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A New Resonance Mechanism in the Swift–Hohenberg Equation with
Time-Periodic Forcing∗
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Abstract. The generalized Swift–Hohenberg equation with a quadratic-cubic nonlinearity is used to study the
persistence and decay of localized patterns in the presence of time-periodic parametric forcing. A
novel resonance phenomenon between the forcing period and the time required to nucleate one
wavelength of the pattern outside the pinning region is identified. The resonance generates distinct
regions in parameter space characterized by the net number of wavelengths gained or lost in one
forcing cycle. These regions are well described by an asymptotic theory based on the wavelength
nucleation/annihilation time near the boundaries of the pinning region. The resulting theory leads
to predictions that are qualitatively correct and, in some cases, provide quantitative agreement with
numerical simulations.
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1. Introduction. Spatially localized structures in physical, chemical, and biological sys-
tems [17, 29] often consist of a time-independent spatial pattern embedded in a homogeneous
background. The theory behind the origin and properties of such structures is well under-
stood, at least in one spatial dimension. In this theory the localized structures are described
in terms of heteroclinic cycles connecting the homogeneous state to the patterned state and
back again [3, 49]. Such cycles may be structurally stable and so persist over an interval
of parameter values located within the region of bistability between the homogeneous and
spatially periodic states. This so-called snaking region [37, 25] typically contains two or four
families of homoclinic solutions connecting the homogeneous state to itself, organized within
a snakes-and-ladders structure [14, 15]. These correspond to spatially localized states of ever
greater length and accumulate on the heteroclinic cycle as their length increases. Examples
of this behavior have been identified in both gradient and nongradient systems, including
buckling of slender structures [24, 25], shear flows [41], doubly diffusive convection [34, 6, 8],
porous media convection [26], and rotating convection [7], among others.

Localized states are also encountered in systems with a fluctuating or noisy background
[40, 38, 4, 18] as well as in periodically driven systems [47, 48, 31, 10, 39, 45, 2]. Temporal
forcing has, in general, a number of consequences. In extended systems it may destabilize
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existing patterns or lead to resonant excitation of new patterns and a variety of phase-locking
phenomena [50, 32]. In addition, new structures may be generated by rapid switching between
two coexisting attractors [11, 9]. Localized structures may be impacted in two different ways.
First, the temporal forcing may render existing localized structures time-dependent, and sec-
ond, it may generate bistability between a homogeneous state and an extended parametrically
driven spatially periodic pattern. The latter case creates a parameter regime where spatially
localized time-dependent patterns may be found [16].

In the present paper we focus on time-independent systems supporting spatially localized
states and study the effect of time-periodic forcing on these states. Our interest in this type
of problem is motivated in part by recent studies of the growth of vegetation patterns near
the transition to desertification [42, 46, 43, 28, 36]. Simple models of this process predict the
presence of patchy patterns [36], and the properties of such patterns are yet to be examined
when seasonal variation in growth conditions is included.

Most of the systems mentioned above can be modeled using equations of Swift–Hohenberg
type despite the fact that this equation is of gradient type. This is because the snakes-
and-ladders structure of the snaking region in gradient and nongradient systems is identical
(although the stability properties of the solutions may differ [12]). Consequently, we adopt
here a model of this type and investigate the effect of time-dependent forcing on the existence
and stability of localized states within this model. We identify a number of new structures
in this system, including time-dependent breathing states and structures that grow or shrink
in an episodic manner. In particular, we identify a novel resonance phenomenon between
the forcing period and the time required to nucleate a new wavelength, triggered whenever
the forcing parameter falls outside the pinning region. This resonance leads to a complex
partitioning of the parameter space whose structure can be understood qualitatively, and in
some cases quantitatively, using appropriate asymptotics.

This paper is organized as follows. In the next section we summarize pertinent results
concerning the autonomous Swift–Hohenberg equation with competing quadratic and cubic
nonlinearities. In section 3 we consider the effect of high frequency temporal forcing of this
equation, and then in section 4 we focus on the different breathing states present for intermedi-
ate frequencies. This section forms the bulk of the paper. Low frequency forcing is considered
in section 5, followed by brief conclusions in section 6.

2. Swift–Hohenberg equation. The quadratic-cubic Swift–Hohenberg equation (SHE)
serves as a model for pattern formation in a broad range of physical systems. This equation,
which, in one dimension, takes the form

(2.1) ut = ru−
(
1 + ∂2

x

)2
u+ bu2 − u3,

describes the dynamics of a real field u(x, t) in time. The parameter r specifies the strength
of the forcing, while the parameter b >

√
27/38 determines the extent of the bistability region

between the homogeneous state uh ≡ 0 and the patterned state up(x), up(x) = up(x+2π) for
all x. The equation can be written in terms of a Lyapunov functional F [u], referred to as the
free energy,

(2.2) ut = −δF [u]

δu
, F [u] =

1

Γ

∫ Γ/2

−Γ/2
−1

2
ru2 +

1

2

[
(1 + ∂2

x)u
]2 − b

u3

3
+

u4

4
dx.
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862 PUNIT GANDHI, CÉDRIC BEAUME, AND EDGAR KNOBLOCH

Thus, on a domain of finite spatial period Γ all initial conditions approach a steady state
corresponding to a local minimum of the free energy.

In order to study the effects of time-dependence, we write r = r0 + ρ sinωt, where r0, ρ,
and T = 2π/ω define the offset, amplitude, and period of the oscillation. Note that this type
of parametric forcing leaves the homogeneous state uh = 0 unchanged. In the following we
take b = 1.8 [13, 27] and use periodic boundary conditions on a domain of Γ = 80π (i.e., 40
characteristic wavelengths), unless otherwise noted. In addition we impose the symmetry x →
−x of (2.1) on all solutions of the system, thereby focusing on even solutions. This procedure
allows us to perform computations on the half domain. We integrate the equation forward
in time using a fourth order exponential time differencing scheme [19] on an equidistributed
mesh. Our calculations are performed in Fourier space and fully dealiased. In cases where
a larger domain was necessary, the spatial density of grid points was kept constant. Steady
state solutions of the constant forcing case were computed using the numerical continuation
software AUTO [20].

2.1. Stationary localized states. For b = 1.8 and r ≡ r0, a spatially periodic solution up
bifurcates subcritically from uh at r = 0. The periodic state passes through a saddle-node at
rsn ≈ −0.3744, gaining stability and creating a region of bistability with uh in −0.3744 < r < 0.
The Maxwell point is located at rM ≈ −0.3126 within the bistability region and corresponds to
the point where F [up] = F [uh] = 0. The pinning or snaking region r− < r < r+ straddles this
point (r− ≈ −0.3390, r+ ≈ −0.2593) and contains a pair of intertwined branches (Figure 1(a))
of even parity spatially localized states with maxima (hereafter L0) or minima (hereafter Lπ)
at x = 0, as described in [14]. In a finite domain, snaking continues until the domain is (almost)
filled with pattern; thereafter the solution branches exit the pinning region and terminate on
branches of periodic states near their saddle-node. Throughout this study we present our
results in terms of the amplitude of the pattern, A = maxx(u), and the location x = f of the
front connecting the pattern to the homogeneous state relative to the axis of symmetry x = 0
of the pattern,

(2.3) f = 2

∫ Γ/2
0 xu2 dx∫ Γ/2
0 u2 dx

.

As the amplitude A of snaking localized solutions is comparable to that of the periodic state at
the same parameter values, larger values of f indicate broader localized structures. However,
between the pinning region and r = 0 the solutions broaden to fill the available domain as
their amplitude decreases to zero. Thus f increases without bound as A → 0 (Figure 1(b)).

2.2. Temporal dynamics of localized initial conditions. Spatially localized initial condi-
tions of (2.1) eventually settle on a steady state, but the type of steady state and the transient
leading to it depend on r and the initial condition. The relevant regimes organized around the
presence of steady spatially localized states can be identified in Figure 1 and are summarized
below:

1. Regime A−: r < rsn. Only the trivial state is stable. The dynamics is dominated
by an overall amplitude (or body) mode, and the amplitude of any localized initial condition
decays homogeneously to zero.
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r

||u
||

0

1

A+D+P±D−A−

r+ 0r−rsn

(a)

f

Asn A− A+ A0
0

Γ/2

(b)

x

u

(c)

Figure 1. (a) Bifurcation diagram showing the normalized L2-norm ||u|| =
√

1
Γ

∫ Γ/2

−Γ/2
u2 dx of time-

independent solutions of (2.1) as a function of the forcing parameter r. Vertical dashed lines delimit the
amplitude regime A−, the depinning regimes D±, and the pinning region P±. The characteristics of each
regime are described in the text. (b) The same as (a) but projected on the amplitude A = maxx(u) and the
position f > 0 of the right front, as defined in the text. (c) Solutions u(x) corresponding to the red circles in
(a) and (b), with black dashed lines indicating the locations x = ±f of the fronts.

2. Regime D−: rsn ≤ r ≤ r−. Two stable states are present: uh and up, with F [uh] <
F [up]. Spatially localized initial conditions evolve via a depinning (or edge) mode responsible
for the progressive loss of spatial periods while keeping their amplitude constant. The solution
collapses to the trivial state only when its extent becomes comparable to one wavelength.

3. Regime P±: r− ≤ r ≤ r+. There is a large number of coexisting stable and unstable
states: trivial, spatially periodic, and spatially localized with different numbers of periods.
The long-time behavior of the system is determined by the basins of attraction of the stable
states and hence by the initial conditions provided.

4. Regime D+: r+ ≤ r ≤ 0. The situation is similar to that in D−, but this time
F [up] < F [uh]. Spatially localized initial conditions nucleate additional wavelengths under
the influence of the depinning mode, and in periodic domains evolve into the spatially periodic
state.

5. Regime A+: r > 0. The only stable state is the spatially periodic state.
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864 PUNIT GANDHI, CÉDRIC BEAUME, AND EDGAR KNOBLOCH

(a) A−, r = −0.40

(b) D−, r = −0.36

(c) P+, r = −0.28

(d) D+, r = −0.20

Figure 2. Space-time plots (left panels) and sample phase space trajectories (right panels) illustrating
the dynamics of localized solutions of L0 type in the different parameter regimes in Figure 1, initialized with
different values of r. Green dots indicate stable periodic states for the given forcing, while blue dots indicate
stable localized states. The purple region shows the pinning region.

These regimes are depicted in the phase portraits in Figure 2. The computations use L0

localized solutions from the snaking region, hereafter u0(x), as initial conditions. These evolve
first in A to the appropriate amplitude, followed by depinning if r falls outside the pinning
region.
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t

a

t

q

(a) δ < 0
r+δ < 0 δ > 0

(b) Stability diagram

t

a

t

q

(c) δ > 0

Figure 3. Amplitude of the depinning mode in terms of a(t) (upper panels) and q(t) (lower panels) near r+
for (a) δ < 0 and (c) δ > 0; (b) shows the corresponding bifurcation diagram. Figure (c) shows three successive
nucleation events corresponding to times where a(t) → ∞ (top panel) or q(t) = 0 (lower panel).

If r = r± + δ, where |δ| � 1, the resulting front propagates at an overall constant speed
determined by the nucleation time T dpn ∝ |δ|−1/2 computed in [14]. In this calculation, the
solution takes the form u(x, t) = u0(x)+

√
|δ|a(t)v±(x)+O(|δ|), where a is the time-dependent

amplitude associated with the eigenmode v± that is responsible for triggering a nucleation (+)
or annihilation (−) event. The equation that governs the dynamics of a is

(2.4) α1ȧ =
√

|δ|(α2 sgn(δ) + α3a
2),

where sgn(δ) is the sign of δ, and the coefficients αj for each of the two cases (r±) are computed
numerically from the following integrals:

(2.5) α1 =

∫ Γ/2

0
v±(x)

2 dx, α2 =

∫ Γ/2

0
v±(x)u0(x) dx, α3 =

∫ Γ/2

0
v±(x)

3(b−3u0(x)) dx.

We now discuss the solutions describing a nucleation event near r+, where α3 > 0; analo-
gous arguments apply in the vicinity of r−, where α3 < 0. Within the pinning region, δ < 0, a
pair of stable and unstable steady state solutions u0 is present, corresponding to the vicinity of
a fold on the right of the snaking branch L0 (Figure 3(b)), and all initial conditions approach
the stable state or diverge. Outside of the pinning region, δ > 0, there are no stable solutions,
and the amplitude a → ∞ for all initial conditions. The upper panels of Figures 3(a) and
3(c) show typical trajectories a(t) corresponding to the dynamics represented by the arrows in
Figure 3(b), with the right panel showing three successive nucleation events. We approximate

the time between depinning events, i.e., the nucleation time T dpn
+ , as the time interval between

successive asymptotes where a diverges.
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Near the fold of the snaking branch L0 and to its right (0 < δ � 1) the system undergoes

dynamics on the timescale δ−1/2 [14] and thus T dpn
+ = O(δ−1/2). Upon leaving the vicinity of

the fold (i.e., when a → ∞), the system transitions toward the next fold on the snaking branch
(Figure 3) before slowing down again. This transition corresponds to a nucleation event that
adds a wavelength to each side of u0(x), and the process repeats at successive folds. Since
the structure of v+(x) is almost independent of the length 2f of the localized state (it is an
edge mode) the resulting process is periodic, a fact that can be highlighted by introducing the
Riccati variable q defined by a = −α1q̇/α3

√
|δ|q. In terms of q, (2.4) becomes the oscillator

equation q̈ + δΩ2
+q = 0, where Ω2

+ ≡ α2α3/α
2
1 > 0. The lower panels of Figures 3(a) and

3(c) show the oscillator amplitude q(t) corresponding to the a(t) solutions shown just above.
However, care must be taken in the interpretation of this equation, because q → 0 implies
a → ∞, while (2.4) breaks down already when a = O(δ−1/2). Despite this caveat we shall
find the variable q useful since it highlights the possibility of a temporal resonance when the
system (2.1) is forced with a time-periodic forcing. A similar discussion applies to annihilation
events near r = r−.

Figure 4 compares the leading order theoretical prediction T dpn
+ = π/

√
δΩ+ obtained from

(2.4) (dashed lines) with numerical simulations of (2.1). The theory works well for 0 < δ � 1,
but improved agreement can be obtained using a numerical fit to the results of the simulations.
Motivated by the leading order theory, we seek a fit of the form (T dpn)−1 =

∑
σnδ

n/2, n ≥ 1,
and compute the coefficients σn using the method of least squares. A fifth order truncation
accounts accurately for the results in Figure 4 even when r ∼ rsn. The figure shows the
nucleation time in D+ (red) and annihilation time in D− (blue). The symbols represent
results from simulations, the dashed lines represent the prediction from the leading order
asymptotic theory, while the solid lines represent the fifth order numerical fit. The times T col

for a marginally stable periodic state at rsn (black crosses) and a localized state at r− (black
diamonds) to reach the trivial state by amplitude decay in A− are shown in black. The black
dashed line represents the leading order asymptotic theory applied to the periodic state near
rsn. The coefficients σn for both the asymptotic theory and the fifth order numerical fit for
our choice of parameters are summarized in Table 1. We will find that the numerical fit is
required for quantitative agreement between the theory presented in section 5 and numerical
simulations presented in section 4. However, the theory cannot be applied to localized states
in A− since these states undergo both amplitude decay and depinning.

3. The high frequency limit. We begin our study of the effects of time-periodic forcing
on localized states by considering the limit of fast oscillations. We first consider the case
when the frequency of the forcing cycle is so fast that the motion of the fronts does not permit
nucleation/annihilation of additional/existing periods. We then increase the amplitude of the
forcing cycle so that the structure remains unpinned for an appreciable amount of time.

3.1. The averaged system. The qualitative behavior of (2.1) is unchanged when the
forcing frequency is high enough that insufficient time is spent outside of the pinning region
for depinning to occur. The effect of the periodic forcing in this case is small, producing rapid
amplitude fluctuations of the existing localized states. We introduce the effective Maxwell
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0

25

50

75

100

r

T

rsn r− r+

T dpn
+T dpn

−T col

(a)

0 0.05 0.10
0

0.02

0.04

√
δ

T
−

1

(b)

(c)

Figure 4. (a) The time between nucleation events (T dpn
+ , red crosses), annihilation events (T dpn

− , blue

circles), and the time for the spatially periodic state to collapse to the trivial state (T col
per, black crosses) as

functions of the parameter r, starting from marginally stable L0 solutions at r = r+, r = r−, and the periodic
state at r = rsn, respectively. The symbols show results from direct numerical simulations; the solid lines are
fits to this data, and the dashed lines are predictions from the leading order theory in [14]. The corresponding
results for the collapse time for a localized state at r− are also shown (T col

loc , black diamonds). (b) Comparison
between numerical data (circles/crosses) and the leading order theory (dashed lines), showing (T dpn

± )−1 as a
function of the square root of the distance δ from the pinning region. The corresponding fifth order fits are
shown using solid lines. (c) A space-time representation of a simulation at r ≈ −0.2583 (δ ≈ 0.001) initialized
using a marginally stable localized solution at r+, with red representing high values and blue low values of u(x).
The solid black line shows the instantaneous front position x = f(t).

Table 1
Values of the coefficients σj determined from a least squares fit of the depinning/collapse time to simulations

with constant forcing of the form T−1 =
∑5

n=1 σn|r−r±,sn|n/2. The frequency Ω is calculated numerically from
the integrals in equation (2.5) in each case.

Ω σ1 σ2 σ3 σ4 σ5

T dpn
+ 0.5285 0.1687 0.1141 0.7709 −0.4000 0.0803

T dpn
− 0.7519 0.2381 −0.8445 33.37 −306.4 1067

T col
per 0.7705 0.4829 −1.738 10.62 −35.00 48.31

T col
loc - 0.2081 0.4431 2.962 −34.15 79.52
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point r̄M using the relation

(3.1) 〈F [u]〉 = 0,

where the brackets indicate an average over the forcing cycle. We assume that the periodic
forcing occurs at a high frequency, ω → ω/ε, where ε � 1, and define a fast timescale φ = ωt/ε.
We seek solutions of (2.1) in the form u(x, t) = u0(x, t, φ) + εu1(x, t, φ) + ε2u2(x, t, φ) + · · · ,
satisfying

(3.2) ω∂φu = ε
[
(r0 + ρ sinφ)u−

(
1 + ∂2

x

)2
u+ bu2 − u3 − ∂tu

]
,

where t is the original timescale on which the averaged dynamics take place, and assume that
ρ, r0, b, ω = O(1). The leading order equation (u0)φ = 0 gives u0(x, t, φ) = A0(x, t). At order
O(ε), we obtain

(3.3) ω∂φu1 = (r0 + ρ sinφ)u0 −
(
1 + ∂2

x

)2
u0 + bu20 − u30 − ∂tu0.

The solvability condition requires that the integral over a single period of the fast oscillation
of the right side of (3.3) vanishes. This condition yields the governing equation for A0:

(3.4) ∂tA0 = r0A0 −
(
1 + ∂2

x

)2
A0 + bA2

0 −A3
0.

Thus, in the limit of a high frequency forcing cycle with order unity amplitude, the leading
order behavior follows the time-independent SHE. Corrections arise at second order, as we
now show.

Equations (3.3) and (3.4) show that the O(ε) correction to the leading order behavior is
given by

(3.5) u1(x, t, φ) = − ρ
ω cosφA0(x, t) +A1(x, t).

At O(ε2) we obtain

(3.6) ω∂φu2 = (r0 + ρ sinφ)u1 −
(
1 + ∂2

x

)2
u1 + 2bu0u1 − 3u20u1 − ∂tu1,

leading to the solvability condition

(3.7) ∂tA1 = r0A1 −
(
1 + ∂2

x

)2
A1 + 2bA0A1 − 3A2

0A1.

Similarly, the second order correction to the solution takes the form

u2 =
ρ2

4ω2 cos 2φA0(x, t)− ρ
ω2 sinφ

[
bA0(x, t)

2 − 2A0(x, t)
3
]

(3.8)

− ρ
ω cosφA1(x, t) +A2(x, t),

and we obtain, at O(ε3),

(3.9) ω∂φu3 = (r0 + ρ sinφ)u2 −
(
1 + ∂2

x

)2
u2 + 2bu0u2 − 3u20u2 + bu21 − 3u0u

2
1 − ∂tu2,D
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yielding

(3.10) ∂tA2 = r0A2 −
(
1 + ∂2

x

)2
A2 + b(2A0A2 +A2

1)− 3(A2
0A2 +A0A

2
1)− 1

2

( ρ
ω

)2
A3

0.

We can define an averaged variable with error at order O(ε3) that describes the dynamics on
the long timescale:

(3.11) A ≡ 1

2π

∫ 2π

0

(
u0 + εu1 + ε2u2

)
dφ = A0 + εA1 + ε2A2.

On summing the solvability conditions, we obtain the following equation for the dynamics of
the averaged variable:

(3.12) ∂tA = r0A−
(
1 + ∂2

x

)2
A+ bA2 −

[
1 + 1

8π2 (ρT )
2
]
A3 +O(T 3),

where, for clarity, we have introduced the period of the forcing cycle T ≡ 2πε/ω. The result
is an SHE with a modified cubic term.

We find that the averaged Maxwell point of the system, defined by (3.1), is in fact the
Maxwell point of the averaged system (3.12). This can be checked explicitly by noting that

(3.13) F̄ [A] = 〈F0[u0 + εu1 + ε2u2]〉+O(ε3),

where F̄ is the free energy of the averaged system with periodic forcing, F0 is the free energy
of the system with a constant forcing r0, and the average is over a forcing cycle. Furthermore,

(3.14) F̄ [A] = F0[u0] +
ρ2T 2

32π2Γ

∫ Γ/2

−Γ/2
u40 dx+O(T 3),

implying that the free energy in the fluctuating system is greater than that of the system with
constant forcing r0. We can use this expression to calculate the frequency-induced shift of the
Maxwell point explicitly by finding the value of r where F̄ [A] = 0. Because the periodic forcing
has increased the energy of the spatially periodic state, the Maxwell point of the averaged
system necessarily shifts to the right (r̄M > rM ) to compensate, while the boundaries of the
pinning region also shift to the right. Following [14] we obtain

(3.15) r̄± = r± +
ρ2T 2

8π2

∫ Γ/2
−Γ/2 u

3
0v± dx∫ Γ/2

−Γ/2 u0v± dx
.

Here u0 is the marginally stable solution of the constant forcing system at r±, and v± are the
eigenmodes of the linearized problem at r± responsible for wavelength nucleation/annihilation.
Both integrals are positive, and we find that

(3.16) 2p̄ ≡ r̄+ − r̄− ≈ 2p− 0.0039(ρT )2 ,

where p = (r+ − r−)/2 is the half-width of the pinning region in the constant forcing case.
Thus the introduction of the periodic forcing shrinks the width of the pinning region and
shifts it to the right.
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870 PUNIT GANDHI, CÉDRIC BEAUME, AND EDGAR KNOBLOCH

3.2. Large amplitude forcing. We may repeat the above calculation in the case ρ → ρ/ε
so that we are now dealing with fast oscillations with a large amplitude. This allows the system
to spend enough time outside of the pinning region for depinning to take place. However, in
this limit, a large fraction of the forcing cycle is actually spent in the amplitude decay/growth
regimes A±, and thus the leading order dynamics will not be composed simply of nucleation
and annihilation events. This regime is described by the equation

(3.17) ω∂φu− ρ sin(φ)u = ε
[
r0u−

(
1 + ∂2

x

)2
u+ bu2 − u3 − ∂tu

]
,

where r0, b, ρ = O(1), and we look for solutions in the form u = u0 + εu1 + ε2u2 + · · · . At
leading order we obtain (ωu0)φ − ρ sin(φ)u0 = 0, with solution

(3.18) u0(x, t, φ) = e−(ρ/ω) cosφA0(x, t).

At O(ε), the governing equation becomes

(3.19) ω∂φu1 − ρ sin(φ)u1 = r0u0 −
(
1 + ∂2

x

)2
u0 + bu20 − u30 − ∂tu0.

Imposing the requirement that u1 is periodic on the fast timescale leads to the solvability
condition

∫
RHS e(ρ/ω) cos φ dφ = 0, where RHS stands for the right-hand side of (3.19), and

an evolution equation for A0:

(3.20) ∂tA0 = r0A0 −
(
1 + ∂2

x

)2
A0 + bI0(

ρ
ω )A

2
0 − I0(

2ρ
ω )A3

0.

Here I0(x) is the modified Bessel function of the first kind. Thus the slowly evolving amplitude
A0 of the leading order solution u0 satisfies an SHE with modified coefficients. A higher order
calculation shows that there is no additional correction at O(ε) and the averaged dynamics
follows SHE with the modified nonlinear coefficients of (3.20) up to O(ε2).

In contrast to the ρ ∼ O(1) case, the cubic nonlinearity is now dramatically increased
relative to the quadratic one. This results in a rapid decrease in the region of bistability as
ρ/ω increases. Indeed, at ρ/ω ≈ 7.02 the region of bistability disappears in a codimension
two point where the bifurcation that creates the periodic state transitions from subcritical to
supercritical.

4. Intermediate frequencies: Breathing localized structures. We now move away from
the high frequency limit and investigate parameter combinations that permit depinning. For
this purpose we consider parameter excursions that allow the system to traverse P± and
spend a significant time in both D+ and D−, i.e., we take r− < r0 < r+, and ρ > p, where
p ≡ (r+ − r−)/2 is the half-width of the pinning region. The resulting structures oscillate in
width and amplitude, and we refer to them as “breathing” localized structures.

4.1. The fate of stable localized initial conditions. Figure 5 shows sample results for
ρ = 0.1, r0 = −0.28, in each case starting from the same stable spatially localized L0 solution
of the time-independent problem r ≡ r0. The figure shows that, depending on T , the solution
can undergo growth/decay through a depinning-like process (Figures 5(a) and 5(c)), decay
to the trivial state via an amplitude mode (Figure 5(d)), or take the form of a periodic
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f

Asn A− A+
0

Γ/2

(a) T = 50

f

Asn A− A+
0

Γ/2

(b) T = 150

f

Asn A− A+
0

Γ/2

(c) T = 250

f

Asn A− A+
0

Γ/2

(d) T = 350

Figure 5. Space-time plots (left panels) and the corresponding phase space trajectories (right panels) for
solutions of (2.1) with r(t) = −0.28 + 0.1 sin(2πt/T ), b = 1.8, initialized using an L0 solution at r = −0.28.
The red dashed lines in the right panels correspond to evolution past the time window represented in the left
panels, while the green lines represent spatially periodic solutions of the time-independent case. The period T
is indicated below each plot. The trajectory in (a) terminates on a time-periodic defect state.

orbit corresponding to a localized solution with no net motion of the fronts (Figure 5(b)).
Moreover, the growth/decay of new wavelengths can occur regularly from one period of the
forcing to the next, or in a seemingly irregular way. In particular, Figure 5(a) shows a growth
scenario for T = 50 in which the solution grows in length by one wavelength on each side
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after approximately three cycles of the forcing. This process is irregular in the sense that the
number of nucleation and decay events is not constant from one period of the forcing to the
next. It is also interesting to note that this simulation does not reach the spatially periodic
state, but instead approaches an oscillating state with a defect at the edge of the periodic
domain. In contrast, Figure 5(c), obtained for T = 250, shows a very regular pattern of
five nucleations events followed by six decay events during the course of each forcing cycle,
resulting in an overall decay of the state. Finally, Figure 5(d) for T = 350 shows an initial
growth phase followed by abrupt amplitude decay to the trivial state.

Although the wavelength of a localized solution depends on the forcing parameter r, it is
always near the preferred wavelength 2π, and thus f undergoes abrupt jumps by approximately
2π whenever the fronts depin. These jumps are most evident during the growth phase since
the time between nucleations is longer than the time between annihilations. The results shown
in Figure 5 are independent of the length of the initial stable state selected for the simulation,
provided that 6π � f � Γ/2 − 6π throughout the simulation, i.e., provided the structure
remains well localized. We likewise report that the initial phase of oscillation does not affect
the dynamics.

We distinguish periodic orbits from growing and decaying orbits using the instantaneous
front velocity Vf defined by the relation Vf ≡ ḟ . We look at the averaged front velocity
〈Vf 〉 over a cycle period (calculated for oscillation periods for which 6π � f � Γ/2 − 6π
and disregarding the first oscillation period) and consider an orbit periodic if |〈Vf 〉| < 10−4

(corresponding to no net nucleation or annihilation within a time period of about 6 × 104

units). For example, the orbit shown in Figure 5(b) is deemed periodic since |〈Vf 〉| falls below
the cut-off value of 10−4 after 12 periods of the forcing cycle (in fact |〈Vf 〉| is still decreasing,
even after 1800 units of time). For decaying and growing orbits, the average change in the
front position 〈Δf〉 over one cycle helps distinguish the regular behavior in Figure 5(c) where
〈Δf〉/2π ≈ 1.0108 from the irregular dynamics in Figure 5(a) where 〈Δf〉/2π ≈ 0.3087:
regular dynamics translate into 〈Δf〉 close to an integer number of nucleation/decay events
(〈Δf〉 ≈ 2nπ).

4.2. Spatially localized periodic orbits. We now investigate the existence of periodic
orbits like the state exemplified in Figure 5(b). For ρ = 0.1, we do a parameter scan varying
the mean forcing amplitude r− ≤ r0 ≤ r+ in steps of Δr0 = 10−4 and the oscillation period
10 ≤ T ≤ 400 in steps of ΔT = 1. At each point a simulation is run to calculate 〈Vf 〉
initialized with a steady state localized solution at r ≡ r0. In most cases the simulations were
run for 2000 units of time (4000 units were necessary for the longer oscillation periods). The
results are shown in Figure 6. The region where |〈Vf 〉| < 10−4 is labeled PO and corresponds
to parameter values at which periodic orbits are found. For short periods T for which there
is insufficient time for nucleation or annihilation within a cycle, the region of periodic orbits
spans nearly the whole pinning region (bottom part of Figure 6). With increasing T, the
range of existence of periodic orbits narrows for fast oscillations, as predicted by the theory
in section 3, but does not do so monotonically. The figure reveals that sweet spots where
the range is larger than in the pinched regions above and below occur at regular intervals of
the forcing cycle period. For ρ = 0.1, the pinched regions are separated by ΔT ≈ 43. The
region of existence of periodic orbits is asymmetric owing to major differences in the depinning
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r0

T

PO

−0.33 −0.31 −0.29 −0.27
10

100

200

300

400

Figure 6. Diagram showing the region of existence of periodic orbits PO (shaded region) as defined by
|〈Vf 〉| < 10−4 for oscillation amplitude ρ = 0.1. The simulations are initialized with an L0 solution that
is stable for constant forcing r0. The range of r0 shown corresponds to the pinning interval (r−, r+) in the
time-independent case. The three dots (lower right corner, and 2nd and 7th sweet spots from bottom) indicate
parameter values for the periodic orbits shown in Figure 7. The green dashed line shows the predicted location
of the left edge of PO for 10 ≤ T ≤ 20 from the high frequency theory of section 3.1.

dynamics in regimes D− and D+. Moreover, the region slants to higher values of the forcing
as the period T increases, a property that is related to the additional time spent in regime
A− during the decay phase. Region PO eventually asymptotes to r0 ≈ −0.2744 as T → ∞,
the threshold for entering regime A−, where amplitude decay takes over from depinning as
the leading mode of decay. In contrast to the high frequency case, here the Maxwell point
determined from the time-averaged free energy moves to lower values of r and is no longer a
good predictor of the region of periodic orbits. Despite this, the high frequency prediction of
the width of the pinning region in (3.16) remains within ∼ 10% of the results of numerical
simulation with ρ = 0.1 and T = 10, even though the ω � 1 assumption no longer applies.

Figure 7 shows three different stable periodic orbits from different sweet spots, correspond-
ing to T = 10, 100, and 300. The left panels indicate that these solutions are converged to
machine precision and do not seem to suffer from slow instabilities, while the remaining pan-
els provide insight into the balance between growth and decay over the course of the cycle
period. Figure 7(a), for T = 10, shows a periodic pulsation in amplitude but no front motion.
Figure 7(b), for T = 100, reveals a periodic orbit characterized by both amplitude and front
oscillation, as does Figure 7(c) for T = 300. The T = 100 orbit, which is located in the
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1 2000
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−30

10
0

forcing cycle

||Δ
u
||

f

Asn A− A+

4π

20π

(a) T = 10, r0 = −0.26

1 200
10

−30

10
0

forcing cycle

||Δ
u
||

f

Asn A− A+

4π

20π

(b) T = 100, r0 = −0.28

1 200
10

−30

10
0

forcing cycle

||Δ
u
||

f

Asn A− A+

4π

20π

(c) T = 300, r0 = −0.279

Figure 7. Periodic orbits for three parameter combinations: The normalized L2-norm of the difference of
two solutions exactly one period apart showing convergence to machine precision (left panels), space-time plots
of the corresponding converged solution over one cycle period (middle panels), and the (A, f) trajectory of the
converged solution (right panels).

second fully formed sweet spot from the bottom of Figure 6, undergoes two nucleation events
followed by two decay events during the course of each forcing cycle. The T = 300 example
is from the 7th sweet spot and undergoes 7 nucleation/decay events per cycle; the example
shows that the nucleations occurring during the growth phase of the forcing between t ≈ 50
and t ≈ 150 are significantly slower than the decay between t ≈ 200 and t ≈ 250. Note that
periodic orbits are present despite entering A−, something that is only possible because of the
short amount of time spent in this regime.

We also examined the dependence of the region PO on the amplitude of oscillation, ρ. The
results for T ≤ 200 (Figure 8) show that as ρ increases, the sweet spots span an increasingly
smaller interval in the period T, and thus a larger variety of periodic orbits can be observed
within a given range of T as ρ increases. In addition, the whole sweet spot structure asymptotes
more quickly toward r0 = −0.2744 as ρ increases.

4.3. Structures undergoing net growth or decay. The existence of the periodic orbits
discovered above is closely related to the dynamics of the fronts connecting the localized
patterned state to the background state, suggesting that we can use the net displacement 〈Δf〉
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r0

T

−0.30 −0.28
10

100

200

(a) ρ = 0.06

r0

T

−0.30 −0.28
10

100

200

(b) ρ = 0.08

r0

T

−0.30 −0.28
10

100

200

(c) ρ = 0.10

Figure 8. Region of existence of periodic orbits when (a) ρ = 0.06, (b) ρ = 0.08, (c) ρ = 0.1, using the
same color code as in Figure 6.

of the fronts within a forcing cycle to classify the growing/decaying solutions. We therefore
calculated 〈Δf〉 on the same grid as that used to find the periodic orbits PO, starting from
narrower localized states to the right of PO and broader localized states to the left of PO, all
stable. In some cases (e.g., for T > 200), a domain of twice and sometimes four times the size
used in the PO calculations was necessary to capture enough oscillations.

The results are summarized in Figure 9. The different colored regions are determined by
the conditions (n − 0.25)2π < 〈Δf〉 < (n + 0.25)2π, n = ±1,±2, . . . , and represent regions
where regular behavior is observed. The zones between these regions (shown in gray) are
“transition zones” that will be discussed below. The figure shows that the region of existence
of the periodic orbits is surrounded by regions of decay (to the left) and growth (to the right).
Beginning in the periodic orbit region PO and moving to the right (increasing r0), the first
region encountered (O+1) corresponds to growth by one wavelength on either side of the
pattern per cycle. The next region (O+2) corresponds to growth by two wavelengths on either
side, and so on for the subsequent regions, which we refer to as On, where n is a positive
integer. The regions to the left of PO correspond to decay instead of growth. The closest
region to PO, O−1, exhibits one wavelength decay on either side of the pattern per cycle and
so on for On, n < −1. Each of these regions is separated from its neighbor by a transition zone
where irregular dynamics are observed and displays the same sweet spot–pinched structure
as the PO region: the regions expand and contract successively as T increases. Some insight
into this structure can be gained by looking at the number q (m) of wavelengths gained (lost)
on each side of a localized structure during an excursion of the trajectory into regime D+

(D−). A sketch of the corresponding results in Figure 10 shows that areas corresponding to
the gain (loss) of a fixed number of wavelengths during a D+ (D−) excursion form bands,
and that the intersections of these bands define subregions labeled −mO+q

n , where n = q −m,
corresponding to net gain or loss of n wavelengths per cycle resulting from the annihilation
of m wavelengths followed by the nucleation of q wavelengths (Figure 10(c)). This procedure
allows us to assign a unique label to each subregion in the parameter plane (excluding the
transition zones in between). Spending more time or going farther into D+ (D−) will result
in more nucleations (annihilations) over a forcing cycle because more time is spent outside of
the pinning region. This explains the evolution of the −mO+q

n structure as r0 increases: the
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r0

T

PO

−0.33 −0.31 −0.29 −0.27
10

100

200

300

400

Figure 9. The number of spatial periods added/lost per cycle for an oscillation amplitude ρ = 0.1. The
simulations were initialized with L0 localized solutions that are stable at r0 in the time-independent system. The
central black region corresponds to the PO region (cf. the shaded region in Figure 6). The light blue region to
the left corresponds to decay by one wavelength on each side of the localized state per cycle, the next to decay
by two wavelengths per cycle, etc. The regions to the right of PO correspond instead to net growth by one
wavelength, two wavelengths, etc., on each side of the localized state per cycle. The large white region to the
left indicates the location of decay to the trivial state within one cycle period. Transition zones where irregular
behavior is observed are shown in gray. The dots indicate the location in parameter space of the solutions plotted
in Figure 5, while the horizontal line refers to a region that is studied in Figure 12.

+0 
+1 
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(a)

-0 

-2 
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(b) (c)

Figure 10. Sketch of the sweet spot classification scheme. The lines indicate transitions between the number
of wavelengths gained in (a) and lost in (b) on each side of the localized pattern during one cycle period. These
lines are superimposed over the data from numerical simulations in (c) as a means to classify the regions of
growth and decay.
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−0.2817 −0.2799
0

1

〈Δ
f
〉/

2π

r0
PO

O+1

Figure 11. The quantity 〈Δf〉/2π in the transition zone between PO and O+1 at T = 80 exhibits a structure
characteristic of a devil’s staircase (see inset).

time spent in D+ increases and the time spent in D− decreases. Similarly, as the period T of
the forcing increases, more time is spent in both D+ and D−, resulting in an increase of both
q and m. This translates into larger oscillations in the location of the fronts of the localized
structures for longer periods. Finally we can gain intuition about the cliff beyond which
localized solutions collapse to the trivial state within a single forcing cycle by considering the
length of time spent in the regime A−. This region is characterized by the time required
for solutions to decay to the homogeneous state. As the cycle period increases, the center of
oscillation that allows the system to just reach this threshold time is pushed farther to the
right. So the edge of the cliff moves to increasing values of r0 as the cycle period T increases.

The transition zones narrow as the period T increases, and a closer look reveals a complex
structure resembling a devil’s staircase, a characteristic of mode locking. Figure 11 shows
〈f〉 within the transition zone between PO and O+1 at T = 80 calculated on a domain of
160 spatial periods using a grid of r0 values with spacing Δr0 = 10−5. The results reveal
the presence of increasingly thin regions in which n wavelengths are gained/lost from either
side of the localized structure within N cycles. These regions thus correspond to fractional
growth/decay of the solutions, suggesting a complex structure on all scales. Whether there are
regions of nonperiodic dynamics corresponding to irrational numbers cannot be determined
through simulations, but the asymptotic results of section 4.5 seem to indicate that they form
a dense subset of the transition zone.

4.4. Amplitude decay. In addition to the depinning-like dynamics observed in the colored
regions outside of PO in Figure 9, amplitude decay occurs in the white region. In this region
the initial localized solution collapses to the trivial state within a single forcing cycle. The
boundary of this region is formed by the accumulation of the depinning bands identified in
Figure 10(b).

We look more carefully at the accumulation point of the decay bands in Figure 12. The
plateaus correspond to the loss of integer numbers of wavelengths per forcing cycle. Fig-
ure 12(a) shows that the width of the plateaus as well as of the transition zones between them
decreases as one approaches the accumulation point, while Figure 12(b) shows the width Δr
of the plateaus and the transition zones as a function of N , the number of wavelengths lost
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Figure 12. (a) The quantity N ≡ 〈Δf〉/2π, representing the shift in the front location averaged over a cycle
period, as a function of r0 in regime D− when T = 100 (Figure 9, horizontal line). (b) Length of the plateaus
(green crosses) and of the transition regions between them (red circles) as determined from (a), shown in a
semilog plot, together with linear approximations to the data (straight lines, given in the text). The plateaus
are plotted at integer values of N, while the transition zones between plateaus N = n and N = n+ 1 are taken
to correspond to N = n+ 0.5.

per cycle (N < 0). The data obtained shows that both of these widths decrease exponentially
with increasing |N | and are consistent with the fits

ΔrP (NP ) = 0.01056 e1.0188NP ,(4.1)

ΔrT (NT ) = 0.003307 e0.9584NT ,(4.2)

where ΔrP (resp., ΔrT ) denotes the width of the plateau corresponding to the loss of NP

wavelengths per cycle (resp., width of the transition zone between the pair of closest integers
to NT ). To obtain these fits we used all the data in Figure 12(b) on the plateau widths but
only the transition zones between N = −6.5 and N = −3.5. To consider even smaller values
of N would have required considerably more numerical effort without improving substantially
the accuracy of the fit, while values of N closer to 0 lead to departures from the asymptotic
regime. Both formulas show similar exponential decrease, thereby confirming the presence
of an abrupt “cliff” at the accumulation point (Figure 12(a)). Furthermore, we see that the
width of the transition zones tends to about 1/3 of that of the plateaus as |N | increases.

4.5. Asymptotic theory: Small oscillations. To understand the structure of the parame-
ter plane in Figure 9, we need to understand the process of depinning in the time-dependent
system. For this purpose we will consider parameter excursions that take the system outside
of the pinning region long enough for a nucleation or annihilation event to occur. We therefore
suppose that r → r+ + ε2(δ + ρ sin εωt), for which the oscillation period is of the same order
as the nucleation time. An analogous calculation near r− produces similar results. In this
regime the problem is governed by the equation

(4.3) ut =
(
r+ + ε2(δ + ρ sin εωt)

)
u−

(
1 + ∂2

x

)2
u+ bu2 − u3.

Since the dynamics takes place on an O(ε−1) timescale we define the slow timescale τ = εt
and write ∂t → ε∂τ . We look for a solution in the form u = u0 + εu1 + ε2u2 + · · · , obtaining,
at leading order,

(4.4) r+u0 −
(
1 + ∂2

x

)2
u0 + bu20 − u30 = 0.
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As a result we pick u0 to be a localized solution at a saddle-node bifurcation of the snaking
branch in the time-independent case. In this case u0 is stationary but only marginally stable.
At O(ε), we obtain

(4.5) ∂τu0 = r+u1 −
(
1 + ∂2

x

)2
u1 + 2bu0u1 − 3u20u1.

Since u0 is stationary, u1 must be of the form of a zero eigenvector of the SHE linearized about
the saddle-node solution. The relevant eigenvector v+ corresponds to wavelength addition and
is symmetric with respect to x → −x. Since we focus on states that do not drift, we can ignore
the marginal but antisymmetric eigenvectors corresponding to translation and phase. Thus
u1 = a(τ)v+.

To determine the amplitude a we must go to O(ε2). At this order, the equation is

(4.6) ∂τu1 = r+u2 −
(
1 + ∂2

x

)2
u2 + 2bu0u2 − 3u20u2 + (δ + ρ sinωτ)u0 + bu21 − 3u0u

2
1.

The solvability condition for u2 is [14]

(4.7) α1ȧ = α2(δ + ρ sinωτ) + α3a
2,

with the coefficients αj calculated from the integrals defined in (2.5).
We can turn this equation into a Mathieu equation using the Riccati transformation

a = −α1q̇/α3q, obtaining

(4.8) q̈ = −Ω2
+ (δ + ρ sinωτ) q, δ > 0,

where Ω2
+ ≡ α2α3/α

2
1 > 0, with αj evaluated at r+ (cf. section 2.2). Thus Ω+ ≈ 0.5285.

The same procedure at the left boundary of the pinning region leads to an equation for the
dynamics of the annihilation mode amplitude as a function of the distance δ from the boundary,
r0 = r− + δ:

(4.9) q̈ = Ω2
− (δ + ρ sinωτ) q, δ < 0,

where we have set a = α1q̇/α3q. The integrals αj are now evaluated at r = r− and Ω− =√
−α2α3/α2

1 ≈ 0.7159.
We can make use of the known properties of the solutions of the Mathieu equation to

understand the origin of the resonances between the forcing frequency ω and the characteristic
depinning frequency

√
δΩ+. The properties of (4.8) are summarized in the standard stability

diagram for the Mathieu equation [33] shown in Figure 13 in terms of the scaled distance
from the boundary of the pinning region δ/ρ and the scaled oscillation period Ω+

√
ρT/π.

The shaded zones indicate that the solutions of (4.8) are bounded for all time, while the
solutions are unbounded in the white bands. In terms of the amplitude a in (4.7), the shaded
areas correspond to transition zones where a noninteger number of nucleation events occurs
during each cycle of the forcing. In fact, nonperiodic dynamics occur for irrational values of
the associated Mathieu characteristic exponent within these zones. The first white band on
the far left corresponds to stable periodic orbits that do not undergo nucleation. The state
undergoes one nucleation per oscillation in the white band immediately to the right, and the
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Figure 13. (a) The stability diagram for (4.8). The white bands correspond, from left to right, to states that
undergo exactly 0, 1, 2, 3, . . . nucleation events per forcing cycle. A noninteger number of nucleations per cycle
occurs in the gray transition zones in between. (b) Sample solution a(τ ) within the 0 region when δ = −ρ/2,
T = 2π/Ω+

√
ρ. (c) Sample solution a(τ ) within the +2 region when δ = 0, T = 6π/Ω+

√
ρ. (d) Sample solution

a(τ ) within the transition region between regions +3 and +4 when δ = ρ, T = 4π/Ω+
√
ρ. Nucleation events

correspond to divergences in a(τ ).

number of nucleations per oscillation increases by integer values within each subsequent white
band.

We remark (cf. section 2.2) that care must be taken in interpreting the solutions to (4.8)
and (4.9) since the zeros of q(τ) correspond to solutions of (4.7) that diverge to ±∞. During
this process higher order nonlinearities enter (4.7), with the result that the Riccati transfor-
mation no longer yields a linear equation. Thus the solutions of (4.8) and (4.9) in fact fail
to describe the depinning process near the zeros of q(τ), and the corresponding solution a(τ)
is determined by “gluing” together a series of individual nucleation events. However, as sug-
gested by the description in (4.8) and (4.9), the resulting nucleation process is indeed periodic,
albeit in the frame moving with the front x = f(τ).

4.6. Asymptotic theory: Large oscillations. With intuition gained from the small ampli-
tude theory we now consider the case of large parameter oscillations that take the system just
outside of the pinning region, but with a long enough period that there is time for depinning
to occur. Because the system spends only a small fraction of the forcing cycle outside of P±,D
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we require the forcing cycle period to be yet longer, T = O(ε−2), in order that depinning takes
place. We therefore define the slow timescale T = ε2t and write the forcing parameter in the
form

(4.10) r = rc + ε2r2 + (p + ε2δ) sin
(
ε2ωt

)
,

where rc ≡ (r+ + r−)/2 corresponds to the center of the pinning region, and p ≡ (r+ − r−)/2
is its half-width. This choice allows for the oscillations to take the system just outside of
the pinning region on both sides where depinning can be described quantitatively; the small
offset represented by r2 is included for greater generality, as is illustrated in the schematic in
Figure 14(a). A periodic orbit from a simulation, colored according to the value of the forcing
parameter r, is also shown.

(a) (b)

Figure 14. (a) A schematic of the forcing function r(t) used in the asymptotic theory in the (r, ṙ) plane.
(b) A periodic orbit with ρ = p + 10−3, T = 5000, and r0 = −0.299. The orbit is colored by the magnitude of
r: purple corresponds to P± (slow phase), orange to D+ (fast phase), and blue to D− (fast phase).

We anticipate that in the above setup nucleation will occur on the faster timescale τ =
O(ε−1) and so look for solutions in the form u = u0 + εu1+ ε2u2 + · · · , where uj ≡ uj(x, τ,T ).
Writing ∂t = ε∂τ + ε2∂T , we obtain at leading order

(4.11)
[
rc + p sin (ωT )− (1 + ∂2

x)
2
]
u0 + bu20 − u30 = 0.

Thus we can choose u0(x,T ) to be a stable localized solution of the time-independent SHE
within the pinning region, with T determining the value of the forcing parameter within this
region. The solutions follow the corresponding segment of the L0 branch (Figure 14(b)) as
long as π(n − 1/2) < ωT < π(n + 1/2) for any integer n. As we will see, special care must
be taken near the extrema of the forcing cycle when the system leaves the pinning region and
the dynamics take place on the faster timescale τ .

The O(ε) correction reads

(4.12)
[
rc + p sin(ωT )− (1 + ∂2

x)
2 + 2bu0 − 3u20

]
u1 = 0.

When ωT = (2n + 1/2)π (resp., (2n + 3/2)π), the quantity u1 solves the linearized SHE at
r+ (resp., r−) with symmetric solution v+ (resp., v−), i.e., the depinning mode responsible for
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growth (resp., decay) of the localized pattern. In contrast, when (n−1/2)π < ωT < (n+1/2)π,
no reflection-symmetric marginally stable modes are present. To examine the dynamics near
r+ we take the slow time to be ωT = π/2+ εθ; a similar procedure can be carried out near r−
by taking ωT = 3π/2 + εθ, and subsequent cycles of the forcing can be handled in the same
way. The time derivative now becomes ∂t = εω∂θ and the O(ε) equation (4.12) becomes

(4.13)
[
r+ − (1 + ∂2

x)
2 + 2bu0 − 3u20

]
u1 = ω∂θu0.

Since u0 is the marginally stable localized solution at r+ it follows that ∂θu0 = 0 and hence
that u1 = a(θ)v+(x).

At O(ε2) we obtain

(4.14)
[
r+ − (1 + ∂2

x)
2 + 2bu0 − 3u20

]
u2 = ω∂θu1 − (b− 3u0)u

2
1 − (r2 + δ − 1

2pθ
2)u0,

for which the solvability condition is

(4.15) α1ωa
′ = α2(r2 + δ − 1

2pθ
2) + α3a

2,

where the prime denotes the θ derivative and the coefficients αj are determined by the integrals
in (2.5).

Using the transformation a = −α1ωq
′/α3q, we obtain a linear oscillator problem with a

time-dependent frequency,

(4.16) q′′ = −pΩ2
+

2ω2

(
θ2+ − θ2

)
q,

where θ2+ = 2(r2 + δ)/p and, as before, Ω2
+ = α2α3/α

2
1. The system exits P+ when r2 + δ > 0,

and in this case [−θ+, θ+] corresponds to the time interval spent in D+. We now use a matching
procedure to connect this solution to the case when ωT �= π/2, noting that u1(x,T ) → 0 as
ωT → π/2, so that the solution remains stable as it approaches the boundary of the pinning
region. Since the leading order solution for large |θ| is given by a(θ) ≈

√
pα2/2α3|θ| we require

that a(θ) →
√

pα2/2α3θ < 0 as θ → −∞. The solution of (4.16) satisfying this requirement
can be written in terms of parabolic cylinder functions [1], q = Dν(z), where

(4.17) ν =

√
pΩ+θ

2
+

2
√
2ω

− 1

2
, z = −(2p)1/4

√
Ω+

ω
θ.

Each zero z = z0 of q = Dν(z) corresponds to a nucleation event, since a diverges to ±∞ as
z → z0. To determine the outcome of such an event we must consider the limit as θ → ∞ to
match the ṙ > 0 phase of the forcing cycle with the ṙ < 0 phase that follows. This will tell
us what branch the solution follows for π/2 < ωT < 3π/2. The parabolic cylinder function
behaves like

(4.18) Dν(z) →
√
2π

Γ[−ν]
|z|−(ν+1)ez

2/4

for real z → −∞, where Γ[−ν] is the Gamma function evaluated at −ν. Examining the sign
of Γ[−ν] shows that as long as ν is not a positive integer, a →

√
pα2/2α3θ > 0 in this limit,
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and the solution does indeed settle on the nearest stable localized solution. The special cases
for which ν is a positive integer correspond to the solution landing exactly on an unstable
solution.

We can get a very simple expression for the number of nucleation events that occur near
r+ by counting the number of real zeros of Dν(z) for a given ν. We start by noting that for
z → ∞ (θ → −∞), Dν(z) approaches zero from above. When ν < 0, there are no real zeros
and Dν(z) > 0 for all z. Equation (4.18) shows that in the limit that z → −∞, the sign of
Dν(z) depends on the sign of Γ[−ν]. For ν < 0, the sign is positive and Dν(z) → +∞ as
z → −∞ without crossing zero. At ν = 0, Γ[−ν] = ∞ and Dν(z) → 0 from above; there are
still no zero crossings. For 0 < ν < 1, there will be one zero crossing as Dν(z) → −∞ as
z → −∞. The number of zeros continues to increase by one each time there is a sign change
in Γ[−ν] so that for n − 1 < ν < n, there will be n > 0 zeros of Dν(z). Therefore there will
be n+ nucleation events if

(4.19) n+ − 1

2
<

Ω+T

2π
√
2p

(r0 + ρ− r+) < n+ +
1

2
,

where we have reexpressed the condition in terms of the amplitude ρ ≡ p + ε2δ, offset r0 ≡
rc+ε2r2, and the period T ≡ 2π/ε2ω. A similar relation applies for the number of annihilations
n− < 0:

(4.20) n− − 1

2
<

Ω−T

2π
√
2p

(r0 − ρ− r−) < n− +
1

2
.

The above conditions also reveal the presence of bifurcation delay, as expected of a nonau-
tonomous bifurcation problem. This delay manifests itself in the shift of the critical value
r2 + δ = 0 for the presence of a fold to the threshold value determined by ν = 0, viz.,
r2 + δ = ω/

√
2pΩ+: the system enters D+ by as much as ω/

√
2pΩ+ without triggering a

nucleation event. Figures 15(b) and 15(c) show the amplitude a as a function of the scaled
time (2p)1/4Ω+θ/ω just before and after this threshold. The transition between these two
cases involves canard trajectories [30]. The discontinuous jump in Figure 15(c) represents a
nucleation event and is obtained by gluing together two separate asymptotic calculations near
different but adjacent saddle-nodes on the same snaking branch. The same “inertial” effect is
observable even when the system does not leave P+, i.e., δ + r2 < 0. Using the property

(4.21) Dν(z) →
√
2νπ

(
1

Γ[(1− ν)/2]
−

√
2z

Γ[−ν/2]
− (1 + 2ν)z2

4Γ[(1 − ν)/2]

)
, z → 0,

we see that even when the system just barely reaches the boundary of the pinning region,
r2 + δ = 0, the perturbation a(θ) remains finite (Figure 15(a)). Indeed the minimum value of
a(θ) occurs for θ > 0 instead of θ = 0. In fact a(θ) can be calculated explicitly in terms of

parabolic cylinder functions using the relation dDν(z)
dz = 1

2zDν(z)−Dν+1(z) (Figure 15).
In the parameter regime analyzed here, the system tracks a given stable localized state with

a delay in r of up to O(ε2) for most of the forcing cycle. All of the interesting dynamics occur
within a small time interval when the system visits the vicinity of the boundary of the pinning
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(a) ν = −0.5
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(b) ν = −0.1
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a
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Figure 15. A plot of the amplitude a(θ) of the O(ε) correction u1(x) to the solution that is marginally
stable at r = r+ as a function of a scaled O(ε) time near the boundary of the pinning region for different

values of ν =
√

pΩ+θ2+
2
√

2ω
− 1

2
. The time θ = 0 corresponds to the peak of the forcing cycle where “inertial” effects

are expected. The thin solid (dashed) line shows the amplitude a for the stable (unstable) localized solution
as functions of r but replotted in terms of the time θ. Below each frame is a schematic representation of
the trajectory of the amplitude a as a function of the forcing parameter r. The stable (unstable) steady state
branches of the constant forcing case are shown in solid (dashed) lines for reference. (a) ν = −0.5: the system
does not leave the pinning region, but there are still deviations from the stable state. (b) ν = −0.1: the system
exits the pinning region, but not far enough for nucleations to occur. (c) ν = 0.1: the system penetrates into
D+ past the threshold for a nucleation to occur (represented by a discontinuous jump).

region. If it ventures far enough outside of this boundary, nucleation/annihilation events
begin to take place after a delay. Once the system reenters the pinning region, the system
settles on the nearest stable but longer/shorter localized structure. The settling process also
happens within the vicinity of the boundary of the pinning region, and there may or may not
be an additional nucleation/annihilation event during this settling, depending on where in the
process the system was upon reentering the pinning region P±.

To understand the structure of growing, steady state, and decaying solutions in this limit,
we need only compare the growth from depinning that occurs near ωT = π/2 to the decay
from depinning that occurs near ωT = 3π/2. The formation of the pinched zones and the
sweet spot structure of the stationary solutions can be predicted by balancing the growth on
the right of the pinning region to the decay on the left, as we shall now see. The resulting
prediction is compared with numerical simulation in Figure 16 for ρ = p + 10−3 and shows
excellent quantitative agreement. Specifically, the colored regions are determined by numerical
simulation (the colored regions shown in Figures 16 to 18 correspond to 2π(n−0.5) < 〈Δf〉 <
2π(n+0.5) for n = 0,±1,±2, . . . ), and these match the coding scheme of Figure 9 without the
gray transition zones, while the red and blue lines are predictions for the transitions between
the various regions of the classification scheme detailed in Figure 10. Note, however, that the
values of r0 in Figure 16 span only about 1/40th of the pinning region of the constant forcing
system: the sweet spot–pinched structure here is asymptotically small as a result of our choice
of ρ.
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PO
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T

−0.3000 −0.2995 −0.2990 −0.2985
50
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Figure 16. A comparison of the asymptotic theory (4.19)–(4.20) (red/blue lines) with numerical simulations
(colors) for ρ = p+ 10−3 ≈ 0.04. The dark region corresponds to the region PO. The red (blue) lines indicate
transitions in the number of nucleations (decays) that occur during one forcing cycle.

Figure 17 shows the (r0, ρ) parameter plane for T = 100 and T = 200, along with an
extension of the predictions from the above asymptotic theory (equations (4.19) and (4.20)).
The extension has been computed by replacing

√
p in the denominator of the expressions

by
√
ρ as a means for correcting for the cases when ρ �≈ p. The modified theory is able to

accurately predict the location of the transition between the zero and ±1 bands well outside
of the limit in which it was derived, owing to the fact that the first nucleation/annihilation
event necessarily occurs near the edge of the pinning region.

5. The low frequency limit: Adiabatic theory. In this section we consider the remaining
case, that of low frequency forcing. In this regime we may neglect inertial effects that can
cause delays in the onset of depinning or allow for the completion of depinning events within
the pinning region. We note that by applying the technique of matched asymptotics (see, for
example, [22]), we can estimate the depinning delay to be ∼ |dr/dt|−1/3, where the derivative
is evaluated at r±.

5.1. Sweet spot structure. Using the adiabatic approximation described above, the num-
ber n± of nucleation/annihilation events over the course of a forcing cycle can be estimated
from the expression

(5.1) n± = ±
∫
T±

dt

T dpn
± (t)

,
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r0

ρ

−0.33 −0.31 −0.29 −0.27
0

0.05

0.10

(a) T = 100

r0

ρ

−0.33 −0.31 −0.29 −0.27
0

0.05

0.10

(b) T = 200

Figure 17. The number of spatial periods gained/lost in one forcing cycle when (a) T = 100 and (b)
T = 200. All simulations were initialized with stable L0 solutions at the corresponding r0 in the constant
forcing case. The purple region labeled PO indicates the location of periodic orbits and corresponds to the blue
region in Figure 6. The light blue region immediately to the left indicates decay by one wavelength on each
side of the localized structure per forcing cycle, the next region to the loss of two wavelengths per cycle, and so
on. The solution grows by one wavelength on each side of the localized structure per forcing cycle in the region
immediately to the right of the dark region, and so on. The white region to the left indicates solutions that
collapse to the trivial state within one cycle.

where T± is the time spent outside of the pinning region and T dpn
± (t) is the time between nu-

cleation/annihilation events of the constant forcing problem with parameter r(t). The super/
subscript + (resp., −) refers to regime D+ (resp., D−). We assume that the dynamics within
the pinning region allow the system to either complete the nucleation process (correspond-
ing to rounding n± up) or settle back down to the state already reached (corresponding to
rounding n± down). We also suppose that the threshold between completing a nucleation
event or settling back corresponds to n± +1/2 and will use brackets, e.g., [n±], to denote the
nearest integer. We recall that leading order asymptotics near the edge of the pinning region

predict that (T dpn
± )−1 = Ω±δ

1/2
± /π [14] and use this prediction together with the assumption

r(t) = r0 + ρ sin 2πt/T to obtain

(5.2) n± = ±2
√
2ρΩ±T

π2

[
E

(
1− η±

2

)
− 1 + η±

2
K

(
1− η±

2

)]
,

where η± = |r0 − r±|/ρ < 1 and

(5.3) K(m) =

∫ π/2

0

1√
1−msin2 θ

dθ, E(m) =

∫ π/2

0

√
1−msin2 θ dθ

are the complete elliptic integrals of the first and second kind [1].
The predictions of the adiabatic theory in (5.2) are shown in Figure 18 for ρ = p+10−3 ≈

0.04 and ρ = 0.1. The red and blue lines indicate transitions between adjacent values of
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r0

T

−0.3000 −0.2995 −0.2990 −0.2985
50

1000

2000

3000
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5000

(a) ρ = p+ 10−3, theory and simulation (b) ρ = 0.1, theory only

Figure 18. Predictions from adiabatic theory using the asymptotic approximation (5.2) for the depinning
time when (a) ρ = p+10−3 ≈ 0.04 and (b) ρ = 0.1. The colors in (a) refer to the numerical simulation results
for the locations of PO (dark), O+n (alternating yellow and orange), and O−n (alternating shades of blue).
The dark region in (b) is the adiabatic theory prediction of the PO region.

[n+] and [n−], respectively. The plot in Figure 18(a) is colored according to the simulation
results to emphasize the quantitative accuracy of the adiabatic prediction for ρ = p + 10−3.
The accuracy of these predictions diminishes with increasing ρ, as shown in Figure 18(b) for
ρ = 0.1 (cf. Figure 9), although the predicted sweet spot and pinching structure continues to
resemble the simulations. The dark region in this graph corresponds to the predicted location
of PO based on the theory (5.2), i.e., PO is the region where [n+]+ [n−] = 0. The predictions
for the ρ = 0.1 case fail in three ways: (i) the pinched zones are spaced too far apart, (ii) there
is no cliff demarcating the dominance of overall amplitude decay, and (iii) the region PO does
not slant as in the simulations (Figure 9). The qualitative disagreement occurs because of a

breakdown of the asymptotic prediction for T dpn
± when the system enters too far into regions

D±. In addition to the quantitative disagreement of the depinning times, the theory omits the
amplitude mode that destroys the localized states in A−. We can account for (i) by making

use of numerical fits in place of the asymptotic theory for T dpn
± , as described in Figure 4, and

can also extend the theory to include predictions about the cliff mentioned in (ii), as described
in the next section. The theory cannot, however, account for (iii) as the slanting is a result
of the coupling between the amplitude and depinning modes, which we have neglected.

5.2. The cliff. We can approximate the dynamics of the overall amplitude decay of a
localized state in A− by computing the time T col

per(r), r < rsn, for a solution initialized with
the periodic state at rsn to decay to the trivial state. This calculation mirrors the asymptotic
calculation for T dpn

± . For r = rsn + δcol, |δcol| � 1, we find

(5.4) (T col
per)

−1 ≈ 2Ωsn

π
|δcol|1/2.
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Figure 19. Adiabatic prediction in the (r0, T ) plane of the decay versus nucleation dynamics of a spatially
localized initial condition of (2.1) with time-periodic forcing. Positive (resp., negative) numbers represent [n+]
(resp., [n−]), the change in the number of wavelengths due to nucleation (resp., annihilation) events during one
cycle. The results are obtained using the relation (5.2) with ρ = 0.1 and b = 1.8. The figure is plotted over the
same r0 interval as Figure 9.

Substituting T col
per into (5.1) in place of T dpn

± leads to an equation analogous to (5.2) for ncol.
Since ncol is at most one we assume that the threshold for the solution to decay irrevocably is
ncol = 1/2. This procedure yields a prediction for the location of the cliff in parameter space.
For improved numerical accuracy for forcing cycles that penetrate far into A−, a numerical fit
is useful (Figure 4). Figure 19 reveals the dramatic improvement in the (r0, T ) phase diagram

that results from this procedure applied to T dpn
± . We have also replaced the leading order

theory for T col
per with a numerical fit to T col

loc to obtain an improved prediction for the cliff (bold
black line). The hybrid adiabatic theory augmented with numerical fits from simulations of
the system under constant forcing is in remarkably good agreement with the simulations even
for ρ = 0.1. The predicted extent in T of the sweet spots is �T ≈ 45, independently of
T , which is within 5% of the value computed from simulations, viz., �T ≈ 43. In addition,
the predicted period at which the cliff occurs for a given value of r0 deviates from the value
computed from simulations by �T � 10, with the maximum deviation occurring for periods
below T = 100. As expected, the agreement improves for larger periods and away from the
cliff: the top of the subregion −3O+10

+7 is predicted to be at (r0, T ) ≈ (−0.2633, 373) but is
located at (r0, T ) ≈ (−0.2637, 377) in the simulations.
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6. Conclusion. We have considered the effects of parametric time-periodic forcing on
the dynamics of localized structures in the Swift–Hohenberg equation (SHE) with competing
quadratic-cubic nonlinearities. In the high frequency limit, averaging theory yields an aver-
aged system that is also of Swift–Hohenberg type. When oscillations are large enough, the
time-varying forcing affects the averaged dynamics by modifying the coefficients of the non-
linear terms, thereby reducing the region of existence of spatially localized states (the pinning
region in the case of constant forcing) and displacing it to larger values of r0. For intermediate
frequencies, the dynamics become more complex owing to depinning of the fronts bounding
the localized structure over a significant fraction of the forcing cycle, resulting in breathing
localized structures exhibiting behavior analogous to pinning, depinning, and amplitude col-
lapse familiar from the constant forcing case. Of particular significance is the observation of
a new resonance phenomenon between the forcing period and the time required to nucleate a
new wavelength of the pattern. The presence of this resonance is responsible for the complex
structure of the parameter space, which breaks up into regions labeled by a pair of integers
(m, q) denoting the number of wavelengths lost (m) per cycle and the number gained (q).
When n ≡ q −m = 0, the resulting state is periodic in time and corresponds to a state that
on average neither expands nor shrinks. We have described the resulting structure of the
parameter space in terms of sweet spots favoring the existence of such “pinned” states and
pinched zones where the resonance was destructive and periodic localized structures absent.
We found that these properties could be understood on the basis of appropriate asymptotics,
valid either when the forcing cycle did not penetrate far into the depinning regions, or for
low frequency forcing. In both cases we showed that the number of nucleation/annihilation
events can be computed by adapting existing theory of the depinning process and used these
results to partition the parameter space. A similar approach was successful in obtaining
the accumulation point of the decay regions beyond which all initial conditions collapse to
the trivial state within one forcing cycle. Our calculations suggest that this accumulation
is exponential and involves regions of frequency locking corresponding to all rational num-
bers.

We found that asymptotic theory provided an excellent qualitative description of the
resonance phenomenon, and moreover that quantitative agreement could often be obtained
by augmenting the leading order nucleation theory with numerical fits to the nucleation times
adopted from the time-independent case, thereby greatly extending the range of validity of
the theory.

In view of the success of the SHE in modeling localization in a great variety of systems with
bistability between a homogeneous and a patterned state, we expect that the model studied
here, equation (2.1), captures faithfully the phenomenology arising from a resonance between
the forcing period and the nucleation time in systems undergoing temporary depinning as a
result of the forcing. As such we envisage numerous applications of the theory presented here
to temporally forced systems such as models of vegetation growth in arid regions subject to
seasonal forcing [21, 44].

In future work it will be of interest to extend the present analysis to systems with time-
periodic forcing that is not purely sinusoidal and in particular to periodic forcing with asym-
metry between the rise and fall phases. In addition, many experimental systems exhibiting
spatially localized states, including binary fluid convection [5] and plane Couette flow [41],
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possess an additional midplane reflection symmetry whose effects are well modeled by the
SHE with a cubic-quintic nonlinearity [23, 35]. In future work we will investigate the proper-
ties of temporally forced cubic-quintic SHEs with a view to elucidating the behavior expected
when such systems are forced periodically.

Acknowledgment. We would like to thank M. Wechselberger for making us aware of
reference [30].
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[40] B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange, Interaction of localized structures in an

optical pattern-forming system, Phys. Rev. Lett., 85 (2000), pp. 748–751.
[41] T. M. Schneider, J. Gibson, and J. Burke, Snakes and ladders: Localized solutions of plane Couette

flow, Phys. Rev. Lett., 104 (2010), 104501.
[42] J. A. Sherratt, An analysis of vegetation stripe formation in semi-arid landscapes, J. Math. Biol., 51

(2005), pp. 183–197.
[43] J. A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environ-

ments I, Nonlinearity, 23 (2010), pp. 2657–2675.
[44] K. Siteur, E. Siero, M. B. Eppinga, J. D. M. Rademacher, A. Doelman, and M. Rietkerk,

Beyond Turing: The response of patterned ecosystems to environmental change, Ecological Complexity,
20 (2014), pp. 81–96.

[45] J. V. I. Timonen, M. Latikka, L. Leibler, R. H. A. Ras, and O. Ikkala, Switchable static and
dynamic self-assembly of magnetic droplets on superhydrophobic surfaces, Science, 341 (2013), pp. 253–
257.

[46] M. Tlidi, R. Lefever, and A. Vladimirov, On vegetation clustering, localized bare soil spots and fairy
circles, in Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Phys. 751,
Springer, Berlin, 2008, pp. 1–22.

[47] P. B. Umbanhowar, F. Melo, and H. L. Swinney, Localized excitations in a vertically vibrated granular
layer, Nature, 382 (1995), pp. 793–796.

D
ow

nl
oa

de
d 

04
/3

0/
15

 to
 1

28
.3

2.
24

0.
13

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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