MATH3620 Fluid Dynamics 2

Example sheet 3

1. Estimate the Reynolds number for the following situations:
(a) A raindrop of size 0.5 cm falling through air at $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Viscosity of air is approximately $2 \times 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s}$ and density, $1.3 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
(b) A spermatozoan with tail length $10 \mu \mathrm{~m}$ swimming at $100 \mu \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in water. Viscosity of water is approximately $10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$ and density, $10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
(c) A jet of ink from an inkjet printer: nozzle diameter $50 \mu \mathrm{~m}$, jet speed $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for an ink of density $10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$ and viscosity $0.01 \mathrm{~Pa} \cdot \mathrm{~s}$.
(d) Pouring honey from a jar: viscosity $10 \mathrm{~Pa} \cdot \mathrm{~s}$, density $1.3 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
(e) Convection in the earth's mantle: depth 700 km , moving at 20 mm per year. Viscosity of mantle is approximately $10^{22} \mathrm{~Pa} \cdot \mathrm{~s}$ and density, $4 \times 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
2. Show from the Stokes equations that, when $R e=0$, the vorticity $\boldsymbol{\omega}=\nabla \times \mathbf{u}$ satisfies:

$$
\nabla^{2} \boldsymbol{\omega}=0
$$

Show that the streamfunction ψ for a planar flow is related to the vorticity by:

$$
\nabla^{2} \psi=-\omega
$$

and show that the streamfunction for a planar Stokes flow satisfies:

$$
\nabla^{4} \psi=0
$$

where $\nabla^{4} f=\nabla^{2}\left(\nabla^{2} f\right)$.
3. Estimate the size of $\rho \frac{D u}{D t}$ in the slider bearing flow. Hence, show that the effects of inertia can be neglected provided that:

$$
U \ll \frac{2 \mu L}{\rho\left|d_{2}^{2}-d_{1}^{2}\right|}
$$

Deduce that the lubrication approximation remains valid even for flows for which the Reynolds number, $\frac{\rho U\left(d_{1}+d_{2}\right)}{2 \mu}$, is not small.
4. A slow viscous flow is driven through a narrow gap between two rigid walls at $y=0$ and $y=h(x)$ by an applied pressure gradient. Show that, provided $\frac{d h}{d x} \ll 1$, the pressure p is approximately constant in the cross-section and that the volume flow rate (per unit length in z):

$$
Q=\int_{0}^{h(x)} u d y=-\frac{h^{3}}{12 \mu} \frac{d p}{d x}
$$

Find the pressure difference between $x=0$ and $x=L$ required to produce a volume flow rate of Q for the case:

$$
h(x)=d_{1}+\frac{\left(d_{2}-d_{1}\right)}{L} x
$$

5. A thin layer of fluid of viscosity μ and density ρ is draining under the effect of gravity down the side of a vertical plane. Its thickness, $h(z, t)$, is only a function of time t and vertical distance z down the plane. State the conditions under which the lubrication approximation is valid and show that, in this case, $h(z, t)$ follows the evolution equation:

$$
\frac{\partial h}{\partial t}+\frac{\rho g h^{2}}{\mu} \frac{\partial h}{\partial z}=0
$$

Verify that:

$$
h(z, t)=f\left(z-\frac{\rho g h^{2}}{\mu} t\right)
$$

is a solution of this equation. What does this solution tell you about how the shape of a bulge evolves?

Please send any comments or corrections to Dr. C. Beaume.
c.m.l.beaume@leeds.ac.uk

