MATH3620 Fluid Dynamics 2

Example sheet 4

1. A vortex sheet is created in the (x, y) plane along the line $y=0$ such that at time $t=0$:

$$
u= \begin{cases}U & y>0 \\ -U & y<0\end{cases}
$$

(a) On the assumption that the velocity is one-dimensional and that u is independent of x and that there are no pressure gradients, show that $u(y, t)$ satisfies the diffusion equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\nu \frac{\partial^{2} u}{\partial y^{2}}, \tag{1}
\end{equation*}
$$

and give a definition for the diffusivity ν.
(b) Show that equation (1) admits similarity solutions of the form $u(y, t)=f(\eta)$, where $\eta=y t^{a}$ for some constant a which you should determine, with f satisfying:

$$
\frac{d^{2} f}{d \eta^{2}}+\frac{\eta}{2 \nu} \frac{d f}{d \eta}=0
$$

State the boundary conditions that apply on f for $\eta \rightarrow \pm \infty$.
(c) Show that for $t>0$ the velocity is given by:

$$
u=U \operatorname{erf}\left(\frac{y}{2 \sqrt{\nu t}}\right)
$$

2. A viscous fluid is contained in the gap between two stationary walls at $y=0$ and $y=h$ and is initially at rest. At $t=0$, a pressure gradient $\frac{d p}{d x}=-G$ is suddenly applied.
(a) On the assumption that the velocity is one-dimensional and that u is independent of x, show that, for $t>0, u(y, t)$ satisfies the equation:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{G}{\rho}+\nu \frac{\partial^{2} u}{\partial y^{2}} . \tag{2}
\end{equation*}
$$

(b) Show that:

$$
u_{S S}(y)=\frac{G y(h-y)}{2 \rho \nu}
$$

is a solution of this equation.
(c) By positing:

$$
u(y, t)=u_{S S}(y)+v(y, t),
$$

show that $v(y, t)$ satisfies the diffusion equation:

$$
\frac{\partial v}{\partial t}=\nu \frac{\partial^{2} v}{\partial y^{2}}
$$

and state the boundary conditions on v.
(d) Using separation of variables to obtain $v(y, t)$, show that the general solution of equation (2) satisfying the boundary conditions $u=0$ on $y=0$ and $y=h$ is given by:

$$
u(y, t)=\frac{G y(h-y)}{2 \rho \nu}+\sum_{n=1}^{\infty} a_{n} \exp \left(-\frac{\nu n^{2} \pi^{2}}{h^{2}} t\right) \sin \left(\frac{n \pi y}{h}\right) .
$$

(e) Obtain the solution for $u(y, t)$ satisfying the initial condition $u=0$ at $t=0$.
3. Consider the motion of a viscous fluid in the region $y>0$ caused by oscillating a wall at $y=0$ so that:

$$
\mathbf{u}(0, t)=(U \exp (i \Omega t), 0,0)
$$

(a) On the assumption that the fluid velocity in the region $y>0$ is of the form:

$$
\mathbf{u}=(u(y, t), 0,0),
$$

and that the pressure gradient is zero, show that the fluid velocity satisfies:

$$
\frac{\partial u}{\partial t}=\nu \frac{\partial^{2} u}{\partial y^{2}} .
$$

(b) Seek a solution of the form $u(y, t)=f(y) \exp (i \Omega t)$ and show that such a solution satisfying the boundary condition at $y=0$ and decaying to zero as $y \rightarrow \infty$ is given by:

$$
u(y, t)=U \exp (-k y) \exp (i \Omega t-i k y)
$$

where $k=\sqrt{\Omega / 2 \nu}$ (Hint: recall that $i=(1+i)^{2} / 2$).

Please send any comments or corrections to Dr. C. Beaume.

> c.m.l.beaume@leeds.ac.uk

