) due to the non-normality of the linearized evolution operator.
It has been common practice to assume that this linear optimal (LOP) for vanishing
E0 (together with some noise to break two-dimensionality) is a good approximation
to the minimal seed, as the energy of the minimal seed is ‘small’ compared to
that of the basic flow or target turbulent flow. It was shown in PK10, however,
that the presence of nonlinearity in the variational problem is crucial in revealing
new nonlinear optimals (NLOPs) that emerge ‘in between’, i.e. for 0 < E0 < Ec (the
term ‘NLOP’ is used to describe the three-dimensional optimal, which, not being
smoothly connected to the LOP as E0 increases, has distinctly different structure). The
calculations of PK10 were directed more at demonstrating the feasibility of including
nonlinearity in the transient growth calculation and showing the dramatic manner in
which this alters the established linear result, than in identifying the minimal seed.
In particular, T = Tlin was taken, where Tlin is the optimal growth time for the linear
optimal (LOP) and is not asymptotically large. Numerical limitations of the simulation
code used in PK10 (written from scratch as part of the first author’s thesis) also
meant that getting close to the edge proved difficult. In this paper, we revisit those
calculations using a highly parallel code (described in Willis & Kerswell (2009) and
tested with the results of PK10) to probe the ‘gap’ between Efail and Ec noticed there.

The plan of the paper is as follows. Section 2 formulates the variational problem
(1.2) and describes briefly the iterative scheme used to solve it. Section 3 analyses for
the first time the mechanism by which the nonlinear optimal (NLOP) that emerged in
PK10 attains more growth than the linear optimal (LOP). The results of PK10 are then
extended to higher energies in § 4 to re-examine the reported gap between Efail and Ec.
In § 5, a larger domain is studied using a longer optimization time to provide a first
test of the conjectures discussed above. Our results are summarized and discussed in
§ 6 with a glossary of terms following at the end.
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2. Formulation
The context for our exploration is the problem of constant mass-flux fluid flow

through a cylindrical pipe. With length scales non-dimensionalized by half the pipe
diameter πD/2 and velocities by the mean axial velocity U, the laminar flow is given
by

ulam =U (s)ẑ= 2(1− s2)ẑ, (2.1)

using cylindrical coordinates (s, φ, z) aligned with the pipe axis. In keeping with the
majority of published work on pipe flow, results are reported in time units of D/U.
Energies are non-dimensionalized by the energy of the laminar flow in the same
domain. We then consider a perturbation to this laminar profile such that the full
velocity field is given by

U (s)ẑ+ u(s, φ, z, t), (2.2)

where u= (u, v,w), and for convenience define the volume integral

〈. . .〉 :=
∫
. . . dV =

∫ L

0

∫ 2π

0

∫ 1

0
. . . s ds dφ dz. (2.3)

In order to calculate the initial condition that produces the most energy growth, we use
a variational approach pioneered for the linearized problem (Luchini & Bottaro 1998;
Andersson, Berggren & Henningson 1999; Corbett & Bottaro 2000; Luchini 2000)
but now recently extended to incorporate the full Navier–Stokes equations (PK10;
Cherubini et al. 2010, 2011; Monokrousos et al. 2011; see also Zuccher, Luchini &
Bottaro 2004 for earlier work using the boundary layer equations). The functional we
choose is defined as

L :=
〈

1
2
u (x,T)2

〉
− λ

[〈
1
2
u (x, 0)2

〉
− E0

]
−
∫ T

0

〈
ν ·

[
∂u
∂t
+U

∂u
∂z
+U ′uẑ− u×∇ × u+∇p− 1

Re
∇2u

]〉
dt

−
∫ T

0
〈Π∇ ·u〉 dt −

∫ T

0
Γ (t)〈u · ẑ〉 dt. (2.4)

This functional will be maximized by the same flow field as problem (1.2). It is
equivalent to finding the flow field with greatest energy at time t = T , subject to four
conditions applied through Lagrange multipliers – namely that the initial condition,
u(x, 0) has kinetic energy E0 and that it evolves subject to the incompressible
Navier–Stokes equations with fixed mass flux along the pipe. The last constraint
introduces a slight subtlety in that the pressure field must be subdivided into a time-
dependent constant pressure gradient part Λ(t)z that adjusts to maintain constant mass
flux and a strictly (spatially) periodic part p̂ so that

p :=Λ(t)z+ p̂(s, φ, z, t). (2.5)

The Lagrange multipliers ν = (νs, νφ, νz), Π and Γ are known as the adjoint variables.
The function L will be maximized when all of its variational derivatives are equal
to zero. Taking variational derivatives (the boundary conditions on the flow field
– non-slip at s = 1 and periodicity across the pipe – are used to eliminate surface
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terms) leads us to

δL = 〈δu(x,T) · [u(x,T)− ν(x,T)] 〉 + 〈δu(x, 0) · [−λu(x, 0)+ ν(x, 0)] 〉
−
∫ T

0

〈
δν ·

[
∂u
∂t
+U

∂u
∂z
+U ′uẑ− u×∇ × u+∇p− 1

Re
∇2u

]〉
dt

+
∫ T

0

〈
δu ·

[
∂ν

∂t
+U

∂ν

∂z
−U ′νzŝ+∇ × (ν × u)− ν ×∇ × u+∇Π

+ 1
Re
∇2ν − Γ (t)ẑ

]〉
dt −

∫ T

0
〈δΠ∇ ·u〉 dt −

∫ T

0
δΓ 〈u · ẑ〉 dt

+
∫ T

0
〈δp̂∇ · ν〉 dt −

∫ T

0
δΛ(t)〈ν · ẑ〉 dt − δλ

[〈
1
2
u (x, 0)2

〉
− E0

]
. (2.6)

The nine terms making up the variational derivative can physically be interpreted as
meaning that to maximize L : (i) u(x,T) and ν(x,T) must satisfy a compatibility
condition; (ii) u(x, 0) and ν(x, 0) must satisfy an optimality condition; (iii) u
must evolve according to the Navier–Stokes equations (with boundary conditions
u(1, φ, z, t) = 0 and u(s, φ, 0, t) = u(s, φ,L, t)); (iv) ν must evolve according to the
adjoint Navier–Stokes equations (with natural boundary conditions ν(1, φ, z, t)= 0 and
ν(s, φ, 0, t)= ν(s, φ,L, t)); (v) u is incompressible; (vi) u has constant mass flux; (vii)
ν is incompressible; (viii) ν has constant mass flux; and (ix) the initial kinetic energy
is E0 (respectively as the terms appear in (2.6)).

In order to find a maximum to this problem, an iterative algorithm is employed,
seeded by an initial flow field u0 := u(x, 0) of appropriate kinetic energy (similar
shorthand is used henceforth, e.g. ν0 := ν(x, 0)). By integrating this field forward in
time in accordance with the Navier–Stokes equations we can ensure that conditions
(iii) and (v) are met. The compatibility condition (ii) is satisfied by fixing νT = uT ,
which supplies a final condition for the adjoint-Navier–Stokes equations to be
integrated backwards in time. This procedure generates ν0 and ensures conditions (iv)
and (vi) are fulfilled. After this ‘forth-and-back’ time integration, the only outstanding
Euler–Lagrange condition is that the variational (Fréchet) derivative

δL

δu0
=−λu0 + ν0 (2.7)

should vanish. As this does not happen automatically, u0 is moved in the ascent
direction to increase L and hopefully approach a maximum where it will vanish. An
initial condition for the next iteration is given by

un+1
0 = un

0 +
ε

λ

δL

δun
0

, (2.8)

where 〈(δL /δu0)
2〉/λ2 ∼ 〈u2

0〉 is a convenient rescaling. The one remaining Lagrange
multiplier λ is determined by arranging for the new initial condition to satisfy the
initial energy constraint 〈(un+1

0 )
2
/2〉 = E0. It is found that λ ∼ 〈u2

T〉/〈u2
0〉, and for the

choice ε = 1 this strategy is equivalent to the power method in the linear case (e.g.
Luchini 2000). In practice for the nonlinear case, the choice ε = 1 is usually too large.
The following simple strategy for the adaptive selection of ε was found to be effective.
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– Select an initial value for ε, e.g. 0.5.
– Let

d :=
〈
δL

δun
0

·
δL

δun+1
0

〉/√√√√〈(δL
δun

0

)2
〉〈(

δL

δun+1
0

)2
〉
. (2.9)

– If d > 0.95, so successive adjustments in u0 are essentially aligned, then ε is
doubled. Otherwise, if d <−0.5 (anti-alignment) or〈(

δL

δun+1
0

)2
〉
> 4

〈(
δL

δun
0

)2
〉
, (2.10)

whereby the derivative has becomes large, then ε is halved.

Close to apparent convergence, when 〈(δL /δun
0)

2〉 is very small, a constant ε has
sometimes been employed to prevent multiple looping with tiny updates each time.

The numerical code used here is based on the well-tested code described in Willis &
Kerswell (2009). A Fourier decomposition is employed in the periodic directions and
a finite difference approximation in the radial direction, so that a typical dependent
variable is expanded as follows:

A(sn, φ, z, t)=
MM∑

m=−MM

LL∑
l=−LL

Anml(t) exp(imφ + iαlz) for n= 1, 2, . . . ,NN, (2.11)

where A is real, so only half the coefficients (m > 0) need to be stored, α = 2π/L
is the longest wavelength allowed by the periodic axial boundary conditions, and
sn are the roots of a Chebyshev polynomial with finer resolution towards the wall.
Typical resolutions used were (MM,NN,LL) = (23, 64, 11) for a πD/2 (PK10) pipe
and (23, 64, 37) for a 5D pipe. Using finite differences in the radius is apt for
parallelization, which has been implemented using MPI. Time integration is performed
using a second-order predictor–corrector method.

A fast (parallel) numerical code for handling the Navier–Stokes equations and its
adjoint is absolutely essential for successfully implementing this iterative approach to
optimization. Each iteration requires integrating the Navier–Stokes equations forward
from t = 0 to Topt , and the adjoint equations backwards from t = Topt to 0, with
typically O(103) iterations required to ensure convergence. There are also storage
issues to circumvent, as the adjoint Navier–Stokes equations, although linear in ν,
depend on u. This either needs to be stored in totality (over the whole volume
and time period), which is only practical for low-resolution short integrations, or
must be recalculated piecemeal during the backward integration stage. This latter
‘check-pointing’ approach requires that u is stored at regular intermediate points, e.g.
t = Ti := iTopt/n for i = 1, . . . , n − 1, during the forward integration stage. Then
to integrate the adjoint equation backward over the time interval [Ti,Ti+1], u is
regenerated starting from the stored value at t = Ti by integrating the Navier–Stokes
equations forward to Ti+1 again. The extent of the check pointing is chosen such
that the storage requirement for each subinterval is manageable. The extra overhead
of this technique is to redo the forward integration for every backward integration,
so approximately a 50 % increase in CPU time, assuming forward and backward
integrations take the same time. As memory restrictions may make full storage
impossible, this is a small price to pay.
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3. The nonlinear energy growth mechanism
The basic ingredient for the strategy being explored here is the solution of the

variational problem (1.2) at a given initial perturbation energy E0. PK10 demonstrated
the feasibility of this and discovered that the nonlinearly adjusted linear optimal (LOP:
see Schmid & Henningson 1994) is quickly outgrown by a completely new type
of optimal (the NLOP) as E0 increases from 0 (e.g. see figures 1 and 5 in PK10).
This NLOP exhibits both radial and azimuthal localization in a short πD/2-long pipe
and would undoubtedly also localize in the axial direction if the geometry allowed.
Localization allows the perturbation to retain velocities of sufficient amplitude in
an adequate volume such that nonlinearity is important while permitting the global
energy to be reduced. Without nonlinearity in the variational problem, any localized
state could be decomposed into global linear optimals (e.g. by Fourier analysis),
which would then evolve independently and, all except the LOP, sub-optimally. PK10
remarked that the NLOP had a two-phase evolution (e.g. see their figure 1) in which
the initially three-dimensional optimal first delocalizes (slices a and b in their figure 2)
followed by a second growth phase in which the flow becomes increasingly two-
dimensional (streamwise independent). We now examine this evolution in more detail
in order to understand how the NLOP is able to achieve more growth than the LOP.

A first inspection of the three-dimensional structure of the evolving NLOP actually
reveals three distinct phases of development. Figure 1 shows how the axial structure
of the NLOP evolves in time by plotting isocontours of streamwise perturbation
velocity along the pipe (isocontours of streamwise vorticity show the same qualitative
behaviour). Initially the contours are tightly layered and backward-facing, i.e. inclined
into the shear: see the t = 0 contour plot in figure 1 near (x, y) + (−0.5,−0.5) where
the contours are slanted away from the pipe wall in the anti-streamwise direction
(downwards). By t = 0.4, these contour layers have been tilted into the mean shear
direction (i.e. the angle they make with the pipe wall has increased) by the shear
and unpacked or separated slightly. This kinematic deformation of the perturbation by
the underlying shear is the inviscid Orr mechanism (Orr 1907) and gives an initial
spurt of energy growth. By t = 1 the flow is then dominated by helical waves growing
– the ‘oblique’ phase – before the flow becomes essentially although not completely
two-dimensional by t = 10 during the ‘lift-up’ phase. This evolution, consisting of
the Orr, oblique and lift-up phases in sequence, is also apparently seen for the
critical disturbance found by Monokrousos et al. (2011) (D. S. Henningson, private
communication).

To clarify the oblique and lift-up phases, we reduce the considerable degrees of
freedom of the fully resolved NLOP evolution down to those that really matter. As the
Fourier–Fourier basis functions exp(imφ + iαlz) in the velocity representation naturally
partition the linearized problem, we considered the optimal growth calculation at
Re = 1750, Topt = Tlin ≈ 0.0122Re = 21.3D/U in a pipe length of πD/2 (so PK10
settings) at E0 = 1.8× 10−5 using the full resolution (MM,LL)= (23, 11) and reduced
resolutions (7, 1), (2, 1) and (1, 1) (full NN = 64 radial resolution was used for all).
Figure 2 shows how the growth evolves as a function of time for each optimal initial
condition. All the calculations bar that for (1, 1) show the distinctive ‘shoulder’ in
the growth centred at t ≈ 3D/U (the time units D/U will be suppressed hereafter),
which signifies the end of the (what PK10 called the ‘first’) delocalization phase
and the start of the next phase. The (1, 1) calculation fails to capture the NLOP at
all, so the optimal that emerges is just the nonlinear version of the LOP. It is also
striking that the (7, 1) optimal is quantitatively so similar to the full (23, 11)-optimal
indicating that axial wavenumbers beyond the lowest are not important for this short
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) The NLOP at Re = 1750
and E0 = 1.8 × 10−5 calculated using resolution (MM,NN,LL) = (23, 64, 11) at (a) t = 0,
(b) t = 0.4, (c) t = 1, (d) t = 2.5, (e) t = 5 and (f ) t = 10D/U. Isocontours are shown of the
streamwise perturbation velocity: light/yellow, 50 % of the maximum; dark/red, 50 % of the
minimum. Mean flow in each pipe section is from bottom to top.

pipe calculation. Drastically reducing the azimuthal resolution to just (2, 1) has a
noticeable quantitative effect but still manages to preserve the qualitative features of
the NLOP. In particular, the (2, 1)-optimal (figure 2c) captures the essential structure
of the (7, 1)-optimal (figure 2b), which is itself almost identical to the (23, 11)-optimal
(figure 4a) (although no attempt has been made to match phases of the solutions along
the pipe).

The temporal evolutions of the modal kinetic energies Eml(t) (defined as the kinetic
energy associated with the Fourier–Fourier wavenumbers m, l) for the (7, 1) calculation
are shown in figure 3 (the equivalent plot for the (2, 1) calculation is qualitatively
similar but not shown). The modal energy for streamwise independent velocities,
Em0, is further split into that associated with the streamwise velocity, Ew

m0, and that
associated with the cross-plane velocities u and v, Euv

m0. Each modal energy can
change because of three effects: input from the underlying basic state due to the
non-normality of the linearized operator, loss due to viscous dissipation and either loss
or gain through nonlinear mixing with the other modes. Generally, it is difficult to
distinguish between these effects without explicitly monitoring the various terms in the
Navier–Stokes equations. However, for streamwise independent modes, the cross-plane
energy Euv

m0 cannot grow by non-normal effects so any energy gain must be the result

http://journals.cambridge.org/flm
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FIGURE 2. (Colour online) (a) Energy growth E(t)/E(0) against time t for the NLOP of
PK10 at Re = 1750 and E0 = 1.8 × 10−5 using full resolution (MM,NN,LL) = (23, 64, 11)
(solid black line) and reduced resolutions (7, 64, 1) (dot-dashed red line) and (2, 64, 1)
(dashed blue line): MM value used as a label. Removing the helical mode effect by using
resolution (1, 64, 1) (dotted green line) destroys the NLOP to leave the LOP (notice the
absence of a ‘shoulder’ in the curve at T ≈ 3D/U). (b,c) NLOPs for (7, 64, 1) (b) and
(2, 64, 1) (c). Contours indicate streamwise velocity perturbation (total velocity with the
laminar state of equivalent mass flux subtracted off) using the same levels in both plots
(10 across −0.005 and 0.005). Arrows indicate cross-sectional velocities (same scale used
for both, max = 0.009). Note that the slices are taken at the same point in the pipe but
there may be a phase difference between the solutions as they are calculated using two
different calculations. Also compare the slice for (7, 64, 1) with that for (23, 64, 11) given in
figure 4(a).

of nonlinear input alone. This observation is crucial for interpreting figure 3, which
shows that after the Orr mechanism has played out, the NLOP evolution is dominated
by the non-normal energy growth of helical modes (m, l 6= 0) in the second phase
(0.4 . t . 2.5). As these modes grow quickly, they feed energy via their nonlinear
interactions into the streamwise independent modes as evidenced in the increase in Euv

m0
over the interval 2 . t . 4. When the non-normal energy growth of the helical modes
runs out of steam (at ≈ 2.5), they decline quickly through the combined effect of this
nonlinear energy drain and viscous dissipation. Thereafter, the evolution is dominated
by each streamwise independent mode experiencing slow but sustained non-normal
growth as the secularly decaying streamwise rolls advect the mean shear to produce
streaks – the well-known lift-up process. The uniform decay rates of the streamwise
rolls indicates that there is minimal nonlinear energy mixing at this point, at least in
the cross-plane velocities. This is because they are insensitive to axial advection (e.g.
w ∂u/∂z= 0) and the cross-plane velocities are so small. Figure 2 shows that these two
non-normal growth processes together with the Orr mechanism cooperate nonlinearly
to produce a larger overall growth at Topt than separately. After the initial rotation and
unpacking by the Orr mechanism, the helical modes grow but quickly run out of steam.
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FIGURE 3. (Colour online) Modal energies for the NLOP run with resolution (7, 64, 1).
E is the total perturbation energy; Ew

ml indicates the energy in the w (streamwise) velocity
component with azimuthal and axial wavenumbers m and l respectively, and Euv

ml indicates
the energy in the u and v (cross-stream) velocity components with azimuthal and axial
wavenumbers m and l respectively. So Ew

m0 is the (streamwise) streak energy, Euv
m0 is the

(streamwise) roll energy and Em1 is a helical mode energy.

They then dump their energy into the third streamwise-rolls-driving-streaks process,
which is subsequently boosted to reach higher growth factors than otherwise.

The fact that helical (or more generically ‘oblique’) waves grow best over short
times and streamwise independent flows grow larger but over longer times is well
known (e.g. figure 8 of Farrell & Ioannou 1993, figure 4 of Schmid & Henningson
1994 and figure 5 of Meseguer & Trefethen 2003). Furthermore, the scenario of
oblique waves growing transiently, feeding their energy into streamwise rolls that then
drive streamwise streaks (which then become unstable) has also been proposed before
as an efficient bypass mechanism in Reddy et al. (1998) (called the ‘oblique wave
scenario’). This general picture, or at least the first stages of it, appear to be confirmed
here in the nonlinear growth problem (see also Duguet et al. 2010a). However, the
initial localization of the perturbation and how it ‘unwraps’ to give a final, large,
predominantly streamwise independent flow is a new feature born out of a need to
cheat the starting (global) energy constraint. Figures 4 and 5 show how the structure
of the NLOP across one (fixed) slice of the pipe evolves in time. The initial slice
shown (in figure 4a and again in figure 4b but rescaled) has a peak cross-plane speed
of ≈0.02U concentrated in a tight vortex pair near the pipe wall and peak axial speed
of ≈0.012U. The delocalization or ‘unwrapping’ is effectively completed by t ≈ 1
when the peak cross-plane speed is essentially unchanged, whereas the peak axial
speed has grown to 0.06U. Figure 5 (a is a rescaled version of figure 4f ) shows that
both the cross-plane and axial speeds grow considerably in the interval 1 . t . 2.5
(peak cross-plane speed increases from 0.02U to 0.08U and peak axial speed from
0.06U to 0.13U). In fact, by t = 2.5 the initial energy has experienced most of its
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FIGURE 4. (Colour online) The NLOP at Re = 1750 and E0 = 1.8 × 10−5 calculated using
resolution (MM,NN,LL) = (23, 64, 11) at (a,b) t = 0 (the same velocity field is shown
but with different contour levels), (c) t = 0.2, (d) t = 0.6, (e) t = 0.8 and (f ) t = 1D/U.
Contours indicate the streamwise velocity perturbation (total velocity with the laminar state
of equivalent mass flux subtracted off) and the arrows indicate the cross-stream velocity at a
fixed slice in the pipe. All plots except (a) have 10 contour levels between the extremes of the
streamwise velocity perturbation at t = 1 and cross-stream velocities similarly scaled. Plot (a)
uses 10 contours between the extremes of the streamwise velocity perturbation at t = 0 with
arrows automatically scaled.

growth (a factor of ≈ 50) and only a further magnification by ≈ 7 follows in the
next ≈ 20D/U. In this latter period the cross-plane velocities manoeuvre the streak
structure into place and then die away, so that even by t = 10, the predominantly
streamwise independent and axial flow has been established (peak cross-plane speed is
0.012U and peak axial speed 0.34U now). It is worth stressing that even at this point
the flow does not match the LOP (see plot c

′
in figure 2 of PK10), which depends

solely on the Fourier–Fourier basis function exp(iφ) and is strictly two-dimensional,
being streamwise invariant.

4. Optimals for moderate times in a πD/2 pipe
As discussed in § 1, PK10 demonstrated how nonlinearity can qualitatively change

the form of the optimal disturbance of a given initial energy that achieves the most
energy growth over a fixed period. The new NLOP could not, however, be followed
up to the initial energy level at which turbulence was triggered. We now revisit this
situation armed with a more efficient and parallel code that allows use of higher
resolution and more carefully refined steps in u0.

In PK10, a short πD/2 periodic pipe was adopted to minimize the axial resolution
needed and the relatively short time period was taken equal to Tlin, the time for
maximum energy growth in the linearized Navier–Stokes equations, in order to
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FIGURE 5. (Colour online) The NLOP at Re = 1750 and E0 = 1.8 × 10−5 calculated
using resolution (MM,NN,LL) = (23, 64, 11) at (a) t = 1, (b) t = 2.5, (c) t = 4 and
(d) t = 10,D/U and the representation is as in figure 4. All plots have 10 contour levels
between the extremes of the streamwise velocity perturbation at t = 10 and cross-stream
velocities similarly scaled and set by those at t = 2.5. Note that plot (a) indicates exactly the
same velocity field as figure 4(f ) but using revised contour and arrow levels.

highlight the effect of nonlinearity. Working at Re = 1750, PK10 report failure to
converge for E0 > 2 × 10−5. Their best estimate for Ec was Ec = 6 × 10−5, the energy
required to trigger turbulence when using a perturbation of the form Au3d(x;E0 =
2 × 10−5,Re = 1750). With the new code using a resolution (MM,LL) = (23, 11) and
NN = 64 finite difference radial points, as opposed to PK10’s (MM,LL) = (14, 5)
and a 25 Chebyshev polynomial expansion radially, we were able to confirm PK10’s
results for E0 6 2 × 10−5 as well as continuing convergence up to E0 = 2.52 × 10−5.
Above this point, the amount of growth grows sharply compared with the amount of
growth produced by rescaling arguments (figure 6).

Examining how the residual 〈(δL /δu0)
2〉 decreases as the algorithm proceeds

indicates that the code has converged at E0 = 2.52 × 10−5: see figure 7 (outer). The
time evolution of the optimal solution is relatively smooth, relaminarizing after the
initial transient growth. Surprisingly, however, one of the velocity fields it iterates
through (marked with a black dot in figure 7, outer) does lead to a turbulent episode.
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FIGURE 6. (Colour online) Reproduction of figure 5 from Pringle & Kerswell (2010)
showing growth as a function of initial energy. The (red) crosses correspond to the nonlinear
optimal perturbations previously calculated in PK10, while the uppermost (green) line
represents the optimals calculated with the new code presented in this paper (PWK11).
The middle (magenta) line shows the amount of growth produced by simply rescaling the
nonlinear optimal for E0 = 2 × 10−5 and therefore lower-bounds the true (green) optimal
growth curve. The lowest flat (blue) line is the growth provided by the nonlinearly modified
two-dimensional optimal (LOP).

A comparison of the two evolutions confirms that the optimization procedure has
worked properly: the optimal produces more growth than the other initial condition
despite the fact it does not lead to turbulence (figure 7, inner). This observation
seems to go against our assertion that the optimization algorithm will latch onto a
turbulence-triggering state and then fail to converge. There are two important lessons
to be learned from this apparent pathology. The first, most obvious one is that the
turbulence-triggering initial condition has not had enough time to reach the turbulent
state by the end of the (short) period Tlin, so

(i) Topt needs to be large enough.

Cherubini et al. (2010, 2011) work in this short T regime, which is why they are able
to converge onto an optimal disturbance ‘above’ the edge (it triggers turbulence but
much later than their target time T). Secondly, figure 7 shows that the energy level
reached by the optimal a little after Tlin is actually higher than that typically associated
with the turbulent state at this (low) Re in this (tight) pipe geometry. This situation
is fatal for the approach being advocated here, which relies on the turbulent state
producing the highest values of the energy growth (or whatever functional is being
considered) in comparison to non-turbulent states. By choosing T large enough to
avoid initial transients, this requirement is essentially the condition that the attracting
energy plateau on the edge is lower than turbulent energy levels. The recent success
of edge tracking (e.g. Mellibovsky et al. 2009; Schneider & Eckhardt 2009; Duguet,
Willis & Kerswell 2010b; Schneider, Marinc & Eckhardt 2010) indicates that this
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FIGURE 7. (Colour online) Convergence of procedure at E0 = 2.52 × 10−5. The algorithm
smoothly converges to a growth of 2030 (upper right line), while the residual decays to
O(10−8) (lower right line). The algorithm was continued for over 800 iterations in total to
ensure that there was no further change. Inset. The time evolutions of two disturbances found
by this sequence of iteration. The lower right (green) line is the converged optimal that
smoothly relaminarizes, while the upper right (red) line is the disturbance corresponding to
the black dot leading to a turbulent episode. The vertical dashed line shows the target time
Topt = Tlin ≈ 21.3D/U from the optimization procedure.

is routinely achieved provided that the flow is not too tightly constrained (i.e. the
geometry is not too small as it evidently is in a πD/2 long pipe) or too close (in
Re) to the first appearance of the turbulent state. For example, Schneider & Eckhardt
(2009, figure 7) show how the edge state and turbulent energies quickly separate with
increasing Re for a 5D pipe (see also figure 3 of Mellibovsky et al. 2009 for a 50D
pipe). Therefore, the second lesson is that

(ii) the optimization strategy can only be used to calculate the minimal seed
sufficiently far (in Re) from the first appearance of turbulence and/or for flows
in non-small domains.

In hindsight then, the geometry and Re value chosen in PK10 is not suited to
determining Ec there using this optimization approach. We therefore switch to a longer
5D periodic pipe (theoretically popular since the work of Eggels et al. 1994) and a
higher Re = 2400 where the edge shows typical behaviour (Duguet et al. 2008) and
the turbulent state is clearly energetically separated from the edge state (Schneider &
Eckhardt 2009).

5. Optimals for long times in a 5D pipe
In order to assess the twin conjectures discussed in § 1, a practical decision needs to

be made as to what constitutes a ‘asymptotically long’ optimization time. Figure 7
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FIGURE 8. (Colour online) The axial distribution of energy for the NLOP at E0 =
7.058 × 10−6 (dashed blue lines) and for the turbulent seed (solid red lines). In both cases
it is clear that although the energy has a clear peak it never fully decays away. The amplitude
in the cross-stream direction changes by less than an order of magnitude across the domain.

shows that an initial condition is capable of growing through several orders of
magnitude into a turbulent episode within ∼50D/U. We therefore chose Topt = 75D/U,
which should be large enough to capture this behaviour, especially in a larger 5D
domain although Re = 2400 is higher (so Topt > 2.5Tlin at this Re). It is worth
remarking, though, that this finite choice will limit the accuracy to which we can
determine the energy threshold. The algorithm senses initial conditions that have
reached the turbulent state by the end of the observational window. This sets a lower
limit on how close they can be to the edge, as the time for a turbulence-triggering
initial condition to reach turbulence becomes arbitrarily large as it is taken closer
to the edge. This said, our choice of Topt gives acceptable accuracy, yet the way to
improve this is clearly by integrating for longer.

The results of the energy growth optimization in a 5D pipe at Re = 2400 as a
function of E0 (note that the non-dimensionalization of energy is dependent on the
size of the flow domain being considered, and so equivalent absolute energies will
appear smaller after non-dimensionalizing in this longer pipe) exactly mimics the
situation uncovered in PK10. For E0 small enough, the linear (streamwise independent)
optimal (LOP) is selected, albeit with slight nonlinear modification, which suppresses
the growth of the two-dimensional optimal as E0 increases. Then there is a finite
value (PK10 refer to this as E3d) when a new three-dimensional optimal (NLOP) is
preferentially selected, which shows localization in the azimuthal and radial directions
(recall that the ‘NLOP’ refers to this optimal, which, not being smoothly connected
to the LOP as E0 increases, has distinctly different structure). There is also some
localization in the streamwise direction, but the domain is by no means long enough
for us to observe truly localized optimals as opposed to spatially periodic disturbances
(see figure 8).
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FIGURE 9. (Colour online) The amount of growth produced by successive choices for u0 in
the iterative scheme. For E0 = 7.058 × 10−6 the growth plateaus out at 483 (lower red line).
For E0 = 7.124 × 10−6, the growth briefly plateaus at ∼520 before rapidly rising to excess
of 1000 (upper blue line). The circle plotted shows a growth of 14 480 and has reached the
turbulent attractor before the algorithm steps momentarily back to a region below the edge.
The turbulent seed and the optimal for E0 = 7.058× 10−6 are both plotted in figure 19. Before
this has been reached, however, the growth being produced is already non-smooth between
steps due to the lack of smoothness in the hypersurface L , as predicted by Conjecture 1. We
also include the choice of E0 = 7.077×10−6 for illustrative purposes (middle green line). This
iterative run has not been fully converged and it is not clear whether it will converge to an
optimal or depart to the turbulent state.

As E0 is increased further, there comes a point at which the algorithm struggles to
converge properly. Successive bisection indicates that this value, Efail , is bracketed by
the initial energy values of E0 = 7.058× 10−6, which converges smoothly to the NLOP,
and 7.124 × 10−6, which clearly fails due to the occurrence of a turbulence-triggering
initial condition: see figures 9–11.

An attempt to improve this bracketing by taking E0 = 7.077 × 10−6 appears to
show convergence, yet there still remains some doubt even after running the algorithm
for nearly 1600 iterations and 50 000 CPU hours (≈ 6 years). Figure 9 indicates
convergence yet at a much higher level compared to that reached by the ‘nearby’
initial energy of E0 = 7.058 × 10−6. Moreover the fact that there is a jump up to
this higher level after ≈ 1000 iterations is mildly disconcerting. This adjustment is
reflected in the evolution of the residual (see figure 10) which, after 200 iterations,
appears to show convergence for the next 500 iterations before being followed by a
rapid transition that ends after 1150 iterations. It is not clear whether the algorithm has
now finally converged or whether it will subsequently encounter a turbulence-inducing
initial condition. This example demonstrates that it is clearly very important to take
care when deciding whether the procedure has converged (e.g. stopping the algorithm
after 600 iterations would appear to indicate clear convergence). It is probable that the
algorithm is struggling to distinguish between turbulence-inducing initial conditions
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FIGURE 10. (Colour online) The residuals corresponding to the three iterative runs described
in figure 9: flat (red) line, 7.058 × 10−6; (green) line with spike at 1100, 7.077 × 10−6; upper
(blue) line, 7.124 × 10−6. The sudden adjustment centred on 1100 iterations is a warning that
deciding upon convergence can be a subtle affair.
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FIGURE 11. (Colour online) Evolution of the final states produced by the iterative scheme
for E0 = 7.058 × 10−6 (lowest red line) and 7.124 × 10−6 (uppermost blue line). One clearly
leads to a turbulent episode while the other simply relaminarizes after the initial transient
growth. Also shown is the evolution of the initial condition arrived at after 1600 iterations for
E0 = 7.077× 10−6 (middle green line) which again relaminarizes. The vertical line marks the
optimization time.
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FIGURE 12. (Colour online) Snapshots showing isocontours of streamwise perturbation
velocity during the evolution of the final states produced by the iterative scheme for (a)
E0 = 7.058 × 10−6 and (b) 7.124 × 10−6. The isocontours in each plot correspond to 50 %
of the maximum (light/yellow) and 50 % of the minimum (dark/red) of the streamwise
perturbation velocity in the pipe at that time. The snapshots correspond to times t = 0, 0.5,
5, 10, 20, 40 and 75D/U. In both cases the energy is initially localized in the streamwise
direction and the disturbance quickly spreads. By t = 10 both disturbances have created
streamwise streaks, but only for the lower energy do they become streamwise independent.
The larger amplitudes of the higher energy streaks are subject to a turbulence-triggering
instability.

and the NLOP because the time to reach turbulence is comparable to, or exceeds, Topt .
Consequently, the estimate that 7.058 × 10−6 < Efail < 7.124 × 10−6 is the best we
can hope for working with Topt = 75D/U and the fate of E0 = 7.077 × 10−6 could be
decided by taking a longer Topt (not pursued here).

The physical evolution of the two disturbances is shown in figure 12. Initially the
disturbances look streamwise localized because of the contouring, but they do in
fact occupy the full length of the domain. Both subsequently develop into coherent
domain-length streaks. In the E0 = 7.058 × 10−6 case, these streaks continue to evolve
yet remain stable, becoming almost totally streamwise invariant before ultimately
decaying. In the E0 = 7.124×10−6 case, the streaks have higher amplitude and a streak
instability clearly occurs, leading to turbulence. The nature of this instability is shown
in figure 13, which plots the streamwise dependent and independent components
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FIGURE 13. (Colour online) The energy associated with the m = 1 axial component of
the disturbances calculated for E0 = 7.058 × 10−6 (solid lines) and E0 = 7.124 × 10−6

(dashed lines). Each energy is split into streamwise independent (dark/red uppermost lines at
t = 25D/U) and streamwise dependent (light/green lowermost lines at t = 25D/U) parts. The
former measures the streaks created by the disturbance while the latter shows the instability of
these streaks.

of the energy of the axial velocity field with (lead) azimuthal wavenumber m = 1.
For the relaminarizing disturbance, the three-dimensional part of the energy decays
monotonically from around 15D/U onwards. For the more energetic disturbance
the decay is abated after 20D/U, at which point an instability of the streaks
occurs, eventually leading to turbulence. It is worth remarking that the final plot
for E0 = 7.058 × 10−6 in figure 12 resembles more the two streaks produced by the
linear optimal, rather than the three-streak field generated in PK10 (cf. figure 5d in
this paper). Whether this is due to the increased target time or the lengthened flow
domain is unclear.

Conjecture 1 claims Ec = Efail . As there is no evidence of turbulence-triggering
initial conditions at E0 = 7.058 × 10−6 but there is at 7.124 × 10−6, we have
7.058 × 10−6 < Ec < 7.124 × 10−6. To this level of accuracy we have found that
Ec = Efail . That the optimization scheme will fail if turbulent seeds exist within the
E0-hypersurface seems clear, provided the iterative scheme can find them. Establishing
this is very difficult if not impossible, but a weaker practical alternative is to
demonstrate that the procedure is not dependent on the initial starting guess u0. To do
this we have compared six very different choices for the initial seed for both E0 < Efail

and E0 > Efail , and plotted their evolution between iterations on a two-dimensional
projection of energy in the axisymmetric part of the perturbation against energy in
the streamwise independent part (figures 14 and 15). The scatter of the initial crosses
illustrates the variety of initial conditions used, which range from turbulent velocity
fields to known travelling wave solutions. In both cases, irrespective of where the
scheme begins, the eventual (iterative) evolution brings it to the same trajectory in
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FIGURE 14. (Colour online) Convergence of six different initial conditions (crosses) towards
the same optimal (circle) for E0 = 7.058 × 10−6: axes are normalized perturbation energies
associated with the streamwise independent part (abscissa) and the axisymmetric part
(ordinate). The initial conditions chosen correspond to the various combinations of turbulent
flow fields, travelling wave solutions and the nonlinear optimal from § 4. The red (thick) line
corresponds to this final choice and is the iterative scheme shown in figures 9 and 10. Arrows
are included to indicate the direction of convergence.

this ‘phase space’. This provides some evidence that the algorithm does sample the
E0-hypersurface well and that Conjecture 1 indeed holds true.

In order to assess Conjecture 2, we now consider the behaviour of the optimal
solution close to the edge. Figures 14 and 15 already provide some evidence that the
NLOP at 7.058× 10−6 and the turbulent seed found at 7.124× 10−6 are similar at least
in terms of their axisymmetric and streamwise independent energy fractions. In order
to probe the accuracy of Conjecture 2 further, we look at the one initial condition
identified for E0 = 7.124 × 10−6 by our algorithm in § 5 that was a turbulent seed, us

(indicated by the circle in figure 9). The fact that only the one condition was found
above the edge of chaos suggests that in this region there is only a very small set of
turbulence-triggering initial conditions. We attempt to quantify this by considering the
evolution of initial conditions of the form

uic(A, d) := A[(1+ d)ul=0 + (1− d)ul 6=0], (5.1)

where ul=0 and ul 6=0 are the streamwise independent and dependent parts of us and
A is adjusted to give the required value of E0. The amount of growth after 75D/U
is shown as a function of E0 and d in figure 16. The jump in growth from O(103)

to O(104) clearly demarcates where the edge of chaos is crossed. The narrowness of
the peak for E0 = 7.124 × 10−6, and the observation that a mere ∼0.3 % reduction
in amplitude is enough to dip beneath the edge, indicate that us is very close to a
local minimum of the edge. The precise energy at which uic(A, d = 0) crosses the edge
is plotted in figure 17. Here two bracketing cases are shown: E0 = 7.121011 × 10−6,
which ultimately relaminarizes, and E0 = 7.121019 × 10−6, which leads to turbulence.
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FIGURE 15. (Colour online) The result of using the same six initial conditions (crosses) for
E0 = 7.124 × 10−6. The red line corresponds to the iterative progression shown in figures 9
and 10. Clearly the procedure is independent of the starting guess. Note also how similar the
progression is here to that for E0 = 7.058× 10−6. The red (thick) line indicates the initial path
taken towards the turbulent seed (see figure 9). The path after entering the chaotic region is
not included.
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FIGURE 16. (Colour online) Growth factors in the neighbourhood of the seed state ut
that triggers turbulence at E0 = 7.124 × 10−6. The neighbourhood is defined by d, where
uic(x; d) := A[(1 + d)ul=0 + (1 − d)ul 6=0], ul=0 is the streamwise independent part of us and
ul 6=0 := us − ul=0. The amplitude A is used to rescale the initial state to ensure the correct
starting energy E0. The figure shows that us only just triggers transition at 7.124 × 10−6,
but for higher energies there exists an ever-increasing neighbourhood of initial conditions
surrounding us that trigger transition (indicated by the jump in G).
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FIGURE 17. (Colour online) Trajectories close to the laminar–turbulent boundary, or ‘edge’.
Nearby initial conditions are uic = Aus, with A selected to give the indicated energies. The
case E0 = 7.121011 × 10−6 relaminarizes, but not before passing close by the edge attractor
(marked by the dot, which is the energy of the S1 travelling wave embedded in it). The
case E0 = 7.121019 × 10−6 tracks the edge before leading to turbulence, The vertical line is
T = Topt = 75D/U.

The closeness of these energies means that both evolutions track the edge to T ≈ Topt

before going their separate ways. This emphasizes that to improve the estimate of Ec

discussed above, Topt has to be increased.
Coincidentally, while following the relaminarizing case, the flow was found to

transiently resemble the asymmetric travelling wave believed to be embedded in
the edge state (Pringle & Kerswell 2007, later named S1 in Pringle et al. 2009)
at t ≈ 100D/U. This was verified by calculating the two correlation functions,
Itot and (Itot + Iuv)/2, introduced in Kerswell & Tutty (2007, definitions (2.3) and
(2.5)). Figure 18 shows that both these correlations simultaneously exceed 0.75 at
t ≈ 100D/U, clearly indicating a very close ‘visit’ (0.6 was deemed good enough
to indicate a ‘close’ visit by Kerswell & Tutty 2007). The fact that this visit takes
place is not a surprise but more a check of consistency: the edge state is believed
to be unique and therefore a global attractor on the edge at this Re and pipe length
(Schneider et al. 2007). It is worthy of note, however, that it takes a comparatively
long time of ≈100D/U for a flow trajectory starting at the lowest energy point on the
edge to reach the S1 state.

Examining the NLOP for E0 = 7.058× 10−6 and us, it seems reasonable to conclude
that the minimal seed of turbulence is ‘sandwiched’ in between. The form of the two
solutions is shown in figure 19 (along with the last iterate calculated at 7.077 × 10−6)
and it is clear that they do not alter much as the edge is crossed. This supports
Conjecture 2.

6. Discussion
We first summarize what has been done in this paper. An exploratory nonlinear

energy growth calculation in PK10 showed that the form of the optimal initial
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FIGURE 18. (Colour online) Correlation function data that measure how close the
instantaneous velocity field is to the asymmetric travelling wave S1 for the trajectory that
relaminarizes in figure 17 with E0 = 7.121011×10−6. The fact that Itot and (Itot+Iuv)/2 exceed
0.75 at t = 100D/U indicates a very close visit (Kerswell & Tutty 2007). The importance of
this visit is that S1 is believed to be embedded in the chaotic edge state for the pipe length and
Re.

(a) (b) (c)

FIGURE 19. (Colour online) The nonlinear optimal calculated in § 5 for E0 = 7.058 × 10−6

(a) and the turbulent seed us (c). The close similarity between the two solutions is striking,
with the turbulent seed having stronger streaks but an otherwise comparable structure. For
comparison we have also included the final state found for E0 = 7.077 × 10−6 (b). This state
appears to be an intermediary between the two other states. (Note that no effort has been
made to match the phases along the pipe length.)

disturbance changes suddenly at a small (pre-threshold) but finite initial energy level
E3d from a global linear optimal (weakly modified by nonlinearity) to a localized
strongly nonlinear optimal. This has been confirmed at higher spatial and temporal
resolution. The physical processes responsible for the enhanced energy growth of the
new nonlinear optimal (NLOP) have been identified as three known linear growth
mechanisms – the Orr mechanism, oblique wave transient growth and the lift-up effect
– acting sequentially and coupled together via the nonlinearity of the Navier–Stokes
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equations. These mechanisms operate on differing time scales, yet appear able to pass
on their growth to the next (slower) process so that the total growth outweighs
any of their individual contributions. The NLOP is also localized, which is an
inherently nonlinear feature designed to cheat the global initial energy constraint. The
calculations here have also managed to converge this nonlinear optimal state beyond
the threshold energy level at which turbulence could be triggered. This highlighted
two issues for the optimization strategy to identify this energy threshold: (i) the
optimization time needs to be large enough for turbulence-triggering initial conditions
to have time to reach the turbulent state; and (ii) the energy levels of the turbulent
state need to be above those for laminar flows so that the optimization algorithm will
naturally seek them out. This indicates that the optimization strategy discussed here
is better suited to larger flow domains and more supercritical (higher Re) regimes.
Ironically, it is now clear that doing exploratory (cheap) calculations in a small domain
at low Re was a natural but bad choice in PK10.

Calculations in a longer pipe 5D at higher Re (=2400) over a larger time period
found the same general situation as in the πD/2 pipe of PK10. At low initial energies,
the optimal is the (global) linear optimal weakly modified by nonlinearity. At a certain
small but finite initial energy E3d, a new localized three-dimensional optimal (NLOP)
is preferred, which stays the optimal until the algorithm fails to converge at Efail .
The only significant difference is that in the longer 5D pipe the NLOP is starting
to streamwise-localize (figure 8), in contrast to the πD/2 NLOP, where the shortness
of the domain prevents this. Above Efail , initial conditions that trigger turbulence are
found to exist on the energy hypersurface and to the accuracy available, Efail = Ec.
This supports Conjecture 1, which presupposes that the optimization algorithm will
find any turbulent-triggering states if they exist on the energy hypersurface and then
fail to converge as a result. As way of confirming this, the algorithm was tested with a
variety of very different starting conditions with the same optimal emerging, indicating
that the optimization algorithm is able to explore the energy hypersurface.

Intriguingly, good evidence was also found that NLOP → minimal seed as E0→ E−c
in support of the stronger Conjecture 2, at least for this flow, geometry and Re.
Pictorially, this means that the NLOP for Ec and the minimal seed actually coincide
in figure 20, rather than the more general situation shown where the two differ. It
was also argued that, with enough computational power, the threshold energy Ec and
the minimal seed could be calculated to arbitrary accuracy by increasing the spatial
and temporal resolution as well as Topt , which improves the algorithm’s ability to
distinguish between trajectories that become turbulent and those that relaminarize.

The strategy advocated here for determining the minimal finite amplitude
disturbance to trigger transition to turbulence in shear flows involves construction
and iterative solution of a variational problem. The objective functional must be
selected such that it identifies turbulent velocity fields by taking enhanced values
compared to those for laminar fields. This is then maximized via searching over all
incompressible disturbances of fixed amplitude that respect the boundary conditions
over an asymptotically long time period constrained by the full Navier–Stokes
equations. All of the results discussed here were obtained using the perturbation
energy growth over a given period as the key functional. This certainly takes enhanced
values for turbulent velocity fields in the 5D pipe at Re = 2400, and Conjecture 1
seems to hold true. However, other choices should also work equally well, e.g. the
total dissipation (Monokrousos et al. 2011), provided that they share this crucial
property. If Conjecture 1 is indeed true, then the optimization strategy discussed here
will identify the threshold energy level Ec. However, more is available too, albeit
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FIGURE 20. Sketch to illustrate Conjectures 1 and 2. Conjecture 1 asserts that the
optimization approach will yield a well-defined nonlinear optimal (NLOP) up to E0 = Ec,
whereupon turbulence can be triggered by the minimal seed. Conjecture 2 asserts that the
NLOP converges as E0→ E−c to the minimal seed (the converse situation where the limiting
NLOP state and the minimal seed are different is shown for clarity). Note that the LOP is
streamwise independent in pipe flow and hence traces the El=0 axis.

indirectly, as the minimal seed should be the unique initial condition that triggers
turbulence as E0→ E+c . Given this, the status of Conjecture 2, although conceptually
fascinating, seems less important practically. Whether or not Conjecture 2 holds for
energy growth (and, admittedly, we only have one supportive data analysis here), it
can of course be restated for any functional. Then the question becomes: Is there
a universal functional that, when optimized, always identifies the minimal seed as
E→ E−c for a class of flows (e.g. wall-bounded shear flows)? This seems unlikely
to be exactly true but may nevertheless be approximately true for some subset of
functionals. Then any of these could give acceptable predictions depending on how
the results are to be used subsequently (e.g. designing disturbances in the laboratory).
Certainly this would seem to be the case using the energy growth functional given the
comparison in figure 19.

The variational approach espoused here is, of course, incredibly flexible. Changing
the key functional is straightforward, as is the initial (norm) constraint on the
competitor initial fields. Although the discussion above has concentrated on the initial
perturbation energy E0, it should be clear that other norm choices can be made.
Provided that the functional under consideration jumps to large values for turbulent
flows, the optimization algorithm should converge up to the first point (as the norm
hypersurface ‘expands’ away from the laminar state) at which the edge penetrates the
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hypersurface (as per Conjecture 1). Furthermore, the turbulent state does not have to
be the only target of the approach. Identifying the peak instantaneous pressure in a
transitional flow is a key concern for pipeline structural integrity. One could easily
imagine formulating an optimization problem to maximize the pressure after time Topt

over all disturbances of initial energy E0 where Topt is also part of the optimization
procedure.

The long-term objective of this theoretical work is to design better (lower-energy)
ways to trigger turbulence with a view to informing control techniques. Further
calculations clearly need to be carried out in more realistic geometries to see, for
example, if universal localized minimal seeds emerge. Even now, though, this work
is in a position to stimulate new experiments. The NLOP identified here indicates
that structures that initially point into the shear will outgrow the equivalent structure
directed across the shear (the Orr mechanism). This suggests a modification of the
recent experiments of Peixinho & Mullin (2007) that were designed to generate
oblique rolls by blowing and sucking directly across the shear. The calculations
performed here indicate that their threshold scaling exponent (a non-trivial flux
∼Re−1.5) for transition may possibly be further reduced if the blowing and sucking
is inclined upstream to take advantage of the Orr mechanism.

7. Glossary

E0 Initial energy of a perturbation.

ET Final energy of a perturbation after time T .

E3d Initial energy at which the NLOP first emerges as the new optimal.

Efail The minimum energy for which the optimization routine fails to
converge.

Ec The critical energy corresponding the minimum energy of the edge.

Ec(u) The minimum energy of a perturbation of the form Au required to
trigger turbulence.

Topt The target time in an optimization procedure.

Tlin The time for which transient growth is maximized in the linear
problem.

Tturb Typical time period required for the onset of turbulence.

u2D(x;Re,E,L,T) The two-dimensional optimal for the Reynolds number, energy, domain
length and optimization time T specified.

u3D(x;Re,E,L,T) The three-dimensional optimal for the Reynolds number, energy,
domain length and optimization time T specified.
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