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1.1 Introduction

Mechanics is the science concerned with behaviour of physical bodies subject to forces and
displacements. It encompasses statics (study of forces and torques when there is no motion),
kinematics (study of motion regardless of its causes) and dynamics (study of forces and torques
when there is motion). Fluids are substances that flow or conform to the outline of their
container (Merriam–Webster). Fluid dynamics is thus the study of the forces and torques
where there is motion of liquids, gases and plasmas (e.g. water, air, interstellar plasma).
While it is a relatively old subject (dating back to the 18th century with Newton, Euler and
Lagrange for example), it is still a very active research area. Here are some currently very
active research areas:

• biological fluids – blood and air flows, swimming organisms, drug delivery

• aerodynamics and hydrodynamics – aeroplanes, ships

• industrial fluids – casting, injection molding, mixing

• environmental fluids – pollution, water and wind power

• geophysical fluids – earth’s core, atmosphere and ocean, weather

• astrophysical fluids – galaxies, stars, interstellar medium
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2 1.2 Continuum hypothesis

Fundamentally all these fluids obey the same physical laws of motion, however, they differ
widely in the lengthscale they display and in some of their physical properties (density, vis-
cosity). As a consequence, fluids can show different types of motion depending upon what
effects are dominant.

1.2 Continuum hypothesis
(Ref.: Paterson,
§III.1) In fluid dynamics, we do not attempt to calculate the motion of individual molecules —

there are far too many of them, (a cubic centimetre of water contains of the order of 1023

molecules of typical size lm ' 1Å = 10−10 m) and their individual motion is dominated by
high frequency fluctuations caused by collisions with neighbouring molecules. Instead, we
represent the average motion of a “blob” of fluid called a fluid particle of length d and volume
δV .

a

δV
d

We choose d so that:

• d � lm (molecular scale) – δV contains many molecules and the fluctuations due to
individual motions are averaged out.

• d� a (macroscopic scale) – δV is approximately a point in space.

d
lm

ū

a

Given this choice (lm � d� a), the average velocity ū is a smooth function of the variables
and independent of d.

Continuum hypothesis: Molecular details can be smoothed out by assigning to the velocity
at a point P the average velocity in a fluid element δV centred in P .

We can thus define the velocity field u(x, t) as a smooth function of time and position, i.e., u
is differentiable and integrable. Note that shock waves break this assumption.

Similarly, ρ(x, t) =
mass in δV

δV
is the local density of mass.

1.3 Velocity field

The fluid velocity is defined, within the continuum hypothesis, as the vector field u(x, t),
function of space and time.

Example 1.1
Shear flow: consider the flow between two parallel plates when one is moved relative to the
other with a constant velocity U .
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u =


Uy

d

0

0

 =
Uy

d
êx.

y

x

y = 0

y = d U

The direction of the flow is indicated by
an arrow and its magnitude by the arrow
length.

Stagnation-point flow: consider a flow where the velocity cancels at the origin.

u =

 Ex
−Ey

0

 = Exêx − Eyêy.

The point x = 0 where u = 0 is called a stagnation point.

1.3.1 Particle paths
(Ref.: Paterson,
§III.2)One method for visualising fluid motion is to follow the motion of a “tracer” particle in the

flow.

Let a particle be released at time t0 and at position x0 within the velocity field. Since the
particle moves with the fluid velocity:

dx

dt
= u(x, t) such that x = x0 at t = t0. (1.1)

Example 1.2 (Stagnation point flow)

u(x, t) =

 Ex
−Ey

0

⇒ dx

dt
= Ex,

dy

dt
= −Ey, dz

dt
= 0

⇒ x(t) = x0eE(t−t0), y(t) = y0e−E(t−t0), z(t) = z0 if x = x0 = (x0, y0, z0) at t = t0.

Note that particles at the stagnation point x0 = y0 = 0 do not move since u = 0.

The time variable, t, can be eliminated to show that particle paths are hyperbolae of equation

y =
x0y0

x
.
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1.3.2 Streamlines

A streamline is a line everywhere tangent to the local fluid velocity at time t. If the line is
parametrised by a parameter s (“distance” along the streamline), then:

dx

ds
= u(x(s), t), (1.2)

or, equivalently:
dx

u
=

dy

v
=

dz

w
(= ds), (1.3)

since u(x, t) is not explicitly function of s. If the flow is steady (∂u/∂t = 0), then the
streamlines are the same as the particle paths. Note that the converse is not necessarily true.

1.4 Time derivatives

The time derivative ∂u/∂t measures the rate of change of velocity at the fixed position x. This
is referred to as the Eulerian time-derivative. However, this does not give the acceleration of
a fluid particle at this point, since the particle is moving through this point along its particle
path. Instead we require the convective derivative (also called Lagrangian derivative and
material derivative) Du(x, t)/Dt, which is the rate of change of u along the particle path x(t),
i.e., moving with the fluid.

Using the chain rule:

Df

Dt
≡ d

dt
f(x(t), t) =

∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

⇒ Df

Dt
=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z

⇒ Df

Dt
=
∂f

∂t
+ (u · ∇) f. (1.4)

Hence the acceleration of a fluid particle is:

Du

Dt
=
∂u

∂t
+ (u · ∇) u. (1.5)

1.5 Conservation of mass

In any situation, the mass of a fluid must be conserved. For a continuous material, this
principle is expressed in the form of the continuity equation.

Consider a volume V , fixed in space, with surface S and outward normal n.

ds

n
u

S

V

The total mass in V is:

MV =

∫
V
ρdV,

where ρ is the density of mass (mass per unit
volume).

MV can only change if mass is carried inside or outside the volume by the fluid.
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The mass flowing through the surface per unit time (i.e. the mass flux) is:

dMV

dt
= −

∫
S
ρu·n dS,

and therefore:

d

dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV = −

∫
S
ρu·n dS, since V is fixed.

Applying the divergence theorem:∫
V

∂ρ

∂t
dV = −

∫
V
∇·(ρu) dV ⇒

∫
V

[
∂ρ

∂t
+∇·(ρu)

]
dV = 0.

Since V is arbitrary, this equation must hold for all volume V . Thus, the continuity equation:

∂ρ

∂t
+∇·(ρu) = 0, (1.6)

holds at all points in the fluid. Expanding the divergence as ∇·(ρu) = ρ∇·u+u·∇ρ, we obtain
the Lagrangian form of the continuity equation:

Dρ

Dt
+ ρ∇·u = 0. (1.7)

The density of a fluid particle moving with the fluid only changes if there is an expansion or
a contraction of the flow.

1.6 Incompressibility

In an incompressible fluid, the density of each fluid particle remains constant and the conti-
nuity equation (1.7) reduces to:

Dρ

Dt
= 0⇔ ρ∇ · u = 0.

So, for an incompressible flow:
∇ · u = 0. (1.8)

This places a restriction on the form of the fluid velocity:

u = ∇×Ψ, (1.9)

for some vector field Ψ. Since ∇ · (∇ × Ψ) = 0 for any vector field Ψ, this automatically
satisfies the continuity equation.

1.6.1 Two dimensional flows

Let us consider the incompressible flow:

u =

u(x, y)
v(x, y)

0

 = u(x, y) êx + v(x, y) êy.

We can introduce Ψ = ψ(x, y)ez, where ψ(x, y) is a scalar function such that:

u =
∂ψ

∂y
and v = −∂ψ

∂x
. (1.10)

The function ψ(x, y) is called the streamfunction and has a number of important properties.
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Streamlines: On a streamline: dψ = 0⇒ ∂ψ

∂x
dx+

∂ψ

∂y
dy = −vdx+udy = 0. So, u×dl = 0,

i.e., the streamline element dl = (dx, dy) is parallel to u. A streamline is a line on which the
streamfunction is constant. The gradient of the streamfunction is orthogonal to the velocity
field:

u · ∇ψ = u
∂ψ

∂x
+ v

∂ψ

∂y
=
∂ψ

∂y

∂ψ

∂x
− ∂ψ

∂x

∂ψ

∂y
= 0.

Flux between streamlines: Consider the two streamlines: ψ(x, y) = ψP and ψ(x, y) = ψT .

C

n

P

T ψ = ψT

ψ = ψP

The fluid flow or flux through C : {x(s), y(s)}, an arbitrary curve connecting P and T , is:

Q =

∫ T

P
u · n ds. (1.11)

Let dl = dxex+dyey = ds

(
dx

ds
ex +

dy

ds
ey

)
be an infinitesimal displacement along the curve

C.

dl dy

dxC

nds

(x(s), y(s))

We define the infinitesimal vector normal to dl:

n ds = dyex − dxey = ds

(
dy

ds
ex −

dx

ds
ey

)
.

So, Q =

∫ T

P

(
∂ψ

∂y

dy

ds
+
∂ψ

∂x

dx

ds

)
ds =

∫ T

P

dψ

ds
ds =

∫ ψT

ψP

dψ = ψT − ψP .

Hence, the flux between two streamlines is equal to the streamfunction difference between the
two streamlines. Consequently, the flow is faster when the streamlines are close together.

Following from the definition of the streamfunction: ‖u‖ = ‖∇ψ‖, which shows that the speed
of the flow increases with the gradient of the streamfunction.

Example 1.3
A bath-plug vortex can be defined as u =


y

x2 + y2

−x
x2 + y2

. It is incompressible since:

∇·u =
∂u

∂x
+
∂v

∂y
=

−2xy

(x2 + y2)2
+

(−2y)(−x)

(x2 + y2)2
= 0.
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So,
∂ψ

∂y
= u =

y

x2 + y2
=

1

2

2y

x2 + y2
⇒ ψ(x, y) =

1

2
ln
(
x2 + y2

)
+ α(x).

Then v = −∂ψ
∂x

= − x

x2 + y2
+

dα

dx
⇒ dα

dx
= 0. So, α is constant and:

ψ(x, y) =
1

2
ln
(
x2 + y2

)
(choosing α = 0).

This flow is easier to visualise if we use polar coordinates (r, θ) in the (x, y)-plane, so that the

streamfunction becomes ψ =
1

2
ln
(
x2 + y2

)
= ln r. The streamfunction is independent of θ

which shows that the streamlines are circles about the origin.
In polar coordinates, the velocity field is:

u = ∇× (ψ(r, θ)êz) ⇒ ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
(1.12)

⇒ ur = 0, uθ = −1

r
. (1.13)

1.6.2 Axisymmetric flows

We consider:
u = u(r, z) êr + w(r, z) êz.

Examples include flows in a circular pipe or past a sphere. In this case, Ψ is in the êθ direction
and we can define:

Ψ =
1

r
Ψ(r, z) êθ.

where Ψ(r, z) is the Stokes streamfunction (using Ψ to distinguish from planar streamfunction
ψ). Note the prefactor 1/r in the definition.
The fluid velocity is given by:

u = ∇×
(

1

r
Ψ(r, z) êθ

)
, (1.14)

so, in cylindrical polar coordinates:

w(r, z) =
1

r

(
∂

∂r

(
1

r
Ψr

))
=

1

r

∂Ψ

∂r
and u(r, z) = − ∂

∂z

(
1

r
Ψ

)
= −1

r

∂Ψ

∂z
. (1.15)

Stokes streamfunctions have properties analogous to planar streamfunctions.

i. Ψ is constant on streamlines

u · ∇Ψ = u
∂Ψ

∂r
+ w

∂Ψ

∂z
=

1

r

(
−∂Ψ

∂z

∂Ψ

∂r
+
∂Ψ

∂r

∂Ψ

∂z

)
= 0.

Thus, the gradient of Ψ is orthogonal to the velocity field. Moreover:

dΨ = 0⇒ ∂Ψ

∂r
dr +

∂Ψ

∂z
dz = 0

⇒ rwdr − rudz = 0

⇒ wdr − udz = 0

⇒ dl× u = 0,

implying that Ψ is constant in the direction of the flow.

For axisymmetric flows it is useful to think of streamtubes: surface of revolution spanned
by all the streamlines through a circle about the axis of symmetry.
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ii. Relation between volume flux and streamtubes
The volume flux, or fluid flow, between two streamtubes with Ψ = Ψi and Ψ = Ψo is:

Q =

∫
S

u · n dS = 2π(Ψo −Ψi). (1.16)

Proof

Q =

∫
S

u · n dS =

∫
S
∇×

(
1

r
Ψ êθ

)
· n dS, (definition of Ψ)

=

∮
Co

1

r
Ψ êθ · dl +

∮
Ci

1

r
Ψ êθ · dl, (Stokes theorem)

= Ψo

∮
Co

1

r
êθ · dl + Ψi

∮
Ci

1

r
êθ · dl, (Ψ ≡ Ψ{o,i} onto C{o,i})

= Ψo

∫ 2π

0
dθ + Ψi

∫ 0

2π
dθ = 2π(Ψo −Ψi) (Note, dl = dr êr + rdθ êθ).

�

Example 1.4
For a uniform flow parallel to the axis, u = 0 and w = U ,

1

r

∂Ψ

∂r
= U and

∂Ψ

∂z
= 0⇒ Ψ(r) =

1

2
Ur2.

(We choose the integration constant such that Ψ = 0 on the axis, at r = 0).

Now consider a streamtube of radius a.

The volume flux

Q =

∫
S

u · n dS =

∫
S

u · êz dS =

∫
S
w dS = U

∫
S

dS = πUa2.

Also,

2π(Ψo −Ψi) = 2π(Ψ(a)−Ψ(0)) = 2π

(
1

2
Ua2 − 0

)
= πUa2 as required.

Example 1.5
Consider a flow in a long pipe of radius a:

u = 0, w =
U

a2
(a2 − r2) with

{
w = 0 on r = a,
w = U on r = 0.

z

S

a

n

∂Ψ

∂z
= −ru = 0⇒ Ψ ≡ Ψ(r),

and
dΨ

dr
= rw =

U

a2
(a2r − r3)⇒ Ψ(r) =

U

a2

(
a2r2

2
− r4

4

)
+ C.
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Hence,

Ψ(r) =
Ur2

4a2
(2a2 − r2) (choose C such that Ψ(0) = 0).

So, Ψ(0) = 0 and Ψ(a) = Ua2/4, and the volume flux

Q =

∫
S

u · n dS = 2π (Ψ(a)−Ψ(0)) =
π

2
Ua2.

Indeed, ∫
S

u · n dS =

∫ 2π

0

∫ a

0
wr drdθ =

2πU

a2

∫ a

0
(a2r − r3) dr, (since dS = rdθdr)

=
2πU

a2

[
a2r2

2
− r4

4

]a
0

=
πUa2

2
, as required.

1.7 Viscosity

Let us return to the shear-flow between two parallel plates when one is moved relative to the
other, with a constant velocity U : u = Uy/dı̂. The motion of the upper plate requires a force,
F, that is proportional to its surface area, A. Since this force results from the rate at which
the fluid is being deformed, it should be proportional to U/d so that:

F = µ
AU

d
.

Here, µ is a constant that depends only on the properties of the fluid and is called dynamic
viscosity. It is convenient to define two new quantities: the stress, σ = F/A, and the shear
rate, γ̇ = U/d, so that the relation becomes:

σ = µγ̇. (1.17)

Fluids that obey equation (1.17) are referred to as Newtonian fluids. In practice, most fluids,
including air, water and even sticky fluids like golden syrup, obey this relationship to a high
degree of accuracy within a wide range of viscosities. Dynamic viscosities have dimension
M · L−1 · T−1 and their S.I. unit is the Pa·s (Pascal second).

The dynamic viscosity of air is of the order of 10−5 Pa·s, that of water is approximately 10−3

Pa·s, that of golden syrup around 102 Pa·s, while magma in the Earth’s interior has dynamic
viscosities of around 1022 Pa·s. Note that some fluids, such as those containing polymers, do
not obey this law. These fluids are out of the scope of the present course.

1.8 Cartesian tensors

The pressure, p, is a scalar quantity and can be represented by a function equal to its value
at each point in space.

The fluid velocity, u, is a vector field and can be represented by its coefficients (u1, u2, u3)
with respect to a set of Cartesian axes (e1, e2, e3) as a column vector:

u =

u1

u2

u3

 .
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This can be represented more compactly as ui, where i = 1, 2, 3.

The pressure gradient ∇p is another vector quantity and is given by:

∇p =


∂p
∂x1

∂p
∂x2

∂p
∂x3

 ,

or more compactly in suffix notation as ∂p/∂xj , where j = 1, 2, 3.

The scalar product of these two vectors u · ∇p is given by:

u · ∇p = u1
∂p

∂x1
+ u2

∂p

∂x2
+ u3

∂p

∂x3
,

and in suffix notation:

u · ∇p = ui
∂p

∂xi
.

Here, we are using the Einstein convention: repeated suffixes denote summations.

The basic rules of suffix notation are:

i. A suffix that appears once is called a free index. The number of free indices denote the
type of quantity in question. A scalar quantity has no free index, a vector has one and
an n-th rank tensor has n. Terms that are added or equated must have the same free
indices.

ii. If a suffix appears twice, it is called a dummy index. Since we sum over dummy indices,
the number of pairs of dummy indices does not affect the type of the quantity being
described. It is also possible to change the index name without affecting the result.
However, it is important not to use a letter already in use as a free index.

As we have already seen, taking the gradient of a scalar produces a vector quantity and
so taking the gradient of vector produces a quantity with two associated dimensions, called
a second rank tensor. Since there are three components of velocity and three coordinate
directions, the velocity gradient ∇u has 9 components. It can be represented in the form of
a matrix as:

∇u =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 ,

but it is much more convenient to write this in suffix notation as:

∂ui
∂xj

,

where (i, j) = (1, 2, 3)2. In terms of the matrix representation, i denotes the row and j the
column of the entry.
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1.8.1 Scalar and vector products

The Kronecker delta δij is another example of a second rank tensor:

δij =

{
1 i = j

0 i 6= j
, (1.18)

which, in matrix representation, is the identity matrix:1 0 0
0 1 0
0 0 1

 .

We have already seen that calculating the scalar product of two vectors comes down to sum-
ming over a pair of indices:

a · b = aibi.

This operation is equivalent to the action of the Kronecker delta on the two vectors a and b
since

a · b = aiδijbj = aibi since δijbj = bi.

The vector product can be represented in Einstein notation by introducing the alternating
tensor εijk:

εijk =


1 ijk = even, i.e., 123, 231 or 312

−1 ijk = odd, i.e., 132, 213 or 321

0 i = j, j = k or k = i

, (1.19)

which is a third rank tensor. Since εijk has 3 free indices, the resulting quantity εijkajbk is a
vector with index i:

ci = εijkajbk,

which has the following components:

c1 = a2b3 − a3b2, c2 = a3b1 − a1b3, c3 = a1b2 − a2b1,

and so represents the product of the vectors a and b.
We can extend these products to tensors. For example, a ·A = aiAij is a vector formed
from the scalar product of the vector a with the first index of the tensor A. Note that, by
convention, the dot signifies scalar product of the two neighbouring indices. This product may
be performed using the matrix notation by writing a as a row vector and then multiplying it
by the matrix A,

a ·A =
(
a1 a2 a3

)A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

Similarly, A · a = Aijaj may be performed in matrix notation as

A · a =

A11 A12 A13

A21 A22 A23

A31 A32 A33

a1

a2

a3

 .

Note that these two scalar products give different results unless A is symmetric (i.e., Aij =

Aji). For example, if we use Kij =
∂ui
∂xj

to denote the velocity gradient, then:

[K · u]j = Kjiui = uiKji = ui
∂uj
∂xi

= [u · ∇u]j ,
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whereas:

[u ·K]j = uiKij = ui
∂ui
∂xj

=
1

2

∂

∂xj
(uiui) =

1

2
[∇u2]j .

We can also form products between two indices on the same tensor. For example

δijAij = Aii = A11 +A22 +A33 = TrA,

the trace of matrix A, which is a scalar quantity.
The scalar product of two second rank tensors A and B is another second rank tensor C = A·B
where

Cij = AikBkj .

This is equivalent to matrix multiplication. We can also form the double dot product A : B,
which is the scalar formed by contracting i with j.

A : B = δijAikBkj = AikBki,

which is equal to the trace of C.
We can also apply cross-products between components of a tensor. For example:

ci = εijkAjk,

is a vector with components:

c1 = A23 −A32, c2 = A31 −A13, c3 = A12 −A21.

Finally, we have the triple product rule:

a× (b× c) = b(a · c)− c(a · b)

which results from the following relationship between εijk and δij :

εijkεilm = δjlδkm − δjmδkl. (1.20)

One way to remember this rule is: second-with-second × third-with-third - alternative pair-
ings.

1.8.2 ∇, ∇· and ∇×
We have already seen that we can write the gradient of a scalar and of a vector as

∂p

∂xj
and

∂ui
∂xj

respectively.

Taking the gradient increases the rank of a tensor by one, from scalar to vector, vector to
second rank tensor, etc.
The divergence is obtained by taking the dot product between nabla and one of the indices
of the tensor. For a vector u:

∇ · u =
∂ui
∂xi

.

Note that this is simply the product between the gradient operator, δij and the vector u.
Similarly, we can define the divergence of a tensor Aij as:

∂

∂xi
Aij .
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This is a vector quantity. Note that the summation can be over either of the two indices, so
we can obtain a second vector using the second index:

∂

∂xj
Aij .

By convention, the notation ∇ ·A is taken to mean summation over the first index (the one
closest to the dot). The potential for ambiguities in this formulation means that it is better
to stick to suffix notation when dealing with tensors.

Finally we can obtain the curl of a vector or tensor by the action of εijk on the gradient:

[∇× u]i = εijk
∂uk
∂xj

.

Example 1.6
Let us consider the conservation equation:

∂c

∂t
+∇ · j = 0

where c is scalar quantity and j = cu is the vector flux of c. We write the divergence term in
Cartesian coordinates:

∇ · j =
∂j1
∂x1

+
∂j2
∂x2

+
∂j3
∂x3

,

so, in suffix notation, we have:

∇ · j =
∂jk
∂xk

,

where k = 1, 2, 3. The flux j is the product of the scalar c with the vector u, so:

j = (j1, j2, j3) = (cu1, cu2, cu3) ,

which is written in index notation as:

jk = cuk.

Now substituting into the conservation equation we obtain,

∂c

∂t
+∇ · j =

∂c

∂t
+
∂jk
∂xk

=
∂c

∂t
+

∂

∂xk
(cuk) = 0.

Finally we can apply the product rule to the differential to give:

∂

∂xk
(cuk) = uk

∂c

∂xk
+ c

∂uk
∂xk

,

so that the equation becomes:

∂c

∂t
+ uk

∂c

∂xk
+ c

∂uk
∂xk

= 0. (1.21)

In the usual (Gibbs) vector notation, this writes:

∂c

∂t
+ u · ∇c+ c∇ · u = 0. (1.22)
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Example 1.7
Now suppose the quantity c is replaced by a vector v. The equivalent conservation law would
be of the form:

∂v

∂t
+∇ · J = 0,

where the flux J is a second rank tensor. By replacing c with vi in equation (1.21), we obtain:

∂vi
∂t

+ uk
∂vi
∂xk

+ vi
∂uk
∂xk

= 0, (1.23)

which is clear and unambiguous. Written out in full, this represents the equations:

∂v1

∂t
+

(
u1
∂v1

∂x1
+ u2

∂v1

∂x2
+ u3

∂v1

∂x3

)
+ v1

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
= 0,

∂v2

∂t
+

(
u1
∂v2

∂x1
+ u2

∂v2

∂x2
+ u3

∂v2

∂x3

)
+ v2

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
= 0,

∂v3

∂t
+

(
u1
∂v3

∂x1
+ u2

∂v3

∂x2
+ u3

∂v3

∂x3

)
+ v3

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
= 0.

In this case, Jki = ukvi and [∇ · J]i = ∂
∂xk

(ukvi).

1.9 Strain-rate and vorticity tensors

Let us now examine the velocity gradient ∂ui/∂xj . For an incompressible flow, ∇ ·u = 0 and
so this tensor has zero trace. There are still 8 remaining components. A useful simplification
is to decompose the velocity gradient into the sum of a symmetric and an antisymmetric
tensor:

∂ui
∂xj

= Eij +Ωij , where Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
and Ωij =

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
. (1.24)

It is easily verified that Eij = Eji and Ωij = −Ωji.
The symmetric tensor, E, is called the strain-rate tensor and the antisymmetric tensor, Ω, is
called the vorticity tensor.
Recall that the vorticity ω = ∇× u. In suffix notation:

ωi = εijk
∂uk
∂xj

. (1.25)

Multiplying this equation by εilm and using the triple product rule, we obtain:

εilmωi = εijkεilm
∂uk
∂xj

= (δjlδkm − δjmδkl)
∂uk
∂xj

=
∂um
∂xl
− ∂ul
∂xm

= 2Ωml,

so that:

Ωij = −1

2
εijkωk. (1.26)

This result is clear if we write Ω in matrix notation:

Ω =
1

2


0 ∂u1

∂x2
− ∂u2

∂x1
∂u1
∂x3
− ∂u3

∂x1

∂u2
∂x1
− ∂u1

∂x2
0 ∂u2

∂x3
− ∂u3

∂x2

∂u3
∂x1
− ∂u1

∂x3
∂u3
∂x2
− ∂u2

∂x3
0

 =
1

2


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
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Example 1.8
Consider the simple shear flow:

u =

γ̇y0
0

 ,

using (x, y, z) rather than (x1, x2, x3) for Cartesian coordinates. The gradient of velocity
writes:

∇u =

0 γ̇ 0
0 0 0
0 0 0

 .

Therefore, the strain-rate and vorticity tensors for this flow are:

E =
1

2

0 γ̇ 0
γ̇ 0 0
0 0 0

 , Ω =
1

2

 0 γ̇ 0
−γ̇ 0 0
0 0 0

 .

Let us now reconstrust the linear flows corresponding to the symmetric and antisymmetric
parts of the velocity gradient tensor, uE = E · x and uΩ = Ω · x:

uE =


γ̇
2y

γ̇
2x

0

 , uΩ =


γ̇
2y

− γ̇
2x

0

 .

The streamlines of uE are given by x2 − y2 = cst, while the streamlines of uΩ are circles
x2 + y2 = cst.

Thus uE is a hyperbolic flow with extension along the line y = x (and contraction along
y = −x), while uΩ is a clockwise rotation.

Furthermore, since Ωij = −1
2εijkωk, it follows that:

uΩi = Ωijxj = −1

2
εijkωkxj =

1

2
εikjωkxj =

1

2
[ω × x]i,

i.e., uΩ is a solid body rotation at an angular velocity of ω/2. It is the strain-rate E that
produces a deformation of the fluid.
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1.10 Polar tensors

So far we have only discussed tensors with respect to fixed Cartesian coordinates, however, in
many problems it is often more convenient to work in polar coordinates. Tensor calculus in
polar coordinates tends to be more complicated because of the rotation of the base vectors.
For example in cylindrical polar coordinates (r, θ, z) the gradient of the velocity (ur, uθ, uz) is
given by 

∂ur
∂r

1
r
∂ur
∂θ −

uθ
r

∂ur
∂z

∂uθ
∂r

1
r
∂uθ
∂θ + ur

r
∂uθ
∂z

∂uz
∂r

1
r
∂uz
∂θ

∂uz
∂z

 .

Note that when we take the trace we recover the formula for ∇ · u in cylindrical polar coor-
dinates

∇ · u =
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

.

As this is not a course in tensor calculus we shall not attempt to derive these formulae. Instead
we will refer to a formula sheet when using cylindrical or spherical polar coordinates.


