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So far, we have considered mass conservation and the rate of deformation of the fluid. Now,
we shall consider the forces acting on the fluid and how they relate to the velocity gradient.

2.1 Fluid momentum transport

Consider a fixed volume of fluid V with surface S and outward normal n.

V

S

We consider the changes to the total fluid momentum contained within V . Applying Newton’s
law of motion to this volume we have:rate of increase

of momentum
in V

 =

net inward flow
of momentum

through S

+

net force
acting
on V

 (2.1)

The momentum density in the fluid is given by ρu and so the first contribution to equation
(2.1) is: rate of increase

of momentum
in V

 =
d

dt

(∫
V
ρudV

)
=

∫
V

∂

∂t
(ρu) dV,

The net flow of momentum through the surface S is given by:net inward flow
of momentum

through S

 = −
∫
S
ρuu · ndS,

17



18 2.1 Fluid momentum transport

which in suffix notation is written as:

−
∫
S
ρuiujnjdS.

Now, to convert this to a volume integral, we apply the divergence theorem by replacing nj
with ∂/∂xj so that:

−
∫
S
ρuiujnjdS = −

∫
V

∂

∂xj
(ρuiuj) dV.

The forces acting on the fluid can be divided into two groups:

i. Body forces: These are external forces acting on the fluid, such as gravity or electro-
magnetic forces (which are important in astrophysical fluids and also for flows within
the Earth’s core), however we shall only consider gravity which exerts a force:∫

V
ρgdV.

ii. Molecular forces: These are short-range due to interactions between fluid molecules
on either side of the surface S, which exert a force:∫

S
fdS.

V

S

n

Since we wish to use the divergence theorem to transform this into a volume integral
we define the total stress tensor, τ , such that:

fi = njτji,

where n is the normal to the surface. With this definition, the molecular force acting
on the fluid is given by: ∫

S
τjinjdS =

∫
V

∂τji
∂xj

dV.

Putting all these contributions back into equation (2.1), we obtain:∫
V

[
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj)− ρgi −

∂τji
∂xj

]
dV = 0. (2.2)

Since V is arbitrary, we obtain the momentum equation:

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj)− ρgi −

∂τji
∂xj

= 0.

Note that the first two terms correspond to the conservation equation for the vector ρu. We
can simplify this equation by noting from mass conservation (equation (1.6)) that:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0,
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so that:
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = ρ

∂ui
∂t

+ ρuj
∂ui
∂xj

= ρ
Dui
Dt

.

Hence, the equation for fluid momentum transport is:

ρ
Dui
Dt

= ρgi +
∂τji
∂xj

, (2.3)

or written in the usual vector notation:

ρ
Du

Dt
= ρg +∇ · τ . (2.4)

Like the equation for mass conservation, this equation applies to all continuous materials.
However, this is not sufficient to predict the motion of the fluid since we need an additional
equation relating the molecular forces represented by the stress tensor τ to the fluid motion.

2.2 Constitutive equations

The equation defining the stress tensor τ is called the constitutive equation.

2.2.1 Ideal fluid

The simplest constitutive equation for a fluid is that of an ideal or inviscid fluid for which
the only surface force is the pressure. For an incompressible fluid, pressure arises from the
resistance to changes in volume and acts along the direction of the normal n:

f = −Pn.

Hence, for an ideal fluid: njτji = −Pni, yielding τji = −Pδij . Substituting into the momen-
tum transport equation, we obtain the Euler equation:

ρ
Du

Dt
= ρg −∇P. (2.5)

2.2.2 Newtonian fluid

In most situations, additional forces come into play. In the example case of a shear flow, we
observed a force that takes the following form per unit area: f = µγ̇ex, where we have defined
the shear-rate γ̇ = ∂u1/∂x2. In addition to the pressure, there is therefore a contribution to
the stress caused by the shearing motion:

τij = −Pδij + σij , (2.6)

where σij is the viscous stress. The tensor σ is proportional to the velocity gradient. We
are looking at forces and are hence interested in the deformations of the fluid. In chapter 1,
we saw that only the symmetric part of the velocity gradient involves the deformation of the
fluid. Considering an isotropic fluid, the stress must then be of the form:

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2µEij , (2.7)

where µ is the dynamic viscosity.
In the shear flow case, the only non-zero component of the velocity gradient is ∂u1/∂x2 = γ̇,
so that σ21 = σ12 = µγ̇. Notice that the stress tensor is symmetric.
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Example: Let us consider the flow which occurs when we stretch out a cylinder of incom-
pressible fluid: w = ε̇z.

Mass conservation requires that the volume of fluid in the column remains fixed:

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

which can be achieved by setting u = −1
2 ε̇x and v = −1

2 ε̇y. The velocity gradient tensor ∇u
is therefore given by:

∇u =

−1
2 ε̇ 0 0
0 −1

2 ε̇ 0
0 0 ε̇

 .

Hence, the viscous stress has components: σxx = σyy = −µε̇ and σzz = 2µε̇.

For a Newtonian fluid:

∂τji
∂xj

=
∂

∂xj

[
−Pδji + µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
= − ∂P

∂xi
+ µ

∂2ui
∂xjxj

+ µ
∂2uj
∂xjxi

,

However, since ∇ · u = 0, the last term is zero and we obtain the governing equations for an
incompressible Newtonian fluid:

ρ
Du

Dt
= −∇P + µ∇2u + ρg, (2.8)

often solved together with the incompressibility constraint: ∇ · u = 0.

2.3 Hydrostatic and dynamic pressure

If there is no flow, the Navier–Stokes equation reduces to a balance between gravity and
pressure:

−∇P + ρg = 0.

The resulting pressure solution:

PH = P0 + ρg · x,

is referred to as hydrostatic pressure. Although gravity is responsible for driving some flows
such as rivers or gravity waves, in many cases it is simply balanced by the hydrostatic pressure.
As a consequence, it is often useful to subtract off the hydrostatic pressure by writing the
pressure in the form:

P = PH + p (2.9)

where p is referred to as the dynamic pressure. This reduces the Navier–Stokes equation to:

ρ
Du

Dt
= −∇p+ µ∇2u. (2.10)

2.4 Boundary conditions

In addition to the equation for the stress tensor, we need to know what boundary conditions
to apply. In general, both the velocity and the forces must be continuous at a fluid boundary,
however, the nature of the boundary impacts the way these laws are expressed.
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2.4.1 Solid boundaries

Where a fluid is in contact with a solid surface moving at velocity U, there is friction between
the solid surface and the fluid: the velocity in the fluid u must be equal to the velocity of the
solid surface:

u = U,

on the boundary. As well as matching the velocity, we also have a boundary condition on the
stress. By definition, the surface force density applied by the boundary on the fluid is equal
to

f = n · τ , (2.11)

where n is the outward pointing normal to the surface. By Newton’s third law, the fluid
imposes an equal and opposite force density on the solid boundary.

2.4.2 Free surfaces

If the fluid is in contact with air (or a fluid of much lower viscosity), the only force exerted
by the air on the fluid results from the atmospheric pressure Patm. In the absence of surface
forces, the force applied by the air to the fluid is −Patmn. The force balance implies:

n · τ = −Pn + n ·σ = −Patmn, (2.12)

known as the dynamic boundary condition. Consequently, there is no force parallel to the
surface. A free surface cannot support shear.
We still require one additional boundary condition. Let the position of the surface be given
by f(x, t) = h(x, y, t)− z = 0. Since all points on the surface must remain on the surface:

Df

Dt
= 0,

which is the kinematic boundary condition. In particular, if the surface remains fixed in time,
we have:

u · ∇f = 0,

where ∇f = n is the normal to the surface. It follows:

u · n = 0.

2.4.3 Boundary between immiscible fluids

At a boundary between two fluids of different viscosities, both the velocity u and force density
n · τ must be continuous.
Furthermore, if the surface between the fluids remains fixed in time then u · n = 0. Conse-
quently, the condition that n · τ is continuous reduces to both P and µn·∇u being continuous.

2.5 One dimensional flow examples

2.5.1 Plane Poiseuille flow

Let us consider the stationary flow of fluid along a
channel driven by a pressure gradient. We define
Cartesian coordinates with x along the channel in
the direction of flow and y across the channel, with
boundaries at y = ±h.
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The fluid velocity, u, satisfies no-slip boundary conditions at the walls: u = 0 at y = ±h. We
wish to calculate the simplest flow realization, so we use the symmetries of the configuration
to simplify the calculation:

• u · ey = v = 0: no wall-normal flow

• u · ez = w = 0: unidirectional velocity in the direction of the pressure gradient

• ∂z ≡ 0: invariance in the spanwise direction

The first two hypotheses lead to the velocity having only one non-vanishing component while
the third one indicates it only varies in the streamwise and wall-normal directions: u =
u(x, y)ex.
We recall the writing of the incompressibility constraint in Cartesian coordinates:

∂xu+ ∂yv + ∂zw = 0, (2.13)

and of the Navier–Stokes equation:

ρ [∂tu+ u∂xu+ v∂yu+ w∂zu] = −∂xp+ µ
[
∂2
xu+ ∂2

yu+ ∂2
zu
]
, (2.14)

ρ [∂tv + u∂xv + v∂yv + w∂zv] = −∂yp+ µ
[
∂2
xv + ∂2

yv + ∂2
zv
]
, (2.15)

ρ [∂tw + u∂xw + v∂yw + w∂zw] = −∂zp+ µ
[
∂2
xw + ∂2

yw + ∂2
zw
]
. (2.16)

The incompressibility constraint (2.13) yields:

∂xu = 0, (2.17)

which, together with the starting hypotheses provides:

u = u(y)ex. (2.18)

The Navier–Stokes equation in the wall-normal and spanwise directions (2.15) and (2.16) give:

∂yp = ∂zp = 0, (2.19)

thus:
p = p(x). (2.20)

Eventually, the Navier–Stokes equation in the streamwise direction (2.14) gives:

0 = −∂xp+ µ∂2
yu. (2.21)

The solution reads:

u =
∂xp

2µ
y2 + k1y + k2, (2.22)

where k1 and k2 are solved for using the boundary conditions:

∂xp

2µ
h2 + k1h+ k2 = 0, (2.23)

∂xp

2µ
h2 − k1h+ k2 = 0, (2.24)

yielding:

k1 = 0, k2 = −∂xp h
2

2µ
. (2.25)
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The trivial laminar flow in a channel, also called plane Poiseuille flow, then reads:

u =
Gh2

2µ

(
1− y2

h2

)
, (2.26)

with G = −∂xp. Hence, the velocity has a parabolic profile, with a shear-stress at the wall
given by: σyx = µdu/dy = ∓Gh. The streamfunction is given by:

∂ψ

∂y
= u =

G

2µ

(
h2 − y2

)
,

so that:

ψ =
Gy

6µ

(
3h2 − y2

)
.

The volume flow per unit depth is given by ψ(h)− ψ(−h) = 2Gh3/3µ.

2.5.2 Hagen–Poiseuille flow

The equivalent axisymmetric problem where a fluid flows along a cylindrical pipe is often
referred to as Hagen–Poiseuille or Poiseuille flow in the name of the scientists who first derived
and measured this flow.

We consider a pipe of radius a and use cylindrical polar coordinates based on the axis of the
cylinder so that the fluid velocity is of the form: u = w(r)êz. As was the case for channel
flow, this flow automatically satisfies the incompressibility condition and, since we look for a
steady flow: Du/Dt = 0. The components of the Navier–Stokes equation reduce to:

0 = −∂p
∂r
,

0 = −1

r

∂p

∂θ
,

0 = −∂p
∂z

+ µ
1

r

d

dr

(
r
dw

dr

)
.

The pressure is a function of z alone and is of the form p(z) = p0 − Gz where G is the
magnitude of the pressure gradient. We obtain:

d

dr

(
r
dw

dr

)
= −Gr

µ
.

Integrating with respect to r yields:

dw

dr
=
A

r
− Gr

2µ
,

for some constant A. The velocity is smooth everywhere, so A = 0. Finally, integrating again
and applying the boundary condition w(a) = 0, we obtain:

w(r) =
G

4µ

(
a2 − r2

)
.

Hence, using the result from example 1.5, the volume flow through the pipe is equal to:

Q =
Gπa4

8µ
,
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and so the pressure difference required to pump a fluid of viscosity µ at a volume flow rate Q
along a pipe of radius a and length L is given by:

∆p =
8µQL

πa4
.

This solution gives a good approximation provided that the pipe is long and straight and that
the fluid is sufficiently viscous. It also provides a good method for measuring the viscosity of
a fluid.

2.5.3 Flow down an inclined plane

A plane inclined at an angle α to the horizontal is
coated with a layer of fluid of thickness h.
Let us define the Cartesian coordinates: x is di-
rected down the slope and y perpendicular to the
slope. Using the symmetries of the configuration to
simplify the flow, we assume that the fluid velocity
is of the form u = (u(y), 0, 0).

Since gravity is driving the flow, we consider the full pressure and include the body force due
to gravity. The Navier–Stokes equation reduces to:

∇P = ρg + µ∇2u.

The gravitational acceleration g is given by:

g = (g sinα,−g cosα, 0).

Hence, the x and y components of the momentum equation reduce to:

∂P

∂x
= µ

d2u

dy2
+ ρg sinα, (2.27)

∂P

∂y
= −ρg cosα. (2.28)

At the free surface y = h, the boundary condition reads: n · τ = −Patmn. In this case,
n = (0, 1), which implies that:

τyy = −P = −Patm, τyx = σyx = µ
du

dy
= 0.

From equation (2.28), the pressure is given by:

P = Patm + ρg cosα(h− y).

so that ∂P/∂x = 0. Therefore, upon integrating equation (2.27), we get:

u(y) = −ρg sinα

2µ
y2 +Ay +B,

where A and B are integration constants determined by the boundary conditions: u = 0 at
y = 0 and du/dy = 0 at y = h. Eventually, we obtain:

u(y) =
ρg sinα

2µ
y(2h− y).

Hence, the flow profile is again parabolic and corresponds to the flow in the bottom half of
the channel.
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2.5.4 Taylor–Couette flow

So far, we have only considered flows in which the fluid particles move in straight lines at
constant speed so that the acceleration is equal to zero. Let us now consider a flow with
curved streamlines so that Du/Dt 6= 0.

Consider a fluid flow between two concentric cylin-
ders of radii a and b respectively, where the inner
cylinder is rotating at an angular velocity Ω. We
define the cylindrical polar coordinates about the
axis of the cylinders so that u = (0, v(r), 0) with
boundary conditions v(a) = aΩ and v(b) = 0.

Again, this form of the fluid velocity automatically satisfies ∇ ·u = 0. However, although the
flow is steady, Du/Dt 6= 0. Indeed, substituting the form of the fluid velocity, we find:

u · ∇u =

(
−v

2

r
, 0, 0

)
.

Substituting into the Navier–Stokes equation, we obtain:

−ρv
2

r
= −∂p

∂r
, (2.29)

0 = −1

r

∂p

∂θ
+ µ

[
1

r

d

dr

(
r
dv

dr

)
− v

r2

]
, (2.30)

0 = −∂p
∂z
. (2.31)

From equation (2.30), we see that ∂p/∂θ is independent of θ. However, since p is periodic in
θ, p(θ + 2π) = p(θ) and so ∂p/∂θ = 0. Equation (2.30) reduces to:

d2v

dr2
+

1

r

dv

dr
− v

r2
= 0.

This is a Cauchy equation with general solution:

v =
A

r
+Br.

Applying the boundary conditions, we obtain:

v(r) =
Ωa2

b2 − a2

(
b2

r
− r
)
. (2.32)

We can find the pressure by integrating equation (2.29):

p(r) = p(a) + ρ

∫ r

a

v2(r′)

r′
dr′.

Since v2/r > 0, the pressure increases with the distance to the center. This is the reason why
the free-surface dips near a rotating rod.
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In order to calculate the surface forces we need to obtain the velocity gradient, which is given
in cylindrical polar coordinates by:

∇u =



∂u

∂r

1

r

∂u

∂θ
− v

r

∂u

∂z

∂v

∂r

1

r

∂v

∂θ
+
u

r

∂v

∂z

∂w

∂r

1

r

∂w

∂θ

∂w

∂z


.

Hence, in this flow:

σrθ = µ

(
dv

dr
− v

r

)
= − 2µΩb2a2

(b2 − a2)r2
.

The torque required to rotate the inner cylinder is given by:

T =

∫
r× fdS,

where r is the radial vector and:

f = −r̂ · τ ,

since n = −r̂. Thus, the magnitude of the torque T applied to the inner cylinder is given by:

T = −
∫
S
rτrθdS = −L

∫ 2π

0
aτrθadθ = −2πa2Lσrθ =

4πµLΩa2b2

(b2 − a2)
, (2.33)

where L is the length of the Taylor–Couette cell. This experiment provides a practical method
for measuring viscosity.

2.6 The Reynolds number

2.6.1 Dynamic similarity

A good starting point is to consider under what conditions are two flows “dynamically equiv-
alent”, by which we mean that they have the same flow pattern even though the scales and
fluid properties may be different.

Let us consider the flow pattern generated by an obstacle (e.g. a sphere) of size D in a uniform
flow of speed U in a fluid of density ρ and viscosity µ.

This problem has four dimensional parameters, D, U , ρ and µ. We can use these parameters
to define a new system of units based upon independent units for mass (M), length (L) and
time (T ). Note that [D] = L, [U ] = L · T−1, [ρ] = M ·L−3 and [µ] = M ·L−1 · T−1. It is thus
logical to choose:

L = D, and T =
D

U
.
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Lastly, since both ρ and µ involve mass, we can choose either:

M = ρD3 or M =
µD2

U
.

As a consequence, there is a single independent dimensionless group that can formed from
the combination of D, U , ρ and µ:

Re =
ρUD

µ
. (2.34)

This number is called the Reynolds number. It indicates the balance between inertia and
viscous forces. Flows with the same value of the Reynolds number (and dimensionless ge-
ometry) but different values of the dimensional parameters D, U , ρ and µ display the same
flow pattern and are thus dynamically similar. By selecting fluid properties and flow rates
appropriately, we can make smaller or larger scale models that give the same flow pattern.

2.6.2 Flow past a cylinder

To illustrate how the Reynolds number can be used to characterise a flow, let us consider the
flow past a cylinder. Recall that for an inviscid fluid the potential flow pattern is fore-aft
symmetric and produces zero drag, but that this flow is not seen in practice.

• Re < 1

For small values of the Reynolds num-
ber the flow is nearly fore-aft symmet-
ric. However, this flow pattern is dis-
tinct from the potential flow solution
as it satisfies u = 0 on the cylinder
surface.

Cylinder in Cross Flow and Flow Visualization 
Investigation  

 

I.  Objective 

 The canonical problem of a circular cylinder in cross flow, i.e., with the free-stream flow direction 

normal to the cylinder axis, occurs in a variety of practical applications.  Examples include wind and water 

flow over offshore platform supports, flow across pipes or heat exchanger tubes, and wind flow over 

power and phone lines.  In this experiment, you will investigate viscous flow around cylinders.  The 

surface pressure distributions, wake velocity profiles, and drag characteristics of smooth and rough 

cylinders will be studied. 

 

II.  Viscous Flow Over a Circular Cylinder 

 The behavior of flow over a cylinder varies with the Reynolds number, ReD, given by 

 D

ρUD
Re

μ
 (1) 

where is the density of the fluid, U is the velocity of the cross flow, D is the diameter of the cylinder, and 

 is the dynamic viscosity of the fluid.  For ReD < 5, flow over a cylinder remains attached to the cylinder 

surface, while for ReD > 5 the flow on the downstream end of the cylinder separates from the cylinder 

surface, forming a wake.  For 5 < ReD < 40 this wake is characterized by two stationary eddies that form 

immediately downstream of the cylinder.  For ReD > 40, this wake becomes unsteady, and its width and 

nature depend on ReD.  See Figures 1a, 1b and 1c.   

 

 

Figure 1a.  Flow over a circular cylinder at Re= 1.54.  

Photograph by Sadatoshi Taneda, from Album of Fluid Motion, Milton Van Dyke, Parabolic Press, 1982.  • 1 < Re < 46

As the Reynolds number increases,
the flow loses its fore-aft symmetry
and two recirculating eddies appear
on the downstream side of the cylin-
der. These cells grow in size as
the Reynolds number increases. Al-
though the flow is no longer fore-aft
symmetric it remains steady.

Cylinder in Cross Flow and Flow Visualization 
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Figure 1b.  Flow over a circular cylinder at Re= 9.6.  

Photograph by Sadatoshi Taneda, from Album of Fluid Motion, Milton Van Dyke, Parabolic Press, 1982.  

 

 

Figure 1c.  Flow over a circular cylinder at Re= 30.2.  

Photograph by Madelyn Coutanceau and Roger Bouard; from Album of Fluid Motion, Milton Van Dyke, 

Parabolic Press, 1982.  

 

 The flow over the cylinder is viscous, meaning that the fluid velocity at the cylinder surface must 

be zero by the ‘no-slip’ condition.  For ReD > 1000, this no-slip condition leads to the formation of a 

boundary layer, a thin region adjacent to the surface where viscous effects are important and the velocity 

increases from zero at the surface to the local free-stream value outside of the boundary layer.  Over the 

• 46 < Re
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Above Reynolds numbers of around
46, the flow is no longer steady. The
eddies behind the cylinder become
unsteady and are shed alternately
from the two sides, forming a double
line of eddies known as a von Kármán
vortex street.

Cylinder in Cross Flow and Flow Visualization 
Investigation  
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forward portion of the cylinder, the surface pressure decreases from the stagnation point toward the 

shoulder (see Figure 3).  Thus, the boundary layer in this region develops under a favorable pressure 

gradient, 0P    , where η is a coordinate measured along the surface in the streamwise direction.  In 

this region, the net pressure force on fluid elements in the direction of flow is sufficient to overcome the 

resisting shear force, and motion of these elements in the flow direction is maintained.   

 However, farther away from the forward stagnation point, the surface pressure eventually reaches 

a minimum, beyond which it increases toward the rear of the cylinder.  Thus, the boundary layer in this 

downstream region develops under the influence of an adverse pressure gradient, 0P    .  Since the 

pressure increases in the flow direction, fluid elements in the boundary layer experience a net pressure 

force opposite to their direction of motion.  At some point, the momentum of these fluid elements will be 

insufficient to carry them into the region of increasing pressure.  Under this scenario, fluid adjacent to the 

solid surface is brought to rest, causing the flow to separate from the cylinder surface.  A region of low 

pressure forms on the downstream side of the cylinder and is termed the wake region.  The resulting flow 

field is shown photographically in Figure 2, and schematically in Figure 3.   

 

 

Figure 2.  Flow over a circular cylinder at Re= 2000.  

ONERA photograph by Werle and Gallon, 1972; from Album of Fluid Motion, Milton Van Dyke, Parabolic 

Press, 1982.  

 

 

As the Reynolds number increases further the flow in this wake region behind the cylin-
der becomes chaotic.

Simulations at Re = 25, Re = 50, Re = 100 and Re = 220:
https://www.youtube.com/watch?v=8WtEuw0GLg0.

As well as looking at the flow pattern, we can also measure the drag force on the cylinder.
Forces have units of M · L · T−2 so, if we use ρ to define the unit of mass, we can write the
drag force in the form:

F =
1

2
ρU2ACD(Re),

where A is the cross-sectional area and CD is a dimensionless number that is a function of the
object shape and the Reynolds number. Note that the factor 1

2 is introduced by convention.
The graph below shows how the drag coefficient on a cylinder varies with the Reynolds number.
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Figure 4.  Drag coefficient vs. Reynolds number for a cylinder in cross flow. 

 

 In the range 1000 < ReD < 2x10
5
, the drag coefficient remains approximately constant at a value 

near unity.  However, at a Reynolds number near ReD  2x10
5
 the drag coefficient decreases sharply.  

Measurements show that for 1000 < ReD < 2x10
5
, the boundary layer on the forward portion of the 

cylinder is laminar.  Under these conditions, separation of the boundary layer occurs just upstream of the 

cylinder midsection (sep ~ 80° measured relative to the stagnation point), and a relatively wide turbulent 

wake is formed downstream of the cylinder (Figure 5a).  The pressure in the separated region behind the 

cylinder is lower than the surface pressure near the forward stagnation point, leading to a large pressure 

drag contribution to the total drag.   

 For ReD > 2x10
5
, the boundary layer on the forward portion of the cylinder transitions to 

turbulence.  This turbulent boundary layer is comparatively thinner than its laminar counterpart, meaning 

that its ‘fuller’ velocity profile near the surface can postpone separation under the action of the adverse 

pressure gradient along the surface to a point downstream of the shoulder (sep ~ 120°).  Thus, the 

cylinder wake for ReD > 2x10
5
 is narrower than at lower ReD (Figure 5b).  The narrowing of the wake at 

high ReD reduces the net streamwise pressure force on the cylinder, which results in a substantial 

reduction in the drag coefficient.  Further increase in ReD yields an increase in the drag coefficient due to 

enhanced skin friction at the cylinder surface associated with the turbulent boundary layer.  Figure 6 

compares the angular variation of surface pressure coefficient, CP, around the circumference of the 

cylinder for laminar flow, turbulent flow, and inviscid theory. 
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For low Reynolds numbers, the drag coefficient decreases roughly as 1/Re and levels out to
an O(1) value for Reynolds numbers above 200. A sharp drop occurs at Reynolds numbers
between 100,000 and 1,000,000.

The fact that the drag coefficient remains approximately constant over a wide range of
Reynolds numbers makes it useful for defining how the shape of an object affects the drag
force. For example, cars typically have a drag coefficient in the range 0.25 to 0.5. The boxy
shapes, such as Range Rovers tend to be at the high end, whereas the best energy efficient
designs have drag coefficients around 0.25.
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2.6.3 The Reynolds number and the Navier–Stokes equation

We can obtain the Reynolds number from the Navier–Stokes equation by non-dimensionalising
it, i.e. by choosing units based upon the natural length and time scales. We substitute:

u = Uu∗, x = Dx∗, t =
D

U
t∗,

where u∗ and x∗ are now dimensionless vector quantities, and choose µU/D as the unit for
pressure:

p = µ
U

D
p∗.

The Navier–Stokes equation becomes:

ρU2

D

Du∗

Dt∗
= −µ U

D2
∇∗p∗ + µ

U

D2
∇∗2u∗,

and, dividing by µU/D2, we have:

Re
Du∗

Dt∗
= −∇∗p∗ +∇∗2u∗.

Conservation of mass remains:
∇∗ · u∗ = 0,

and so the only parameter in the governing equations is the Reynolds number. An alternative
choice for the pressure is p = ρU2p∗, yielding:

Du∗

Dt∗
= −∇∗p∗ +

1

Re
∇∗2u∗.

The Reynolds number arises naturally from consideration of the terms in the Navier–Stokes
equation (2.10):

ρ
Du

Dt
= −∇p+ µ∇2u.

For a steady flow past an obstacle, the size of the left-hand side can be estimated as:

|ρu · ∇u| ∼ ρU2

D
,

while that of the viscous term as:

|µ∇2u| ∼ µU

D2
.

Hence, if we take the ratio of these two terms, we get:

|ρu · ∇u|
|µ∇2u| ∼

ρU2

D
× D2

µU
=
ρUD

µ
= Re.

The Reynolds number can be thought of as the ratio of the relative sizes of the terms governing
fluid inertia and viscosity.
If the Reynolds number is large then |ρDu/Dt| � |µ∇2u|. The pressure gradient balances
ρu · ∇u and the pressure differences over the obstacle are of size ρU2. The drag force is thus
roughly of the size of ρU2A, so that the drag coefficient is of order unity.
Conversely, if the Reynolds number is small then |µ∇2u| � |ρDu/Dt| and the pressure gra-
dient balances |µ∇2u|. This gives a pressure difference of the size of µU/D and hence the
magnitude of the force arising from viscous drag scales as:

µ
U

D
A = ρU2A

(
µ

ρUD

)
=
ρU2A

Re
,

so that the drag coefficient scales as 1/Re, as was found for the case of the cylinder.
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2.6.4 Flow at low and high Reynolds numbers

A small (large) Reynolds number suggests that the inertia (viscosity) terms are small com-
pared to the other terms in the Navier–Stokes equation and might be neglected. We do
however need to be careful as the correct scales for U and D are not always obvious. The
small Reynolds number case describes slow viscous flows where we can neglect ρDu/Dt. The
resulting equations:

−∇p+ µ∇2u = 0, ∇ · u = 0, (2.35)

are called Stokes equations and the corresponding solutions Stokes flows. As the Stokes
equations do not contain Du/Dt, they are linear and not directly dependent on time. They
are considerably easier to solve than the full Navier–Stokes equations. Indeed, the exact
solutions given in the previous chapter are in fact solutions of the Stokes equations.
The opposite limit of high Reynolds number flows is more complicated. Excluding the viscous
term from the Navier–Stokes equation reduces it to the Euler equation for an ideal fluid:

ρ
Du

Dt
= −∇p.

However, in doing this, we removed the term with the highest spatial derivative, ∇2u, which
is mathematically dangerous since it means that we cannot impose the full no-slip boundary
condition. Therefore there must be a layer of fluid, called a boundary layer near the surface
where the shear-rates are sufficiently high that viscosity cannot be neglected. In many cases
however, these layers are sufficiently thin that we can neglect them and in these cases the
Euler equation (and hence the Bernoulli equation) gives a good approximation to the flow.
In other flows, such as flow past a cylinder, these boundary layers can grow in size and affect
large regions of the flow.


