MATH3620 Fluid Dynamics 2
 Example sheet 5

1. Using just the Cauchy-Riemann equations:

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \\
& \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} .
\end{aligned}
$$

obtain the following results:
(a) Both ϕ and ψ satisfy the Laplace equation: $\nabla^{2} \phi=\nabla^{2} \psi=0$.
(b) The curves $\phi=$ cst and $\psi=$ cst intersect at right angles (Hint: show that $\nabla \psi \cdot \nabla \phi=0$).
2. Show that the real part of:

$$
\int_{C} \frac{d w}{d z} d z
$$

is equal to the circulation:

$$
\Gamma=\int_{C} \mathbf{u} \cdot \mathbf{d x} .
$$

3. Consider the complex potential:

$$
w(z)=\frac{U}{a-b}\left[a z-b\left(z^{2}-a^{2}+b^{2}\right)^{1 / 2}\right],
$$

where a and b are real numbers.
(a) Show that the imaginary part of $w(z)$ is zero on $z=a \cos \theta+i b \sin \theta$ and deduce that the ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is a streamline.
(b) Show that $w(z) \simeq U z$ as $|z| \rightarrow \infty$ and deduce that $w(z)$ is the complex potential for flow past an ellipse with semi-axes a and b.
4. Show that if $f(z)$ is a complex potential then:

$$
w(z)=f(z)+\overline{f(-\bar{z})},
$$

is a complex potential with the imaginary axis as a streamline. Then, find the image system corresponding to a vortex at (a, b) in the presence of a wall at $x=0$.

By using the above result together with the image system when the real axis is a streamline obtain a complex potential in the case both the real and imaginary axes are streamlines. Lastly, obtain the image system corresponding to a vortex at (a, b) in the presence of walls along $x=0$ and $y=0$.
5. Show that $Z=z^{3 / 4}$ maps the complex plane onto the region $-3 \pi / 4 \leq \arg (Z) \leq 3 \pi / 4$. By considering $w(z)=-U z$, find the complex potential for a flow divided by a right-angled wedge like the one in the figure below.

6. Aerodynamic Torque on an Ellipse

In the lectures, it was shown that the aerodynamic torque T on a streamlined body due to the complex potential $W(Z)$ is given by:

$$
T=-\frac{\rho}{2} \Re\left\{\oint_{C} Z\left(\frac{d W}{d Z}\right)^{2} d Z\right\},
$$

where C is the contour around the body. Show that if there is a conformal mapping $Z(z)$ such that $W(Z)=w(z)$ then the torque can be evaluated in the z-plane as:

$$
T=-\frac{\rho}{2} \Re\left\{\oint_{C_{z}} Z(z)\left(\frac{d w}{d z}\right)^{2}\left(\frac{d Z}{d z}\right)^{-1} d z\right\}
$$

where C_{z} is the contour corresponding to C in the z-plane. Hence, by using the mapping:

$$
Z=z+\frac{c^{2}}{z}
$$

and the complex potential for flow past a cylinder, show that the torque on an ellipse inclined at an angle α is given by:

$$
T=-2 \rho \pi c^{2} U_{0}^{2} \sin 2 \alpha .
$$

Please send any comments or corrections to Dr. C. Beaume.
c.m.l.beaume@leeds.ac.uk

