
MATH5453M Foundations of Fluid Dynamics

Mathematical Basics: Vector Calculus and Cartesian Tensors needed for Fluid Dynamics

Here are some brief notes on the main things you need to know about vector calculus and Cartesian tensors. It is
covered in more detail in Chapter 2 of Kundu, Cohen and Dowling, available online from the library. You can also look
in a vector calculus text book such as Matthews,“Vector Calculus”.

1 Grad, div and curl

(i) Grad. If φ(x, y, z) is any scalar field,

gradφ = ∇φ = (
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
).

Grad (or, in full, gradient) acts on a scalar, result is a vector. This definition is in Cartesian coordinates. For the
definition of grad in polar coordinates (cylindrical or spherical) see the curvilinear coordinates section.

Some uses in fluid dynamics:

(a) in irrotational flow, i.e. when there is no vorticity, you can define a velocity potential φ such that u = ∇φ.
Sometimes φ is a function of time also, but to find ∇φ you assume t is constant and just take the spatial
derivatives. Sadly most flows are not irrotational, but some are irrotational in some regions, and others may
be ‘almost’ irrotational.

(b) If the temperature is T (x, y, z), the conductive heat flux is −k∇T where k is the thermal conductivity
(Fourier’s law of conduction).

Useful fact:
∫ B
A
∇φ · dl = φ(B)− φ(A), where the line integral is taken along any path joining A to B.

(ii) Divergence. If u(x, y, z) is any vector field,

div u = ∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

.

When Div acts on a vector the result is a scalar. Again, Div in polar coordinates is more complicated: see the
curvilinear coordinates section.

Some uses in fluid dynamics:

(a) in incompressible flow ∇ · u = 0.

(b) In a thermally conducting fluid, the rate at which heat flows into a fluid element is div(k∇T ) = ∇ · k∇T ,
where T is the temperature. So ρcv∂T/∂t = ∇ · k∇T , where ρ is the density and cv is the specific heat at
constant volume (for incompressible fluid).

Useful facts:

(a) the divergence theorem, sometimes called Gauss’s theorem:∫
V

∇ · u dv =

∫
S

u · n dS

Here V is any closed volume, S is the surface enclosing it, and n is the outward pointing normal unit vector
to the surface S. This theorem also tells you what the divergence is: if ∇ · u > 0 inside V , then the fluid is
diverging there. It must on average being flowing out through S therefore u must be mainly in the direction
of n to get a positive surface integral. Conversely, if ∇·u < 0 the fluid is contracting, or imploding on itself.
Incompressible fluids can’t do this so they have ∇ · u = 0.

(b) div curl v = 0 for any vector field v.

(c) div grad is written ∇2, pronounced del-squared.

(iii) Curl

curl u = ∇× u =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

ux uy uz

∣∣∣∣∣∣ .



The curl acts on a vector and returns a vector. As usual, in polar coordinate systems the curl is given on the
curvilinear coordinates sheet. There is little point in trying to memorize the curvilinear coordinate formulae for
div and curl in the polar coordinate systems. It is safer to look them up.

Key use in fluid dynamics: the vorticity vector is ∇× u.

Some useful facts about curl:

(a) Stokes’ theorem. ∫
S

∇× u · n dS =

∫
C

u · dl

Here S is any closed surface, n is the unit normal vector to S, C is the curve enclosing it, and
∫
C

means the
line integral taken round the closed curve. 1/2π times the line integral is called the circulation because it
is non-zero if the flow is circling round the curve C. Stokes’ theorem relates the circulation round C to the
surface integral of the vorticity. The curl of u is therefore a measure of the local rotation of the fluid. Be
careful though: fluid uniformly rotating with angular velocity vector Ω has uniform vorticity 2Ω.

(b) curl grad φ = 0 for any scalar φ. To see this, just put ∇φ in the formula for curl, and all the terms cancel.
Since the pressure force is ∇p in the Navier-Stokes equation, taking the curl of the Navier-Stokes equation
gets rid of the pressure.

(c) curl curl v = grad div v - del-squared v, acting on any vector field v. Here del-squared is the vector version
of the operator, ∇2, which in Cartesians is (∇2ux,∇2uy,∇2uz). This curl curl vector identity works for any
coordinate system, but the definition of the vector del-squared operator is complicated in polar coordinate
systems. The formulae are in the section on curvilinear coordinates.

(iv) Some useful vector identities

∇(a · b) = (a · ∇)b + (b · ∇)a + a× (∇× b) + b× (∇× a)

(a · ∇)a = ∇(a2/2)− a× (∇× a)

∇ · (φa) = φ∇ · a + a · ∇φ

∇ · (a× b) = b · ∇ × a− a · ∇ × b

∇× (φa) = φ∇× a +∇φ× a

∇× (a× b) = (b · ∇)a− (a · ∇)b + a∇ · b− b∇ · a

2 Cartesian tensors and suffix notation

(i) Suffix notation

A vector field such as the fluid velocity, u, can be represented by its coefficients (u1, u2, u3) with respect to a set
of Cartesian axes (e1, e2, e3) as a column vector,

u =

u1u2
u3

 .

This can be represented more compactly as ui where the index i is understood to take the values 1,2 and 3.

The gradient of the pressure ∇p is another vector quantity and is given in matrix form by

∇p =


∂p
∂x1

∂p
∂x2

∂p
∂x3

 .

or more compactly in index notation as ∂p
∂xj

where j is now the index.

The scalar product of these two vectors u · ∇p is given by

u · ∇p = u1
∂p

∂x1
+ u2

∂p

∂x2
+ u3

∂p

∂x3



and in suffix notation is written in the compact format

u · ∇p = ui
∂p

∂xi
.

Here, we are using the Einstein convention that a repeated suffix denotes summation over i = 1, 2, 3.

The basic rules of suffix notation are

(a) A suffix that appears once is called a free index. The number free indices denote the type of quantity in
question. A scalar quantity has no free indices, a vector one and in general an nth rank tensor has n. Terms
that are added or equated must have the same free indices.

(b) If a suffix appears twice it is called a dummy index. Since we sum over dummy indices the number of pairs
of dummy indices does not affect the type of the quantity being described. It is also possible to change the
index letter, without affecting the result. However, it is important not to use a letter already in use as a free
index.

It is conventional to use the letters i, j, k, l,m, n . . . as indices, but you can use whatever letters you like.

As we have already seen, taking the gradient of a scalar produces a vector quantity and so taking the gradient
of vector produces a quantity with two associated directions, called a second rank tensor. Since there are three
components of velocity and three coordinate directions ∇u has 9 components. It can be represented in the form
of a matrix as

∇u =


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 .

but it is much more convenient to write this in suffix notation as

∂ui
∂xj

where there are now two indices i and j each of which can take values 1, 2, 3. In terms of the matrix representation
i denotes the row and j the column of the entry.

The Kronecker delta δij is another example of a second rank tensor

δij =

{
1 i = j

0 i 6= j
(1)

which in matrix representation is the identity matrix1 0 0
0 1 0
0 0 1


(iii) Scalar and Vector Products

We have already seen that the scalar product of two vectors is equivalent to summing over a pair of suffices, so
that

a · b = aibi.

This operation is equivalent to the action of the Kronecker delta on the two vectors a and b since

a · b = aiδijbj = aibi since δijbj = bi.

The vector product can also be represented in Einstein notation by introducing the alternating tensor εijk

εijk =


1 ijk = even, i.e. 123, 231 or 312

−1 ijk = odd, i.e. 132, 213, 321

0 i = j, j = k, or k = i,

(2)



which is a third rank tensor. Since εijk has 3 free indices the resulting quantity εijkajbk is a vector with index i.
(j and k are repeated indices and so are summed over). Using the properites of εijk we find that

ci = εijkajbk

has the following components

c1 = a2b3 − a3b2, c2 = a3b1 − a1b3, c3 = a1b2 − a2b1

and so represents the vector product of the vectors a and b.

We can extend these products to tensors, so for example a ·A = aiAij is a vector formed from the scalar product
of the vector a with the first index of the tensor, Aij . By convention dot signifies scalar product of the two
neighbouring indices. This product may be performed using the matrix notation by writing a as a row vector and
then multiplying it by the matrix A,

a ·A =
(
a1 a2 a3

)A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Similarly the A · a = Aijaj may be performed in matrix notation as

A · a =

A11 A12 A13

A21 A22 A23

A31 A32 A33

a1a2
a3

 .

Note that these two scalar products give different results unless A is symmetric (i.e.Aij = Aji). For example, if

we use Kij =
∂ui
∂xj

to denote the velocity gradient then

[K · u]j = Kjiui = uiKji = ui
∂uj
∂xi

= [u · ∇u]j

whereas

[u ·K]j = uiKij = ui
∂ui
∂xj

=
1

2

∂

∂xj
(uiui) =

1

2
[∇u2]j .

We can also form products between two indices on the same tensor. For example

δijAij = Aii = A11 +A22 +A33 = TrA

the trace of matrix A, which is a scalar quantity.

The scalar product of two second rank tensors A and B is another second rank tensor C = A ·B where

Cij = AikBkj .

This is equivalent to matrix multiplication. We can also form the double dot product A : B, which is the scalar
formed by contracting i with j.

A : B = δijAikBkj = AikBki,

which is equal to the trace of the C. Note that suffix notation removes any ambiguity over which components are
contracted with each other.

We can also apply cross-products between components of a tensor, for example

ci = εijkAjk

is a vector with components

c1 = A23 −A32, c2 = A31 −A13, c3 = A12 −A21.

Finally we have the triple product rule,

a× (b× c) = b(a · c)− c(a · b)

which results from the following relationship between εijk and δij

εijkεilm = δjlδkm − δjmδkl (3)

One way to remember this rule is (second-with-second × third-with-third - alternative pairings).



(iii) Grad, Div and Curl in suffix notation

We have already seen that we can write the gradient of a scalar of a vector as

∂p

∂xj
and

∂ui
∂xj

respectively.

Taking the gradient increases the rank of the quantity by one, from scalar→ vector, vector→ second rank tensor,
etc.

The divergence is obtained by form the dot product between the derivative and one of the indices of the tensor.
For a vector u ,

∇ · u =
∂ui
∂xi

Note that this is simply the gradient operator together with δij . Similarly we can define the divergence of a tensor
Aij as

∂

∂xi
Aij ,

and is a vector quantity. Note that the summation can be over either of the two indices, so we can obtain a second
vector using the second index,

∂

∂xj
Aij .

By convection the notation, ∇·A is taken to mean summation over the first index (the one closest to the dot), but
the potential for ambiguities in this formulation means that it is better to stick to suffix notation when dealing
with tensors.

Finally we can obtain the curl of a vector or tensor by the operation of εijk on the gradient, so for example

[∇× u]i = εijk
∂uk
∂xj

.

3 Velocity Gradient, Strain-rate and Vorticity

Let us now examine the velocity gradient ∂ui

∂xj
. For an incompressible ∇ · u = 0 and so this tensor has zero trace,

but there are still 8 remaining components. A useful simplification is to divide into the sum of a symmetric and
antisymmetric tensor, as

∂ui
∂xj

= Eij + Ωij , where Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and Ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (4)

It is easily verified that Eij = Eji and Ωij = −Ωji.

The symmetric tensor, E, is called the strain-rate tensor and the antisymmetric tensor, Ω is called the vorticity
tensor, because its non-zero elements are related to the elements of the vorticity, ω. Recall that the vorticity ω is
defined as the ∇× u and so in index notation it is defined as

ωi = εijk
∂uk
∂xj

. (5)

Multiplying this equation by εilm and using the triple product rule, we obtain

εilmωi = εijkεilm
∂uk
∂xj

= (δjlδkm − δjmδkl)
∂uk
∂xj

=
∂um
∂xl

− ∂ul
∂xm

= 2Ωml,

so that

Ωij = −1

2
εijkωk. (6)

This result is clear if we write Ω in matrix notation

Ω =
1

2


0 ∂u1

∂x2
− ∂u2

∂x1

∂u1

∂x3
− ∂u3

∂u1

∂u2

∂x1
− ∂u1

∂x2
0 ∂u2

∂x3
− ∂u3

∂u2

∂u3

∂x1
− ∂u2

∂u3

∂u3

∂x2
− ∂u2

∂x3
0

 =
1

2


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .



4 Div grad and curl in curvilinear coordinates

4.1 General curvilinear coordinates q1, q2, q3

Let ei be a unit vector along the qi-axis, with

ds2 = h21dq
2
1 + h22dq

2
2 + h23dq

2
3 .

Then ∇Φ =
∑
i

1

hi

∂Φ

∂qi
ei

∇ · F =
1

h1h2h3

∑
i,j,k

∂

∂qi
(hjhkFi)

(where here and subsequently the sum is over i with j and k selected cyclically, so that for i = 1 j and k are 2 and 3
respectively, for i = 2 they are 3 and 1, for i = 3 they are 1 and 2)

∇× F =
∑
i,j,k

1

hjhk

[ ∂

∂qj
(hkFk)− ∂

∂qk
(hjFj)

]
ei

∇2Φ =
1

h1h2h3

∑
i,j,k

∂

∂qi

(hjhk
hi

∂Φ

∂qi

)
∇2F = ∇(∇ · F)−∇× (∇× F)

(B · ∇)A =
∑
i,j,k

{
B · ∇Ai +

Aj
hihj

(
Bi
∂hi
∂qj
−Bj

∂hj
∂qi

)
+

Ak
hihk

(
Bi
∂hi
∂qk
−Bk

∂hk
∂qi

)}
ei

4.2 Cylindrical polar coordinates (R, φ, z)

In these coordinates hR = 1, hφ = R and hz = 1.

∇Φ =
∂Φ

∂R
R̂ +

1

R

∂Φ

∂φ
φ̂ +

∂Φ

∂z
ẑ

∇ · F =
1

R

∂

∂R
(RFR) +

1

R

∂Fφ
∂φ

+
∂Fz
∂z

∇× F =
[ 1

R

∂Fz
∂φ
− ∂Fφ

∂z

]
R̂ +

[∂FR
∂z
− ∂Fz
∂R

]
φ̂ +

1

R

[ ∂
∂R

(RFφ)− ∂FR
∂φ

]
ẑ

∇2Φ =
1

R

∂

∂R

(
R
∂Φ

∂R

)
+

1

R2

∂2Φ

∂φ2
+
∂2Φ

∂z2

∇2F =
[
∇2FR −

1

R2
FR −

2

R2

∂Fφ
∂φ

]
R̂

+
[
∇2Fφ −

1

R2
Fφ +

2

R2

∂FR
∂φ

]
φ̂ +∇2Fz ẑ

(B · ∇)A =
[
B · ∇AR −BφAφ/R

]
R̂

+
[
B · ∇Aφ +BφAR/R

]
φ̂ + B · ∇Az ẑ

4.3 Spherical polar coordinates (r, θ, φ)

In these coordinates hr = 1, hθ = r and hφ = r sin θ.

∇Φ =
∂Φ

∂r
r̂ +

1

r

∂Φ

∂θ
θ̂ +

1

r sin θ

∂Φ

∂φ
φ̂

∇ · F =
1

r2
∂

∂r

(
r2Fr

)
+

1

r sin θ

∂

∂θ

(
sin θFθ

)
+

1

r sin θ

∂Fφ
∂φ



∇× F =
1

r sin θ

[ ∂
∂θ

(sin θFφ)− ∂Fθ
∂φ

]
r̂

+
1

r

[ 1

sin θ

∂Fr
∂φ
− ∂

∂r
(rFφ)

]
θ̂ +

1

r

[ ∂
∂r

(rFθ)−
∂Fr
∂θ

]
φ̂

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2

∇2F =
[
∇2Fr −

2

r2
Fr −

2

r2 sin θ

∂

∂θ

(
sin θFθ

)
− 2

r2 sin θ

∂Fφ
∂φ

]
r̂

+
[
∇2Fθ −

1

r2 sin2 θ
Fθ +

2

r2
∂Fr
∂θ
− 2 cos θ

r2 sin2 θ

∂Fφ
∂φ

]
θ̂

+
[
∇2Fφ −

1

r2 sin2 θ
Fφ +

2

r2 sin θ

∂Fr
∂φ

+
2 cos θ

r2 sin2 θ

∂Fθ
∂φ

]
φ̂

(B · ∇)A =
[
B · ∇Ar − (BθAθ +BφAφ)/r

]
r̂

+
[
B · ∇Aθ + (BθAr − cot θBφAφ)/r

]
θ̂

+
[
B · ∇Aφ + (BφAr + cot θBφAθ)/r

]
φ̂

4.4 Unit vectors in spherical polar coordinates (r, θ, φ)

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ

θ̂ = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ

φ̂ = − sinφ x̂ + cosφŷ

x̂ = sin θ cosφ r̂ + cos θ cosφ θ̂ − sinφ φ̂

ŷ = sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂

ẑ = cos θ r̂− sin θ θ̂

Bx = sin θ cosφBr + cos θ cosφBθ − sinφBφ

By = sin θ sinφBr + cos θ sinφBθ + cosφBφ

Bz = cos θ Br − sin θ Bθ

Br = sin θ cosφBx + sin θ sinφBy + cos θ Bz

Bθ = cos θ cosφBx + cos θ sinφBy − sin θ Bz

Bφ = − sinφBx + cosφBy

4.5 Incompressible Navier-Stokes equation with no body force in cylindrical polar co-
ordinates

∂uR
∂t

+ u · ∇uR −
u2φ
R

= −1

ρ

∂p

∂R
+ ν

[
∇2uR −

uR
R2
− 2

R2

∂uφ
∂φ

]
∂uφ
∂t

+ u · ∇uφ +
uRuφ
R

= − 1

ρR

∂p

∂φ
+ ν

[
∇2uφ −

uφ
R2

+
2

R2

∂uR
∂φ

]
∂uz
∂t

+ u · ∇uz = −1

ρ

∂p

∂z
+ ν∇2uz



4.6 Incompressible Navier-Stokes equation with no body force in spherical polar coor-
dinates

∂ur
∂t

+ u · ∇ur −
u2θ
r
−
u2φ
r

= −1

ρ

∂p

∂r
+ ν

[
∇2ur −

2ur
r2
− 2

r2 sin θ

∂(uθ sin θ)

∂θ
− 2

r2 sin θ

∂uφ
∂φ

]
∂uθ
∂t

+ u · ∇uθ +
uruθ
r
−
u2φ cot θ

r
= − 1

ρr

∂p

∂θ
+ ν

[
∇2uθ +

2

r2
∂ur
∂uθ
− uθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂uφ
∂φ

]
∂uφ
∂t

+ u · ∇uφ +
uruφ
r

+
uθuφ cot θ

r
= − 1

ρr sin θ

∂p

∂φ
+ ν

[
∇2uφ +

2

r2 sin θ

∂ur
∂φ

+
2 cos θ

r2 sin2 θ

∂uθ
∂φ
− uφ

r2 sin2 θ

]

4.7 Velocity gradient Tensor in cylindrical and spherical polar coordinates

In curvilinear coordinates systems the velocity gradient tensor Kij = ∂ui

∂uj
has additional terms due to changes in the

coordinate directions.
In cylindrical polar coordinates:

K =



∂uR
∂R

1

R

∂uR
∂φ
− uφ
R

∂uR
∂z

∂uφ
∂R

1

R

∂uφ
∂φ

+
uR
R

∂uφ
∂z

∂uz
∂R

1

R

∂uz
∂φ

∂uz
∂z


In spherical polar coordinates:

K =



∂ur
∂r

1

r

∂ur
∂θ
− uθ

r

1

r sin θ

∂ur
∂φ
− uφ

r

∂uθ
∂r

1

r

∂uθ
∂θ

+
ur
r

1

r sin θ

∂uθ
∂φ
− uφ

r
cot θ

∂uφ
∂r

1

r

∂uφ
∂θ

1

r sin θ

∂uφ
∂φ

+
ur
r

+
uθ
r

cot θ


5 Solutions of ∇2V = 0

(i) Solutions of ∇2V = 0 in two dimensions.

The most useful solutions here are in polar coordinates, (r, θ). Then

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂θ2
= 0.

Look for separable solutions f(r) sinnθ where n is an integer. Then

1

r

d

dr

(
r
df

dr

)
− n2f

r2
= 0.

Look for solutions of the form f = rp. Then p2rp−2 − n2rp−2 = 0, so p = n or p = −n. So we have solutions

V =
A

rn
sinnθ +Brn sinnθ.

Clearly

V =
C

rn
cosnθ +Drn cosnθ

works just as well. Since the problem is linear we can add together any of these solutions and its also a solution.
Can also add together different n solutions.



If we want solutions to decay at infinity (often used for flow round obstacles where we match on to some uniform
flow at infinity) then its the A and C solutions we need, though the n = 1 case V = Br sin θ = By which has
u = ∇V = Bŷ i.e. a uniform flow in the y direction.

On the other hand, if we want solutions finite at the origin, then we want the B and D solutions only.

Example: irrotational flow past a cylinder

Here n = 1, C = U0, D = U0a
2 where a is the radius of the cylinder, so V = U0r cos θ + Uoa

2 cos θ/r, so

∇V =

(
U0 cos θ − U0a

2 cos θ

r2

)
r̂−

(
U0 sin θ +

U0a
2 sin θ

r2

)
θ̂,

which gives uniform flow in the x-direction (θ = 0 direction in 2D polars) and no flow through the cylinder at
r = a.

(ii) Axisymmetric solutions of ∇2V = 0.

These are usually discussed in spherical polar coordinates (r, θ, φ) but if we are axisymmetric, the flow is inde-
pendent of φ. In these circumstances

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
= 0.

We seek separable solutions of the form V = rpy(θ). Plugging in the r dependence, we get

1

sin θ

d

dθ

(
sin θ

dy

dθ

)
+ p(p+ 1)y = 0

which is Legendre’s equation with variable cos θ. If we put x = cos θ we get

(1− x2)
d2y

dx2
− 2x

dy

dx
+Ky = 0, K = p(p+ 1),

which is the more standard form of Legendre’s equation with x as the independent variable. We are only interested
in solutions which are finite at the poles, θ = 0 and θ = π which correspond to x = ±1. These regular solutions
only exist when K = n(n+ 1) for some non-negative integer n. The most useful solutions are

n = 0, y = 1; n = 1, y = x; n = 2, y =
1

2
(3x2 − 1),

which can be verified by direct substitution. There is a polynomial solution of degree n for every integer n: they
are known as the Legendre polynomials. They have lots of nice mathematical properties: properties are listed in
the NIST Handbook of Mathematical Functions by Olver, Lozier, Boisvert and Clark. This text book also has all
the properties of Bessel functions and all the other Mathematical functions that turn up in Applied Mathematics.

Since K = n(n + 1) = p(p + 1) an obvious soution is n = p, but p = −(n + 1) also satisfies n(n + 1) = p(p + 1).
So there are two types of solution, those that are finite at r = 0,

V = 1, (n = 0), V = r cos θ, (n = 1), V =
r2

2
(3 cos2 θ − 1), (n = 2), etc.

and those that go to zero at large r (the p = −n− 1 solutions)

V =
1

r
, (n = 0), V =

cos θ

r2
, (n = 1) V =

1

2r3
(3 cos2 θ − 1), (n = 2), etc.

Example: spherically symmetric bubble

The time-dependent solution of the flow surrounding a collapsing or expanding spherically symmetric bubble is
A(t)/r because this is the only spherically symmetric potential flow that vanishes at infinity. Another familiar
example is the gravitational potential outside a sphere GM/r which has to have this form as its the only spherically
symmetric potential that vanishes at infinity.



Example: irrotational flow past a sphere

Sphere has radius a and flow at infinity is U0ẑ.

V = U0r cos θ +
U0a

3 cos θ

2r2
,

which combines the two n = 1 solutions. Note ∂V/∂r = ur = 0 on r = a the surface of the sphere, and
uθ = −(1/r)∂V/∂θ = −U0 sin θ − U0a

3 sin θ/2r3, and since ẑ = cos θr̂− sin θθ̂ the flow at infinity has the correct
form. Note this is the potential flow, not the Stokes flow round the sphere, so the no-slip boundary at r = a is
not satisfied by this potential flow solution.

Some non-fluids uses of solutions of Laplace’s equations

Gravitational potential: the moon raises tides on the surface of the Earth. The moon’s gravitation adds a
quadrupole term to the Earth’s gravitational field

V =
GM

r
+

J2
2r3

(3 cos2 θ − 1)

where the axis of coordinates here is pointing towards the moon.

Magnetic fields often obey ∇2V = 0, with B = ∇V . A bar magnet parallel to the z axis gives rise to a dipole
magnetic potential m cos θ/r2. Br = ∂V/∂r and Bθ = (1/r)∂V/∂θ then give the dipolar magnetic field familiar
from iron filings experiments.

Wacky versions of Laplace’s equation

Sometimes equations turn up which look like Laplace’s equation but are not Laplace’s equation.

Example: the axisymmetric Stokes’ stream function in spherical polars is

ur =
1

r2 sin θ

∂Ψ

∂θ
, uθ = − 1

r sin θ

∂Ψ

∂r
,

so the vorticity is given by

ωφ =
1

r

∂

∂r
(ruθ)−

1

r

∂ur
∂θ

= − 1

r sin θ

[
∂2Ψ

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)]
= − 1

r sin θ
E2Ψ,

the right-hand side operator in the square brackets looks similar to the Laplacian of Ψ, but is a different second or-
der differential operator, sometimes called E2. However, if we choose a new variable Ψ̂ such that Ψ = r sin θ∂Ψ̂/∂θ
then

E2(Ψ) = r sin θ
∂

∂θ

[
1

r2
∂

∂r

(
r2
∂Ψ̂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ̂

∂θ

)]
= r sin θ

∂

∂θ
∇2Ψ̂.

So if the flow is irrotational, Ψ̂ satisfies the standard Laplace equation with its standard solutions, to get the
solutions for Ψ just evaluate r sin θ∂Ψ̂/∂θ. So using this transformation, we can write down the solutions using
the solutions of Laplace’s equation.

(iii) Non-axisymmetric solutions of ∇2V = 0.

These involve spherical harmonics. They are used (i) in numerical methods for solving problems where spherical
geometry is natural, (ii) to describe the gravitational field of the Earth or the magnetic field of the Earth or other
planets, (iii) acoustic scattering from spherical particles, (iv) in quantum mechanics, seismology and lots of other
scientific disciplines.

The full Laplace equation in spherical polars is

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0.

We proceed in the same way as in the axisymmetric case, looking for solutions of the form

V = rpy(θ) exp(imφ).



We get an ODE for y(θ) which is

1

sin θ

d

dθ

(
sin θ

dy

dθ

)
+ p(p+ 1)y − m2

sin2 θ
y = 0.

This is called the associated Legendre equation (also discussed extensively in chapter 14 of NIST Handbook).
The Wikipedia entry on ‘Spherical harmonics’ is also helpful, and has nice pictures of what the simpler spherical
harmonics look like. As before, the associated Legendre equation only has solutions that are finite at the poles if
p(p+ 1) = n(n+ 1) for some integer n. So again the r dependence corresponding to the n solution is either rn or
1/rn+1. The solutions of

1

sin θ

d

dθ

(
sin θ

dy

dθ

)
+ n(n+ 1)y − m2

sin2 θ
y = 0

are called associated Legendre functions, written

y(cos θ) = Pmn (cos θ)

where n is called the degree of the associated Legendre function and m is the order. m must be ≤ n. If m = 0,
the associated Legendre function of degree n is the same as the Legendre polynomial of degree n.

The functions
Y mn (θ, φ) = APmn (cos θ) exp(imφ)

are called the spherical harmonics.

As they are solutions of a linear differential equation, there is an arbitrary constant A multiplying the solution.
To make the spherical harmonics definite we need to choose a definite constant for each spherical harmonic. This
is called the normalization of the spherical harmonics. Unfortunately, because spherical harmonics are useful in so
many different fields, e.g. quantum mechanics, magnetism, gravitation, seismology, fluid dynamics etc, and every
different group of scientists normalized the spherical harmonics in a different way, there is now massive confusion
in the scientific literature! For example, a large part of the Wikipedia article is devoted to the normalization
issue. The definition of the Legendre polynomials is now completely standard as defined in the NIST Handbook.
The Associated Legendre functions are now also standardly defined as

Pmn (x) = (−1)m(1− x2)m/2
dmPn(x)

dxm
.

The complete solution of Laplace’s equation that decays at infinity is

V =

n=∞∑
n=0

m=n∑
m=0

1

rn+1
Pmn (cos θ)(Anm cosmφ+Bnm sinmφ).

and the solution that is finite at the origin has the same form but with rn replacing 1/rn+1.

Some of the simpler associated Legendre functions are (here x = cos θ)

Pmn (x) =: (i) n = 0,m = 0 : P 0
0 = 1. (ii) n = 1,m = 0 : P 0

1 = x. (iii) n = 1,m = 1 : P 1
1 = −(1− x2)1/2.

(iv) n = 2,m = 0 : P 0
2 =

1

2
(3x2−1). (v) n = 2,m = 1 : P 1

2 = −3x(1−x2)1/2. (vi) n = 2,m = 2 : P 2
2 = 3(1−x2).


