MATH3620 Fluid Dynamics 2
Example sheet 1

1. Consider the velocity field

$$
\mathbf{u}=(4 x+2 z,-4 y,-2 x) .
$$

(a) Find the equation of the particle path that passes through the general point $\left(x_{0}, y_{0}, z_{0}\right)$ at $t=0$.
(b) Calculate $\nabla \cdot \mathbf{u}, \nabla \times \mathbf{u}$ and $(\mathbf{u} \cdot \nabla) \mathbf{u}$.
(c) Find the velocity gradient tensor $\nabla \mathbf{u}$ and determine the strain-rate \mathbf{E} and vorticity tensor $\boldsymbol{\Omega}$. Verify that $\Omega_{i j}=-\frac{1}{2} \epsilon_{i j k} \omega_{k}$ where $\boldsymbol{\omega}=\nabla \times \mathbf{u}$. Describe the flows associated with \mathbf{E} and $\boldsymbol{\Omega}$.
2. Show that the velocity field $\mathbf{u}=(\alpha x,-\alpha y, 0)$, where α is a constant, satisfies the NavierStokes equation:

$$
\rho \frac{D \mathbf{u}}{D t}=-\nabla p+\mu \nabla^{2} \mathbf{u}
$$

and determine the associated pressure p.
3. Use index notation to show that

$$
\begin{aligned}
(\mathbf{u} \cdot \nabla) \mathbf{u} & =\frac{1}{2} \nabla|\mathbf{u}|^{2}-\mathbf{u} \times(\nabla \times \mathbf{u}), \\
\nabla^{2} \mathbf{u} & =\nabla(\nabla \cdot \mathbf{u})-\nabla \times(\nabla \times \mathbf{u}) .
\end{aligned}
$$

Hence show for an incompressible fluid that the Navier-Stokes equation:

$$
\rho \frac{D \mathbf{u}}{D t}=-\nabla P+\rho \mathbf{g}+\mu \nabla^{2} \mathbf{u}
$$

can be re-written as:

$$
\frac{\partial \mathbf{u}}{\partial t}-\mathbf{u} \times \boldsymbol{\omega}=-\nabla\left(\frac{P}{\rho}+\frac{1}{2}|\mathbf{u}|^{2}-\mathbf{g} \cdot \mathbf{x}\right)-\nu \nabla \times \boldsymbol{\omega}
$$

where $\boldsymbol{\omega}=\nabla \times \mathbf{u}$ is the vorticity and $\nu=\mu / \rho$ is the kinematic viscosity.

Please send any comments or corrections to Dr. C. Beaume.

