Dr. C. Beaume

MATH3620 Fluid Dynamics 2
Example sheet 6

1. Consider the small amplitude, long wave motion on a body of water of depth H, where the free surface is given by $y=\eta(x, t)=a \cos (k x-\omega t)$ and there is rigid boundary at $y=-H$.

State the boundary conditions on the velocity potential, $\phi(x, y, t)$ and hence show that the velocity potential is of the form

$$
\phi(x, y, t)=f(y) \sin (k x-\omega t)
$$

where the function f satisfies,

$$
\frac{d^{2} f}{d y^{2}}-k^{2} f=0
$$

Hence show that the velocity potential is given by,

$$
\phi=\frac{g a}{\omega} \frac{\cosh (k(y+H))}{\cosh k H} \sin (k x-\omega t)
$$

and obtain the dispersion relation.
Find the fluid velocity at the point $\left(x_{0}, y_{0}\right)$ and show that the fluid particles move in ellipses with semi-axes,

$$
\frac{a \cosh \left(k\left(y_{0}+H\right)\right)}{\sinh k H}, \quad \frac{a \sinh \left(k\left(y_{0}+H\right)\right)}{\sinh k H} .
$$

2. Internal Waves A fluid of density ρ_{1} lies above a fluid of density ρ_{2} (with $\rho_{2}>\rho_{1}$ where the interface between the two fluids is at $y=\eta(x, t)$. Both fluid layers are effectively infinitely thick.

The flows in both fluids are irrotational and given by velocity potentials ϕ_{1} and ϕ_{2}. On the assumption that surface tension is neglible and η is sufficiently small that quadratic terms may be neglected show on $y=0$ that η, ϕ_{1} and ϕ_{2} satisfy

$$
\begin{aligned}
\rho_{1} \frac{\partial \phi_{1}}{\partial t}-\rho_{2} \frac{\partial \phi_{2}}{\partial t} & =\left(\rho_{2}-\rho_{1}\right) g \eta \\
\frac{\partial \phi_{1}}{\partial y}=\frac{\partial \phi_{2}}{\partial y} & =\frac{\partial \eta}{\partial t}
\end{aligned}
$$

What are the boundary conditions at $y \rightarrow \pm \infty$?
Find solutions for ϕ_{1} and ϕ_{2} for the case where $\eta(x, t)=a \cos (k x-\omega t)$ and show that the dispersion relation is given by

$$
\omega^{2}=g k \frac{\left(\rho_{2}-\rho_{1}\right)}{\left(\rho_{2}+\rho_{1}\right)}
$$

Please send any comments or corrections to Dr. C. Beaume.
c.m.l.beaume@leeds.ac.uk

