MATH3620 Fluid Dynamics 2

Example sheet 2

1. The gap between two parallel walls at $y=0$ and $y=h$ is filled with a fluid of viscosity μ and density ρ. A pressure gradient $\frac{\partial p}{\partial x}=-G$ is applied along the channel with the wall at $y=h$ held fixed while the wall at $y=0$ has velocity $-U$ in the x direction. Show that the steady fluid velocity is given by:

$$
u(y)=\frac{G}{2 \mu} y(h-y)-\frac{U}{h}(h-y) .
$$

Calculate the volume flow rate:

$$
Q=\int_{0}^{h} u(y) d y
$$

and show that if $G=6 \mu U / h^{2}$ then $Q=0$. For this case, find the maximum value of u in the channel and show that $u(h / 3)=0$. Sketch the velocity profile across the gap.
2. The gap between two parallel walls at $y=-h$ and $y=h$ is filled with two different immiscible fluids, such that the fluid in $-h<y<0$ has viscosity μ_{1}, while that in $0<y<h$ has viscosity μ_{2}.
(a) State the boundary conditions that must be applied at $y=0$.
(b) If the boundary at $y=h$ has velocity U, the one at $y=-h$ has velocity $-U$ and there is no applied pressure gradient, find the fluid velocity in the gap. (Hint: treat the velocity at $y=0$ as an unknown and find the fluid velocity in each fluid separately, then apply the boundary conditions at $y=0$).
(c) The boundaries are now fixed and a pressure gradient $\frac{\partial p}{\partial x}=-G$ is applied. Find the fluid velocity in the two fluids. Calculate the volume flow rates Q_{1} and Q_{2} of each fluid and show that:

$$
\frac{Q_{1}}{Q_{2}}=\frac{\mu_{2}\left(7 \mu_{1}+\mu_{2}\right)}{\mu_{1}\left(7 \mu_{2}+\mu_{1}\right)} .
$$

3. A fluid of viscosity μ is forced to flow in the gap between two cylinders at $r=a$ and $r=b$ by a pressure gradient $\frac{\partial p}{\partial z}=-G$. Find the fluid velocity on the assumption that it is of the form $\mathbf{u}=w(r) \hat{\mathbf{e}}_{\boldsymbol{z}}$. Hence determine the shear stress at $r=a$ and $r=b$.
4. A viscous fluid is forced to flow down a pipe of constant cross-section S whose axis runs parallel to the z axis by a pressure gradient $\frac{\partial p}{\partial z}=-G$.
(a) Show that the fluid velocity, $\mathbf{u}=w(x, y) \hat{\mathbf{e}}_{\boldsymbol{z}}$, must satisfy:

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=-\frac{G}{\mu}
$$

subject to the boundary condition $w=0$ on the boundary ∂S.
(b) By seeking a solution of the form:

$$
w(x, y)=A\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1\right)
$$

find the velocity in the case S is the interior of the ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

and show that it reduces to the Poiseuille flow solution when $a=b$.
(c) Now consider the case in which S is the interior of an equilateral triangle with sides $y=0, y=\sqrt{3}(a-x)$ and $y=\sqrt{3}(a+x)$. Show that:

$$
y\left[(y-\sqrt{3} a)^{2}-3 x^{2}\right]
$$

satisfies the boundary conditions and hence find $w(x, y)$.

Please send any comments or corrections to Dr. C. Beaume.

> c.m.l.beaume@leeds.ac.uk

