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We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share

the topology of known periodic solutions but are localized in one spatial dimension. Solutions of different

size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-

forming partial differential equations. These new solutions are a step towards extending the dynamical

systems view of transitional turbulence to spatially extended flows.
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The discovery of exact equilibrium and traveling-wave
solutions to the full nonlinear Navier-Stokes equations has
resulted in much recent progress in understanding the
dynamics of linearly stable shear flows such as pipe, chan-
nel, and plane Couette flow [1–4]. These exact solutions,
together with their entangled stable and unstable mani-
folds, form a dynamical network that supports chaotic
dynamics, so that turbulence can be understood as a walk
among unstable solutions [5,6]. Moreover, specific exact
solutions are found to be edge states [7], that is, solutions
with codimension-1 stable manifolds that locally form the
stability boundary between laminar and turbulent dynam-
ics. Thus, exact solutions play a key role both in supporting
turbulence and in guiding transition.

This emerging dynamical systems viewpoint does not
yet capture the full spatiotemporal dynamics of turbulent
flows. One major limitation is that exact solutions have
mostly been studied in small computational domains with
periodic boundary conditions. The small periodic solutions
cannot capture the localized structures typically observed
in spatially extended flows. For example, pipe flows exhibit
localized turbulent puffs. Similarly, in plane Couette flow
(PCF), the flow between two parallel walls moving in
opposite directions, localized perturbations trigger turbu-
lent spots which then invade the surrounding laminar flow
[8,9]. Both localized turbulence and even more regular
long-wavelength spatial patterns such as turbulent stripes
have been observed [10]. The known periodic exact solu-
tions cannot capture this rich spatial structure, but they do
suggest that localized solutions might be key in under-
standing the dynamics of spatially extended flows.

Spatially localized states are common in a variety of
driven dissipative systems. These are often found in a
parameter regime of bistability (or at least coexistence)
between a spatially uniform state and a spatially periodic
pattern, such as occurs in a subcritical pattern-forming
instability. The localized state then resembles a slug of
the pattern embedded in the uniform background. An early

explanation of such states is due to Pomeau [11], who
argued that a front between a spatially uniform and spa-
tially periodic state, which might otherwise be expected to
drift in time, can be stabilized over a finite parameter range
by pinning to the spatial phase of the pattern. More re-
cently, the details of this localization mechanism have been
established for the subcritical Swift-Hohenberg equation
(SHE) through a theory of spatial dynamics [12–14]. In one
spatial dimension the time-independent version of this
PDE can be treated as a dynamical system in space, in
which stationary profiles are seen as trajectories in the
spatial coordinate. Then localized states correspond to
homoclinic orbits to a fixed point that visit the neighbor-
hood of a periodic orbit representing the pattern. The SHE
is equivariant under spatial reflections, so the correspond-
ing spatial dynamical system is reversible. There exists an
infinite multiplicity of reversible homoclinic orbits (i.e.,
symmetric localized states) organized in a pair of solution
branches which undergo homoclinic snaking. In a bifurca-
tion diagram the two branches intertwine, oscillating back
and forth within a parameter regime called the snaking or
pinning region. These are connected by branches of non-
symmetric states called rungs. Together they form the
snakes-and-ladders structure of localized states.
The theory of spatial dynamics also applies to other

equations in one spatial dimension [15], but there is no
obvious extension to higher dimensional PDEs.
Nevertheless, there are remarkable similarities between
localized states in the simple one-dimensional SHE and
in other more realistic (and complicated) PDEs. In fluid
dynamics, homoclinic snaking occurs in driven two-
dimensional systems such as binary fluid convection [16]
and natural doubly diffusive convection [17]. Localized
solutions in these systems exhibit snaking in bifurcation
diagrams and are homoclinic in that they transition along
one of the spatial coordinates from a uniform state, to a
periodic pattern, and back to the uniform state. In three-
dimensional shear flows, homoclinic snaking has never
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been observed but its existence has been speculated [18].
This speculation is supported by the recent discovery of
two localized exact solutions in PCF by Schneider, Marinc,
and Eckhardt [19] which qualitatively resemble localized
states in the SHE.

The aim of this Letter is to elucidate the origin of these
localized solutions in PCF.We show that the Navier-Stokes
equations in this geometry indeed exhibit homoclinic snak-
ing, giving rise to localized counterparts of well-known
spatially periodic equilibria.

In PCF the velocity field uðx; tÞ ¼ ½u; v; w�ðx; y; z; tÞ
evolves under the incompressible Navier-Stokes equations,

@u

@t
þ u � ru ¼ �rpþ 1

Re
r2u; r � u ¼ 0; (1)

in the domain � ¼ Lx � Ly � Lz where x, y, z are the

streamwise, wall-normal, and spanwise directions, respec-
tively. The boundary conditions are periodic in x and z and
no-slip at the walls, uðy ¼ �1Þ ¼ �x̂. The Reynolds
number is Re ¼ Uh=�, where U is half the relative veloc-
ity of the walls, h half the wall separation, and � the
kinematic viscosity. We treat Re as the control parameter
and use as a solution measure the dissipation rate D ¼
ðLxLyLzÞ�1

R
�ðjr � uj2Þd�. The laminar profile has

D ¼ 1 while solutions such as those shown in Fig. 1
have D> 1.

Figure 1 shows two exact solutions of (1) at Re ¼ 400
and � ¼ 4�� 2� 16�, originally identified in [19] for
� ¼ 4�� 2� 8�. The solutions are localized in the

spanwise z direction and consist of two to three promi-
nent pairs of alternating wavy roll-streak structures em-
bedded in a laminar background flow. Figures 1(a) and 1(b)
are a traveling-wave solution uTW of (1) satisfying
½u; v; w�ðx; y; z; tÞ ¼ ½u; v; w�ðx� cxt; y; z; 0Þ, where cx ¼
0:028 is the streamwise wave speed. Figures 1(c) and 1(d)
are a stationary, time-independent solution uEQ. The

equilibrium uEQ is symmetric under inversion

½u; v; w�ðx; y; z; tÞ ¼ ½�u;�v;�w�ð�x;�y;�z; tÞ, and
the traveling-wave uTW has a shift-reflect symmetry,
½u; v; w�ðx; y; z; tÞ ¼ ½u; v;�w�ðxþ Lx=2; y;�z; tÞ. These
symmetries ensure that neither uEQ nor uTW drifts in the

localization direction z.
To continue these solutions in Re, we combine a

Newton-Krylov hookstep algorithm [20] with quadratic
extrapolation in pseudoarclength along the solution
branch. The Navier-Stokes equations are discretized with
a Fourier-Chebyshev-tau scheme in primitive variables and
3rd-order semi-implicit backwards differentiation time
stepping. Bifurcations along the solution branches are
characterized by linearized eigenvalues computed with
Arnoldi iteration. The computations were performed with
32� 33� 256 collocation points and 2=3-style dealiasing,
resulting in approximately 2� 105 free variables, and
validated by recomputing with ð3=2Þ3 more grid points at
a number of locations along each solution curve [21].
The bifurcation diagram in Fig. 2 shows the uTW and

uEQ solutions from Fig. 1 under continuation in Reynolds

number. As Re decreases below 180, the solution branches
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FIG. 1 (color online). Localized traveling-wave uTW (a),(b)
and equilibrium uEQ (c),(d) solutions of plane Couette flow at

Re ¼ 400, from [19]. The velocity fields are shown in the y ¼ 0
midplane in (a),(c), with arrows indicating in-plane velocity and
the color scale indicating streamwise velocity u: dark, light, dark
(blue, green, red) correspond to u ¼ �1, 0, þ1. The x-averaged
streamwise velocity is shown in (b),(d), with y expanded by a
factor of 3.
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FIG. 2 (color online). Snaking of the localized uTW, uEQ

solutions of plane Couette flow in (Re, D) plane. The spatially
periodic Nagata solution uP is shown as well; the uTW solution
connects with it near (131, 1.75). Velocity fields of the localized
solutions at the saddle-node bifurcations labeled a; b; c; d are
shown in Fig. 3. The rung branches are shown with solid lines
connecting the uEQ and uTW in the snaking region; velocity

fields for the points marked �, �, � are shown in Fig. 4. Open
dots on the uTW traveling-wave branch mark points at which the
wave speed passes through zero.
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snake upwards in dissipationD; that is, they pass through a
sequence of sub- and supercritical saddle-node bifurca-
tions which nearly line up, creating a large multiplicity
of localized solutions in 169< Re< 177. Each saddle-
node bifurcation adds structure at the edges (fronts) of
the localized solution while preserving its symmetry.
This spatial growth is illustrated in Fig. 3, which shows
the velocity fields at several points along the snaking
branches. For example, Fig. 3(a) shows the y ¼ 0midplane
of uTW at the saddle-node bifurcation marked a in Fig. 2.
Continuing up the solution branch from (a) to (c), the
solution gains a pair of streaks at the fronts while the
interior structure stays nearly constant. The marginal ei-
genfunction associated with the saddle-node bifurcation at
(c) is shown in Fig. 3(g); it is weighted most heavily at the
fronts of the localized solution and has the same symmetry,
so that adding a small component of the eigenfunction
strengthens and slightly widens the fronts, whereas sub-
traction weakens and shrinks them.

The spanwise wavelength of the interior structure of the
localized solutions is approximately ‘z � 7. This value is
selected by the fronts that connect the interior streaks to the
laminar background, and it does not seem to vary much
across the snaking region or when compared between the
two branches. The streamwise wave speed cx of the
traveling-wave solution varies along the branch and in
fact changes sign several times. Points at which cx ¼ 0
are marked in Fig. 2 with open circles. The point marked
(a) has cx ¼ 0:0062. Rotation about the z axis gener-
ates symmetric partners for both uTW and uEQ; for the

former this results in a streamwise drift in the oppo-
site direction. Thus the uTW and uEQ curves in Fig. 2

represent four solution branches. The lower branches of

both can be continued upwards in Reynolds number past
Re ¼ 1000.
Figure 2 also shows six rungs of nonsymmetric exact

localized solutions. These bifurcate from the snaking
branches close to the saddle nodes and are associated
with marginal eigenfunctions whose symmetry does not
match the base state. Each rung connects to both the uEQ

and the uTW branch so solutions along the rungs smoothly
interpolate between the two symmetry subspaces, as illus-
trated in Fig. 4. The rung solutions travel in z as well as x,
but with z wave speed 3 orders of magnitude smaller
than cx.
Because of the finite extent of the domain, the structures

cannot grow indefinitely, and the snaking behavior must
terminate. As in other problems of this type, the details of
this termination depend on a commensurability condition
between the spanwise wavelength of the streaks within the
localized solutions and the spanwise domain [22]. At Lz ¼
16�, uTW connects at ðRe; DÞ ¼ ð131; 1:75Þ to the spa-
tially periodic Nagata equilibrium with wavelength ‘z ¼
2�. The uEQ branch does not appear to connect to any

periodic solution. Instead, when this branch exits the snak-
ing region its velocity field contains a localized defect that
persists under continuation up to at least Re ¼ 300. At
other values of Lz, both branches might either not connect
to a periodic solution or connect to a different periodic
solution. For example, in Ref. [19] it was shown that at
Lz ¼ 8� both the uTW and uEQ branches terminate on a

branch of spatially periodic solutions, though that choice of
Lz was too narrow to allow the snaking structure to
develop.
We have shown that homoclinic snaking in wide plane

Couette channels gives rise to a family of exact localized
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FIG. 3 (color online). Localized traveling-wave uTW (left) and equilibrium uEQ (right) solutions of plane Couette flow at points
marked on the solution branches in Fig. 2. (a),(c) show the velocity fields of uTW at its first and second saddle-node bifurcations,
moving up each branch from lower to higher dissipation D; similarly (b),(d) for uEQ. (e),(f) show the x-averaged velocity of (c),(d),

with in-plane velocity indicated by arrows and streamwise velocity by the color map as in Fig. 1. The marginal eigenfunctions at the
saddle-node bifurcations (c),(d) are shown in (g),(h).
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solutions with internal structure similar to the periodic
Nagata equilibrium. Thus, as recently speculated [18,19],
the localization mechanism studied in the SHE carries over
to linearly stable shear flows, where it cannot be associated
with an instability of the uniform state [23]. Physically, the
localized states studied above consist of fronts pinned to
the periodic Nagata equilibrium. The periodic structure is
formed by pairs of counterrotating, streamwise-oriented
roll-streak structures, which also characterize other exact
solutions linked to transitional turbulence in small do-
mains. Therefore, localized versions of the other known
exact solutions should also exist and, together with their
heteroclinic connections, support localized turbulence. In
this sense the localized solutions studied here are a first
step towards generalizing the dynamical systems picture
for turbulence to extended flows.

Turbulent spots and stripes that are tilted against the flow
direction suggest the existence of fully localized exact
solutions, i.e., solutions localized in both the spanwise
and streamwise directions. Although a theory for localiza-
tion in two spatial dimensions is not yet available, numeri-
cal studies of the SHE show that snaking does carry over to
solutions localized in two dimensions [24]. In PCF it is,
however, not known if the same mechanism also generates
fully localized exact solutions because a bifurcation analy-
sis would first require a fully localized solution to start the
continuation. Such a solution is unfortunately not yet
available. Nevertheless, edge calculations both in pipe
flow [25,26] and in extended plane Couette cells
[19,27,28] yield localized structures that show very mild
dynamic fluctuations, which suggests the existence of sim-
ple underlying fully localized exact solutions.
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2511 (1992).
[10] D. Barkley and L. S. Tuckerman, Phys. Rev. Lett. 94,

014502 (2005).
[11] Y. Pomeau, Physica (Amsterdam) 23D, 3 (1986).
[12] A. R. Champneys, Physica (Amsterdam) 112D, 158

(1998).
[13] J. Burke and E. Knobloch, Chaos 17, 037102 (2007).
[14] S. J. Chapman and G. Kozyreff, Physica (Amsterdam)

238D, 319 (2009).
[15] M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede,

and T. Wagenknecht, SIAM J. Math. Anal. 41, 936
(2009).

[16] O. Batiste, E. Knobloch, A. Alonso, and I. Mercader,
J. Fluid Mech. 560, 149 (2006).

[17] A. Bergeon and E. Knobloch, Phys. Fluids 20, 034102
(2008).

[18] E. Knobloch, Nonlinearity 21, T45 (2008).
[19] T.M. Schneider, D. Marinc, and B. Eckhardt, J. Fluid

Mech. 646, 441 (2010).
[20] D. Viswanath, J. Fluid Mech. 580, 339 (2007).
[21] The numerical software is available at www.channelflow.

org.
[22] A. Bergeon, J. Burke, E. Knobloch, and I. Mercader, Phys.

Rev. E 78, 046201 (2008).
[23] V. A. Romanov, Funct. Anal. Appl. 7, 137 (1973).
[24] D. Lloyd, B. Sandstede, A. Avitabile, and A. R.

Champneys, SIAM J. Appl. Dyn. Syst. 7, 1049 (2008).
[25] A. P. Willis and R. R. Kerswell, J. Fluid Mech. 619, 213

(2009).
[26] F. Mellibovsky, A. Meseguer, T.M. Schneider, and B.

Eckhardt, Phys. Rev. Lett. 103, 054502 (2009).
[27] D. Marinc, Master’s thesis, Philipps-Universiät Marburg,

2008.
[28] Y. Duguet, P. Schlatter, and D. S. Henningson, Phys.

Fluids 21, 111701 (2009).

|

|

y

|

|

y

|

|

y

z

FIG. 4 (color online). Localized solutions of plane Couette
flow along a rung branch, for the points marked �, �, � in
Fig. 2, and plotted in terms of x-averaged streamwise velocity
huixðy; zÞ as in Figs. 1(b) and 1(d). (�) shows the beginning of
the rung solution on the uEQ branch with symmetry huixðy; zÞ ¼
�huixð�y;�zÞ. Midway along the rung, (�) is nonsymmetric.
The rung terminates at (�) on the uTW branch with symmetry
huixðy; zÞ ¼ huixðy;�zÞ.
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