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Abstract

Localized States in Driven Dissipative Systems with Time-Periodic Modulation

by

Punit R Gandhi

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Edgar Knobloch, Chair

The generalized Swift–Hohenberg equation is used to study the persistence and decay of
localized patterns in the presence of time-periodic parametric forcing in one and two dimen-
sions. A localized state that was stable with constant forcing may begin to breathe under
periodic forcing, i.e. grow for part of the forcing cycle via nucleation of new wavelengths
of the pattern followed by wavelength annihilation during another part of the cycle. The
breathing dynamics occur as the forcing parameter exits the region of stability of the lo-
calized pattern on either side and the fronts that define the edges of the state temporarily
depin. The parameters of the forcing determine if there will be net growth, a balance, or net
decay on average.

A novel resonance phenomenon between the forcing period and the time required to nu-
cleate one wavelength of the pattern outside the pinning region is identified. The resonances
generate distinct regions in parameter space characterized by the net number of wavelengths
gained or lost in one forcing cycle. Canard trajectories, in which the localized state follows
an unstable solution branch for some amount of time before quickly jumping to a stable one,
appear near the transitions between each region. In one dimension, the partitioning of the
parameter space is well described by an asymptotic theory based on the wavelength nucle-
ation/annihilation time near the boundaries of the region of stability. This theory leads to
predictions that are qualitatively correct and, in some cases, provide quantitative agreement
with numerical simulations.

The underlying resonance mechanism is a more general phenomenon and is also studied
in the context of coupled oscillator systems with a periodically modulated Adler equation as
a simple model. A strikingly similar partitioning of the parameter space is observed, with
the resonances occurring this time between the period of the frequency modulation and the
time for the generation of a phase slip.
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6.1 Summary of the various asymptotic limits of SHE23 with time-periodic forcing
(Ch. 4) in terms of the frequency ω = 2π/T , amplitude ρ, and average value r0
of the forcing. r± define the edges of the pinning region, rc = (r+ + r−)/2 is the
center of the pinning region, and p = (r+ − r−)/2 is its half-width. We assume
that 0 < ǫ≪ 1 is a small quantity and all others are ∼ O(1). . . . . . . . . . . 139
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Chapter 1

Introduction

Rhythms are an integral part of our world, as has been documented in the context of biology
in Arthur Winfree’s book [1]. The time-periodic dynamics associated with these rhythms
can be generated internally in oscillatory systems or can be externally imposed by a periodic
drive. The dynamics of spatial patterns in the presence of such rhythms is the subject of
this dissertation. The focus will be on spatially localized structures that consist of a patch
of pattern embedded in some background state and subjected to time-periodic forcing.

1.1 Pattern formation

Patterns emerge in biology, chemistry and physics through a spontaneous or forced breaking
of the continuous translation symmetry of the system. The systems of interest are typically
dissipative and thus the patterns must be sustained by an external and often spatially uniform
forcing. One important mechanism for generating patterns comes from Alan Turing’s seminal
paper [2] that describes a reaction-diffusion system consisting of two chemical species, an
activator and a more quickly diffusing inhibitor. The activator stimulates a local increase
in the production rate of both species while the inhibitor suppresses their production rate.
Turing’s mechanism, a type of diffusion-driven instability, relies on the difference in the rate
of diffusion between the activator and inhibitor to destabilize a state that would be stable
in the absence of diffusion.

In order to understand how a difference in diffusion rates can lead to a linear instability,
we take a reaction-diffusion system of the form

Ut = Du∇2U + f(U, V ) (1.1)

Vt = Dv∇2V + g(U, V ), (1.2)

where U and V are concentrations of the activator and inhibitor, respectively. We consider
small perturbations |u|, |v| ≪ 1 about a stationary state (U0, V0) consisting of spatially
uniform concentrations so that U = U0 + u and V = V0 + v. The system (1.1)-(1.2) can be
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linearized about (U0, V0) to give

ut = Du∇2u+ au− bv (1.3)

vt = Dv∇2v + cu− dv, (1.4)

where

a =
∂f

∂U

∣∣∣∣
(U0,V0)

, b = − ∂f

∂V

∣∣∣∣
(U0,V0)

, c =
∂g

∂U

∣∣∣∣
(U0,V0)

, d = − ∂g

∂V

∣∣∣∣
(U0,V0)

, (1.5)

are positive coefficients in order for U and V to represent an activator and inhibitor, re-
spectively. We can also define characteristic lengths lu =

√
Du/a and lv =

√
Dv/d that

give a measure of how far a peak in concentration of the activator and inhibitor will spread
because of diffusion. Linear stability analysis shows that we must require a < d and ad < bc
in order for (U0, V0) to be stable in the absence of diffusion (Du = Dv = 0). When diffusion
is present (Du, Dv > 0), the uniform state becomes unstable to a spatially periodic state for
Dv/Du > d/a > 1. We can also express the condition in terms of diffusion length scales as
lv > lu, which says that the inhibitor must diffuse farther than the activator in order for the
instability to occur. When the uniform state is unstable, the magnitude of the wavenumber
associated with the fastest growing mode is given by k2 = (l−2

u − l−2
v )/2 and is independent

of the domain size.
We can gain some qualitative intuition about Turing’s mechanism from the following

argument. A localized perturbation that increases the concentration of the activator creates
an increase in production of both the activator and inhibitor at that location. The inhibitor
diffuses away from the area more quickly than the activator and thus the relative inhibitor
concentration becomes high in the region surrounding the initial perturbation. Production
of both the activator and inhibitor are therefore suppressed in this surrounding region and
the activator becomes depleted there. The inhibitor, on the other hand, is continuously
replenished by diffusion from the high concentration area at the location of the initial per-
turbation. The result is a region with an increased concentration of activator surrounded
by a region of depressed activator concentration, and the mechanism is often referred to as
local activation and long range inhibition [3]. The inhibitor concentration returns to the
level of the uniform state once far enough away from the initial pertubation. This allows the
activator concentration to build up again and process can repeat. Thus the uniform state
can lose stability to patterns consisting of arrays of this type of structure. We note that care
must be taken when applying the above qualitative argument as it may provide incorrect
intuition about certain details such as the parameter dependence of the wavelength of the
pattern generated from this instability.

While Turing originally proposed this mechanism as an explanation for the patterned
growth of embryos during morphogenesis, there is no evidence of a significant difference in
diffusion rates for the chemical species in this system or in most other biological contexts. In
fact, Turing patterns were only produced in experiments about 40 years after Turing’s original
paper exactly because of the difficulties associated with engineering a system with sufficiently
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different diffusion rates [4, 5]. The importance of Turing’s work lies in the surprising result
that an instability can arise from diffusion, normally thought to stabilize uniform states.
Moreover, modern approaches to pattern formation rely heavily on Turing’s idea of studying
spatial patterns through linear instabilities of a spatially uniform state (see, e.g., Refs. [6,
7]). In the remainder of this section, we discuss several specific examples of pattern-forming
systems.

(b)

(c)(a)

Figure 1.1: (a) Sea shell patterns taken from [8]. (b) Dynamic changes in residential burglary
hotspots for two consecutive three-month periods beginning June 2001 in Long Beach, CA
taken from [9]. (c) Experimentally observed patterns generated from a LCLV experiment
taken from [10].

Population dynamics is concerned with patterns that form through the interactions of
independently acting individuals. Agent-based models that rely on a set of simple rules
governing the dynamics of a large number of independent agents have been used to suc-
cessfully reproduce emergent social phenomena. Segregation models [11, 12], for example,
have shown that such systems can self-organize spatially into groups with similar charac-
teristics. An agent-based model that reduces to a system of reaction-diffusion equations in
a continuum limit has been able to reproduce patterns of hotspots in criminal activity by
coupling criminal agents to a field characterizing attractiveness for committing crime [9].
The model is based on empirical evidence that crime is self-excitatory and includes an effec-
tive long-range inhibition resulting from an assumed tendency for criminals to move in the



CHAPTER 1. INTRODUCTION 4

direction of increasing criminal activity. The continuum model does not correspond directly
to an activator-inhibitor system, but the patterns form as a result of a difference in diffu-
sion rates. As opposed to chemical systems in biology, it is physically plausible here for the
criminal density to diffuse faster than the attractiveness for committing crime. Figure 1.1(b)
shows data revealing dynamic hotspots in residential burglary in Long Beach, CA over two
consecutive three-month periods.

Sea shells provide a beautiful example of a system that exhibits a remarkable diversity
of patterns [8] (Fig. 1.1(a)) and, although there is only limited evidence that these are due
to the Turing instability, reaction-diffusion models have been able to reproduce many of
the patterns observed on the shells of mollusks. The underlying biological process is not
understood completely, but it is thought that the two-dimensional patterns are actually a
record of a one-dimensional pattern that evolves in time. The shell is created incrementally
as the mollusk secretes material at the leading edge of the shell, laying down one line at a
time. Recently, a neural feedback loop has been proposed as a mechanism for creating such
patterns [13]. The mollusk reads in the previously generated pattern via sensory cells and
uses this as a guide for its output. The model thus uses neural feedback instead of differences
in diffusion rates to generate local activation and long range inhibition.

In contrast to the previous two examples, patterns in nonlinear optical media can be
created and manipulated in table-top experiments. The pattern-forming mechanism in these
types of experiments often relies on the conversion between phase modulation and amplitude
modulation of light via nonlinear optical media and feedback. The feedback can be local or
nonlocal and can be controlled with high precision. In a liquid crystal light valve (LCLV)
experiment, for example, a laser beam passes through a thin layer of nematic crystal. It is
reflected back and directed into a light valve to provide optical feedback that modulates the
effective nonlinear index of refraction within the liquid crystal layer [14]. The sample patterns
shown in Fig. 1.1(c) have been created experimentally in such a LCLV setup by allowing
the feedback light to diffract and rotate relative to the incident light. While the mechanism
for pattern formation in the LCLV system is fundamentally different from the mechanisms
discussed previously, models of the system still predict the emergence of patterned states
through linear instabilities of a uniform state.

1.2 Spatially localized patterns

Patterns often extend across the entire domain of the system, but can also be localized
to a particular region of space even when the external forcing is uniform and isotropic.
Indeed, all the systems mentioned in the previous section have been observed to generate
stable localized states. Other commonly cited examples include time-dependent oscillons
on vertically vibrated layers of granular material [15] or in photosensitive chemical systems
under periodic illumination [16], current filaments in a gas discharge system [17] and localized
bursts of neural activity used to encode short term memory [18, 19].

We will consider localized structures that consist of a patch of spatially periodic pattern
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embedded in a homogeneous background. The theory behind the origin and properties of
such structures is well understood, at least in one spatial dimension. The localized structures
of primary interest are stationary and are described in terms of heteroclinic cycles connecting
the homogeneous state to the patterned state and back again [20, 21]. Such cycles may be
structurally stable, and so persist over an interval of parameter values located within the
region of bistability between the homogeneous and spatially periodic states. This pinning
region [22, 23] typically contains two or four families of homoclinic solutions connecting
the homogeneous state to itself, organized within a “snakes-and-ladders” structure [24, 25].
These correspond to spatially localized states of ever greater length and accumulate on the
heteroclinic cycle as their length increases. An excellent review of spatially localization in
dissipative systems and its mathematical underpinnings is given in Ref. [26].

Figure 1.2: (a) Sub-Sahelian gapped landscape dominated by the shrub species Combretum
micranthum G. Don in South-West Niger. Shrub crown radius and bare spots distance are
approximately 1.75 m and 50 m (photography: N. Barbier). (b) Patch of tiger bush in Niger.
Width of vegetated bands: approximately 50 m; width of bare soil bands: approximately
50 m (photography: courtesy of C. Valentin). (c) Example of fairy circle in the pro-Namib
zone of the west coast of southern Africa (photography: courtesy of J. Vergeer). Figure and
caption from R. Lefever [27].

Vegetation growth near the transition to desertification [28, 29, 30, 31, 32] provides
an example of spatially localized states that experience time-dependent forcing. Localized
structures and patchy patterns of the type shown in Fig. 1.2 have been observed in vegeta-
tion growth in semi-arid regions and these patterns experience intermittent fluctuations and
periodic variations in growth conditions [33, 34, 35, 36]. The patterns result from the self-
organization of individual plants in response to limited resources, e.g. water. It is thought
that the underlying cause for the patterns involves positive feedback that allows for local
activation and long range inhibition. For example, the presence of plants allows for more
local infiltration of surface water into the soil to create local activation. The root system of
the plant provides a mechanism for long range inhibition by drawing water away from the
surrounding area thus making it less hospitable for other plants. Simple models describe the
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system in terms of reaction-diffusion equations for biomass and water where periodic vege-
tation patterns are created through a Turing instability [37]. The biomass behaves like an
activator while the lack of water behaves like an inhibitor. In these models localized patches
of vegetation patterns are predicted in regions of bistability between a uniform state (either
bare soil or uniform vegetation growth) and the periodic vegetation pattern. The effect
of time-periodic precipitation on such localized states has been considered for a particular
vegetation model in Ref. [36].

1.3 A model system for localized pattern formation

A “model organism” in the field of biology is useful when it provides insights about particular
phenomena or processes that are applicable across a broad range of biological systems [38,
39]. For example, rats are used extensively as models in the study of both neuroscience
and medicine while the fruit fly has long served as a model in the study of genetics. This
approach allows for the development of highly refined tools and techniques for studying the
relatively simple model organisms along with a detailed catalogue of practical knowledge
about them. In the study of pattern formation, the Swift–Hohenberg equation (SHE) has
taken on a role analogous to a model organism because of its relative simplicity and ability
to capture the key features of a broad range of systems. In particular it exhibits a multitude
of stable spatially localized patterns when bistability between a trivial state and a periodic
state is present. Early studies of the bistable SHE [40, 41] demonstrated the existence of
localized states through direct numerical simulation. More recently, Burke and Knobloch
have provided a detailed understanding of the properties and dynamics of localized states
in this system via a combination of theoretical analysis and numerical continuation [24, 25,
42].

Originally proposed as a model for Raleigh–Bénard convection [43], the SHE takes the
form

∂tu = ru−
(
1 +∇2

)2
u+N(u), (1.6)

where u is a real field. In convection u represents the vertical velocity at the midplane of
a thin layer of fluid that is heated from below, the forcing strength r is proportional to the
temperature difference across the fluid, and N(u) is typically a polynomial function of u that
depends on the particular details of the system. The most commonly studied nonlinearity,
which is also the one most relevant for Raleigh–Bénard convection, is N(u) = −u3. In this
context the trivial state u = 0 represents the conduction state in which the fluid remains
motionless and this state is stable when the temperature difference is not too great (r < 0).
For r > 0, the conduction state becomes unstable to convection in which the flow responsible
for heat transport generates an alternating upward and downward velocity at the midplane.
The resulting convection may be periodic and is then represented by a stationary spatially
periodic solution P of Eq. (1.6) that is generated through a supercritical bifurcation at r = 0.

When N(u) has competing nonlinear terms, the periodic state P can bifurcate subcriti-
cally and thus generate a region of bistability between P and u = 0. Two common choices
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that allow for bistability are

N23(u) = bu2 − u3 (1.7)

N35(u) = bu3 − u5, (1.8)

where b > 0 is a free parameter. The nonlinearity N23 is the lowest order choice that allows for
bistability through competing nonlinear terms while N35 is useful when considering systems
that contain the “up-down” reflection symmetry (x, u) → (x,−u) present in Raleigh-Bénard
convection.

Figure 1.3(a) shows the L2 norm ‖u‖ =

√∫ Γ/2

−Γ/2

u2(x)dx of stationary localized solutions

and the L2 norm per period ‖uP‖ =

√
Γ−1

∫ Γ/2

−Γ/2

u2P (x)dx of the stationary periodic state P

of SHE with the nonlinearity N35 and b = 2 as a function of the forcing r. The periodic state
P emerges subcritically from u = 0 and a snakes-and-ladders structure of localized states
appears within the resulting region of bistability between P and u = 0 [42]. In addition to
P , four branches L0,π/2,π,3π/2 of localized states emerge from u = 0 at r = 0 1 and sample
solutions along these branches are shown in Fig. 1.3(b). The localized states on L0 have a
maximum at the center of the state and consist of half-integer numbers of wavelengths of the
pattern. The branch Lπ contains solutions with a minimum at the center and is related to L0

by the reflection (x, u) → (x,−u) thus making the two solution branches indistinguishable
when plotted in terms of the L2 norm. The two additional branches Lπ/2,3π/2 are comprised
of antisymmetric states with integer numbers of wavelengths that are related by the same
reflection (x, u) → (x,−u) and thus appear indistinguishable in Fig. 1.3(a) as well.

The four localized solutions branches emerging from r = 0 in the case of SHE with
nonlinearity N35 are initially unstable and consist of solutions that evolve into exponentially
localized pulses of the periodic state P as r decreases. The branches then begin to undergo
repeated saddle-node bifurcations as they “snake” back and forth within the so-called pinning
region (shaded in Fig. 1.3(a)). The saddle-nodes exponentially converge to a pair of values
of r from the right that mark the edges of the pinning region and a half-wavelength is added
to each side of the localized state for each back-and-forth excursion along the branch. The
rungs of the snakes-and-ladders structure are comprised of asymmetric localized states that
are created through pitchfork bifurcations.

The snakes-and-ladders structure for SHE with nonlinearity N23 is similar but consists of
two instead of four intertwined snaking branches. The reflection symmetry (x, u) → (x,−u)
is no longer present for the system and so stationary antisymmetric solutions branches of
the form Lπ/2,3π/2 no longer exist. A full wavelength is now added to each side of a localized
state on L0 and Lπ for each back-and-forth excursion which results in states comprised of
even and odd integer numbers of wavelengths of P , respectively.

1 This assumes an infinite spatial domain Γ = ∞. On a finite domain Γ < ∞, these states appear through
a secondary bifurcation along P . See Ref. [45] for a detailed discussion of this and other finite domain size
effects.
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(v-vi)

(vii-viii)

(ix)

(x)

(xi)

(xii)

(i-iv)

Figure 1.3: (a) Bifurcation diagram showing the snakes-and-ladders structure of localized
states in the SHE with cubic-quintic nonlinearity N35 and b = 2. The localized states are
plotted in terms of the L2 norm while the periodic state P is plotted in terms of the L2

norm per period. The periodic state P (red) bifurcates subcritically, creating a region of
bistability between P and the trivial state u = 0 (black). Away from the origin the snaking
branches (blue) are contained within the pinning region (shaded) approximately defined by
−0.7126 < r < −0.6267. This pinning region straddles the Maxwell point M (pink dash-dot
line) between P and u = 0. Solid (dotted) lines indicate stable (unstable) states. (b) Sample
localized states along the snaking branch. First row, from left to right: profiles near onset
on Lπ/2, L3π/2, L0, Lπ. Second row, from left to right: profiles at the first saddle-node on
Lπ/2, L3π/2, L0, Lπ. Third row, from left to right: profiles at the third saddle nodes on Lπ/2
and L0, and the fifth saddle-nodes on Lπ/2 and L0. Taken from [44].

The SHE can be written in terms of a Lyapunov functional F [u], referred to as the free
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energy,

ut = −δF [u]

δu
, F [u] =

1

Γ

∫ Γ/2

−Γ/2

−1

2
ru2 +

1

2

[
(1 + ∂2x)u

]2 − V (u) dx, (1.9)

where the function V (u) is defined by N = dV/du. A straightforward calculation shows that

dF

dt
= − (ut)

2 ≤ 0. (1.10)

Thus, on a domain of finite spatial period all initial conditions approach a stationary state
corresponding to a local minimum of the free energy. On an infinite domain, steadily moving
front solutions are also possible. The free energy provides intuition about the existence and
behavior of localized states in SHE: stable (unstable) solutions correspond to local minima
(maxima) of F . When the periodic state P bifurcates subcritically there exists a Maxwell
point (pink dash-dot line in Fig. 1.3) at which the free energy of P matches the free energy
of u = 0. At this point one expects coexistence of the two states based on energy arguments:
a front separating the two states remains stationary since converting a part of the system
from one state to the other will not lower the free energy. Near the Maxwell point, the front
continues to remain stationary even though one of the two states is energetically favored. This
is because the spatial structure of P generates an effective pinning potential that prevents the
front from moving so as to lower the free energy [22]. This self-generated pinning potential
allows localized states that are flanked by a pair of fronts to remain stationary over a finite
parameter range. The difference in free energy between P and u = 0 generates a tilt in
the effective pinning potential which results in depinning of the fronts when the system is
far enough away from the Maxwell point. While the above argument relies on the gradient
structure (Eq. (1.9)) of SHE, the snakes-and-ladders structure persists under perturbations
to SHE that break the gradient structure [46]. A more detailed discussion of the applicability
of SHE and related open questions can be found in Ref. [47].

While SHE was originally studied in connection with convection, the appearance of a
snakes-and-ladders structure of localized states in a number of physical pattern-forming
systems has breathed new life into the equation. It has become a model of choice for
examining the properties and dynamics of spatially localized states and many consider it
a kind of “normal form” or simplest description of this phenomenon.

1.4 Outline

Chapter 2 provides an overview of some underlying mathematical concepts along with refer-
ences where more detail can be found. Chapter 3 describes the resonance phenomenon that
is the main result of the thesis in the context of a simple ODE system with application to
coupled oscillator systems [48]. The basic approach is then carried over to the study of spa-
tially localized states in the one-dimensional quadratic-cubic SHE with time-periodic forcing
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in Ch. 4 [49, 50, 51]. Chapter 5 describes ongoing progress toward extending the results of
Ch. 4 to two-dimensional localized stripe patterns in SHE with cubic-quintic nonlinearity.
The concluding chapter (Ch. 6) provides a summary along with an outlook for future work
and potential applications. We also provide an appendix (App. A) describing the numerical
methods that have been used in this dissertation.
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Chapter 2

Background

Partial differential equations (PDEs) such as reaction-diffusion systems and the simpler
Swift–Hohenberg equation (SHE) are often used to model the formation of spatial patterns
that evolve in time. Many techniques for studying PDEs involve reducing the system to a
set of ordinary differential equations (ODEs). Moreover, because the systems of interest are
dissipative, the long-time dynamics approach attractors that form smaller and sometimes
finite-dimensional subsets of the phase space. The two types of attractors of main interest to
this dissertation are fixed points and periodic orbits. Fixed points are stationary solutions
and can be studied by restricting the original system to the time-independent case thereby
reducing PDEs in one spatial dimension to ODEs. This chapter reviews basic concepts from
dynamical systems and bifurcation theory that provide a foundation for the results described
in this dissertation. More detailed discussion of relevant topics can be found in, for example,
Refs. [52, 53, 54, 55, 56].

2.1 Dynamical systems theory

We take a finite-dimensional dynamical system to be a set of n first-order ODEs of the form

u̇ = f(u, t;µ), (2.1)

where u ∈ Rn is a vector in the phase space that describes the state of the system, µ ∈ Rp

is a set of p parameters that are fixed in time, and the dot represents derivative with respect
to t. When the function f : Rn × R × Rp → Rn has no explicit time dependence, i.e.
f(u, t;µ) = f(u;µ), we call the system autonomous. The nonautonomous case can be
reduced to autonomous by extending the phase space to include t as a dynamical variable
and reparametrizing the system in terms of a new dependent variable. Explicitly, we can
extend Eq. (2.1) by defining un+1 = t and ṫ = 1, where the dot now represents derivative
with respect to the new independent variable. We thus restrict the discussion that follows
to the autonomous case unless otherwise noted. We shall see that it is sometimes useful to
keep the time dependence explicit or even to think of the system as having a time-dependent
parameter.
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Trajectories u(t,u0) that solve Eq. (2.1) with the initial condition u(t0) = u0 can rarely
be determined analytically for general nonlinear systems. Studying the properties of fixed
points of the dynamical system where u̇fp = 0, however, can provide quite a bit of information
about the system’s overall behavior. In particular, the dynamics near the fixed point can be
described by linearizing about the fixed point to get

v̇ = Df |fpv +O(||v||2), (2.2)

where v = u− ufp is assumed to be small and Df |fp is the Jacobian

Dfij =
∂fi
∂uj

(2.3)

evaluated at the fixed point ufp. Truncated Eq. (2.2) is linear and the solution can be
expressed in terms of eigenvalues λi and eigenvectors wi of Df as

v(t) =
n∑

i=1

αiwie
λit, (2.4)

where the coefficients αi are determined by the initial condition v(t0) = u0−ufp. Because we
assume f is a real-valued function, the eigenvalues come in complex conjugate pairs (λ, λ̄)
when not pure real. For hyperbolic fixed points in which Re(λi) 6= 0, the eigenvalues of
Dffp determine the types of dynamics near the fixed points and the time scales on which
they occur. Indeed, the Hartman–Grobman theorem guarantees that the dynamical system
behaves qualitatively the same as its linearization about a hyperbolic fixed point in a small
neighborhood around this fixed point. Perturbations from the fixed point decay along stable
directions with Re(λi) < 0 and the eigenspace spanned by the associated wi is tangent to
the stable invariant manifold W s(ufp) comprised of all initial conditions u0 in the phase
space that approach ufp as t → +∞. Likewise, perturbations from the fixed point grow
along unstable directions with Re(λi) > 0 and the eigenspace spanned by the associated wi

is tangent to the unstable invariant manifold W u(ufp) comprised of all initial conditions u0

that approach ufp as t → −∞. For nonhyperbolic fixed points, the remaining eigenspace
spanned by eigenvectors with Re(λi = 0) is tangent to the center invariant manifoldW c(ufp)
which is discussed in Sec. 2.2.

A major focus of this dissertation is time-periodic dynamics. A periodic orbit of Eq. (2.1)
is a solution that satisfies

upo(t+ T ) = upo(t) (2.5)

for some period T . Just as with fixed points, linearizing about the orbit provides useful
information such as the stability of the orbit. Defining v = u− upo and assuming ||v|| ≪ 1
gives

v̇ = Df |po(t)v +O(||v||2), (2.6)
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where Df |po(t) is the Jacobian evaluated along the periodic orbit and is thus T -periodic.
Floquet’s theoreom states that the solution to a linear system

v̇ = A(t)v, (2.7)

where A is T -periodic can be written in the form

v(t) =
n∑

j=1

αje
σjtpj(t), (2.8)

where pj(t) = pj(t + T ) is a periodic function, σj are known as the Floquet exponents,
and αj are constants determined from the initial condition. One can use the T -period map
vk = v(kT ) given by

vk =
n∑

j=1

αjρ
k
jpj(T ), (2.9)

where ρj = eσjT are called the Floquet multipliers, to determine stability of the orbit upo.
If |ρj| < 1 (|ρj | > 1), then the upo is stable (unstable) to perturbations along the pj(T )
direction. A periodic orbit always has at least one marginal Floquet multiplier (ρ = 1)
associated with perturbations along the trajectory. One other useful result from Floquet
theory gives an expression for the product of the Floquet multipliers:

n∏

j=1

ρj = exp

(∫ T

0

tr(A(s))ds

)
, (2.10)

or, equivalently, for the sum of the Floquet exponents:

n∑

j=1

σj =

∫ T

0

tr(A(s))ds. (2.11)

2.2 Bifurcation theory

We have, up to now, discussed properties of the dynamics of a system given a particular set
of parameter values. In many applications, however, we are interested in how the dynamics
depend on parameters that correspond to experimental controls or environmental factors. It
is often the case that, over most of the parameter space, fixed points of a dynamical system
are structurally stable and thus small changes in parameters do not cause qualitative changes
in the dynamics nearby. Bifurcation theory is interested in the complementary, and usually
lower-dimensional, set in parameter space where small perturbations can produce radically
different dynamics (see Ref. [57] for an introduction). Because the dynamics are qualitatively
the same everywhere except when crossing this set of bifurcation points, understanding the
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behavior nearby allows one to qualitatively map out the possible dynamics as a function of
parameters.

Local bifurcations are completely captured by local analysis in the neighborhood of a
fixed point while global bifurcations describe qualitative nonlocal changes in dynamics. A
bifurcation point is often classified in terms of its codimension which, in practice, is defined
as the minimum number of parameters that must be independently varied for the bifurcation
to occur. Bifurcations of lower codimension are encountered more frequently, and many com-
mon codimension-one bifurcations can be described by one-dimensional systems. Moreover
one can classify local bifurcations of general dynamical systems in terms of their simplest
description within a small neighborhood of the fixed point undergoing a change. One can
obtain a simplest description of the dynamics at a bifurcation point by (1) lowering the
dimensionality through center manifold reduction and (2) reducing the number of nonlinear
terms using a normal form transformation. These methods, described below, are typically
applied at a bifurcation point in the parameter space and the behavior of the system for
nearby parameter values is captured through a process known as unfolding.

Because hyperbolic fixed points are structurally stable, a local bifurcation must occur
when the linearized system has eigenvalues with zero real part. Center manifold reduction
leverages the associated separation of time scales to create a lower-dimensional description
that faithfully reproduces the behavior of the full system. In particular, if we assume that a
fixed point has no unstable eigenvalues so that W u = ∅, then initial values in the neighbor-
hood of the fixed point quickly evolve toward the center invariant manifold W c where the
dynamics takes place on a slower time scale. The center manifold theorem guarantees the
reduced dynamics of the system restricted to the center manifold determines the dynamics
of the full system in a small neighborhood of the fixed point as t → ∞. The construction
of the center manifold is a straightforward procedure that relies on parametrizing W c in
the full phase space in terms of vectors in the tangent space of W c at the fixed point. As
noted before, the tangent space of W c at the fixed point is spanned by eigenvectors of the
linearization of the system about the fixed point that have eigenvalues with zero real part.

After lowering the dimension of the description by restriction to the center manifold, one
can often simplify the description further by transforming the system restricted to the center
manifold into coordinates that remove as many nonlinear terms as possible. The resulting
normal form, though not unique, is quite useful for studying and classifying bifurcations.
The standard procedure involves computing the required nonlinear transformation order by
order by solving a sequence of linear problems that are determined by the linearization of
the system about the fixed point. While the normal form transformation formally preserves
the dynamics of the system a truncation of the transformation at some order, which is what
is computed in practice, may not. Also, the normal form transformation does not provide
useful simplification for systems with dim(W c) = 1.

The simplified description of the original system at the bifurcation point that results
from center manifold reduction and a normal form transformation must now undergo the
process of unfolding in order to study the behavior of the system for nearby parameter
values. The simplified system must be embedded in a family of systems with the number
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of parameters equal to the codimension of the bifurcation. This can be done in practice by
including additional linear and nonlinear terms in the system and defining their coefficients
µj as dynamical variables with trivial evolution µ̇j = 0. The process described here is not
systematic and can rely on knowledge about the system, such as the existence of a trivial
solution for all parameter values, to guide the choice of additional terms. Moreover, because
it is based on a truncated normal form, it can be important to consider the effects of higher
order terms once the dynamics of the unfolded bifurcation have been analyzed at a given
order. We are now ready to review the normal forms of some common codimension-one
bifurcations that appear throughout this dissertation.

Saddle-node bifurcation

The normal form of the saddle-node bifurcation is

u̇ = µ± u2, (2.12)

which has fixed points when u2 = ∓µ. Taking the ‘−’ case of the normal form Eq. (2.12),

(a) (b)

�

u

�

u

Figure 2.1: Bifurcation diagram for the saddle-node bifurcation described by (a) the ‘−’ and
(b) the ‘+’ case of Eq. (2.12). Solid lines indicate stable steady state solutions while dotted
lines indicate unstable steady state solutions.

we see that there are no fixed points for µ < 0 and two fixed points u± = ±√
µ for µ > 0.

Linearizing about the fixed points gives

v̇ = ∓2u±v, (2.13)

and thus u+ is stable while u− is unstable. The bifurcation occurs at µ = 0 when u+ and
u− coincide as a single fixed point with a zero eigenvalue. We will find it useful to take the
interpretation that the branch of fixed points defined by the curve u2 = µ changes stability as
it folds over at the bifurcation point. The ‘+’ case behaves similarly and bifurcation diagrams
for both cases are shown in Fig. 2.1. This is the generic codimension-one bifurcation.
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Transcritical bifurcation

The transcritical bifurcation is given by the normal form

u̇ = µu± u2. (2.14)

Here u = 0 is a fixed point of the system for any value of µ and a second fixed point is
given by u = ∓µ. Linearization about the origin u = 0 gives v̇ = µv while linearization

(a) (b)
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u
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u

Figure 2.2: Bifurcation diagram for the transcritical bifurcation described by (a) the ‘−’ and
(b) the ‘+’ case of Eq. (2.14). Solid lines indicate stable steady state solutions while dotted
lines indicate unstable steady state solutions.

about u = ∓µ gives v̇ = −µv. There is therefore an exchange of stability between the two
fixed points at the bifurcation at µ = 0 where the two solution branches cross (Fig. 2.2).
This bifurcation is codimension-one in systems that are required to maintain u = 0 as a
fixed point, but is a codimension-two bifurcation generally. The introduction of a constant
additive perturbation breaks the solution branches into either a pair of curves of fixed points
with no bifurcation present or a pair of saddle-node bifurcations.

Pitchfork bifurcation

The pitchfork bifurcation, described by the normal form

u̇ = µu± u3, (2.15)

is codimension-one in, for example, systems that possesses the reflection symmetry u → −u.
Linearization about u = 0 gives v̇ = µv, and thus u = 0 is stable for µ < 0 and unstable
for µ > 0. In the ‘−’ case, known as supercritical, two additional stable branches of fixed
points u = ±√

µ exist for µ > 0 where u = 0 is unstable. In the subcritical pitchfork
bifurcation described by Eq. (2.15) with a ‘+’ the two solution branches u = ±√−µ emerge
from the bifurcation point into µ < 0 and are unstable. These states coexist with the stable
u = 0 solution. Bifurcation diagrams for the pitchfork bifurcation are shown in Fig. 2.3. A
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Figure 2.3: Bifurcation diagram for the pitchfork bifurcation described by (a) the ‘−’ (su-
percritical) and (b) the ‘+’ (subcritical) case of Eq. (2.15). Solid lines indicate stable steady
state solutions while dotted lines indicate unstable steady state solutions.

constant perturbation breaks the pitchfork bifurcation into curves of fixed points and saddle-
node bifurcations. This is actually a codimension-three bifurcation in general systems not
constrained by any symmetry and can also break up into a transcritical bifurcation and
saddle-node bifurcation under a quadratic perturbation.

Hopf bifurcation

The previous examples were all steady state bifurcations describing the creation, annihilation,
and change of stability of fixed points. We now turn to the Hopf bifurcation (or Poincaré–
Andronov–Hopf bifurcation), where a periodic orbit is born from a fixed point. This is
the generic codimension-one oscillatory bifurcation in which a pair of complex conjugate
eigenvalues crosses the imaginary axis transversally. The normal form is given in terms of
the complex variable z by

ż = (µ+ i(ω + aµ)) z ± (1 + ib)|z|2z, (2.16)

where µ is the bifurcation parameter as usual and ω, a, b ∈ R. For µ < 0 the origin is a
stable fixed point. At µ = 0 the eigenvalues of the fixed point are pure imaginary λ = ±iω.
For µ > 0 the eigenvalues begin to develop a positive real part and origin becomes unstable.
For the case corresponding to ‘−’ in Eq. (2.16) the periodic orbit emerges supercritically as
a stable orbit coexisting with the unstable fixed point for µ > 0. The ‘+’ case, on the other
hand, is a subcritical Hopf bifurcation in which the periodic orbit is unstable and coexists
with the stable periodic orbit for µ < 0. Example flows along with a bifurcation diagram for
each case are shown in Fig. 2.4.

SNIPER bifurcation

As a final example, we discuss a second way in which periodic orbits are born that is relevant
for synchronization in systems of coupled oscillators. The SNIPER bifurcation (saddle-
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(a) (b)
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Figure 2.4: bifurcation diagrams and the flow field of the Hopf bifurcation described by (a)
the ‘−’ (supercritcal) and (b) the ‘+’ (subcritical) case of Eq. (2.16) with ω = 1, a = 0.5
and b = 0.5. For each case sample trajectories in the (Re(z),Im(z)) plane are shown in
the top panel for µ = −1 (left) and µ = 1 (right). A dot marks the location of the fixed
point at z = 0 and a red line indicates the trajectory of the periodic orbit when it exists. A
representation of the bifurcation diagram in |z| where the periodic orbit appears as a fixed
point is also included for each case in the bottom panel. Here solid (dotted) lines indicate
stable (unstable) fixed points or periodic orbits.

node infinite-period bifurcation), sometimes called SNIC (saddle-node on an invariant circle)
bifurcation, is often described in polar coordinates [58] by

ṙ = r(1− r2) (2.17)

θ̇ = µ− r cos θ. (2.18)

The radial equation (2.17) has an unstable fixed point at the origin and a stable one at r = 1,
and so the system always approaches the invariant circle r = 1. At r = 1, we can reduce the
system to θ̇ = µ − cos θ. We find one stable fixed point and one unstable fixed point for θ
satisfying µ = cos θ as long as −1 < µ < 1. The bifurcation occurs at µ = 1 and at µ = −1
where a periodic orbit is created as the two fixed points annihilate locally along r = 1 in a
saddle-node bifurcation. The trajectory follows the periodic orbit in the positive θ direction
for µ > 1 and the negative θ direction for µ < −1. Figure 2.5 illustrates the bifurcation at
µ = 1 through phase portraits for different values of µ.

Unlike the previous examples which are purely local bifurcations of fixed points, the
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Figure 2.5: Phase portraits for Eqns. (2.17)-(2.18) with µ = 0.8, 1.0 and 1.2. A SNIPER
bifurcation occurs on the invariant circle r = 1 (shown in red) at µ = 1 when the stable and
unstable fixed points (blue dots) collide and a periodic orbit is created.

SNIPER bifurcation additionally has a global organization of the center-stable and center-
unstable manifolds that is responsible for creating a periodic orbit. Local analysis of the
saddle-node point of the system cannot distinguish the SNIPER bifurcation from a saddle-
node bifurcation and many thus refer to the SNIPER as a global bifurcation [56]. The period
of the orbit diverges like (|µ| − 1)−1/2 as |µ| decreases toward the bifurcation point, a very
general feature of the scaling of characteristic times of dynamics near a saddle-node. This
is in contrast to the logarithmic divergence of the period in truly global bifurcations that
generate a periodic orbit such as a homoclinic bifurcation which occurs when an already
existing saddle collides with a periodic orbit. In contrast to the SNIPER bifurcation, local
analysis cannot even detect the occurrence of a homoclinic bifurcation.

The scaling of the period of the orbit created through a SNIPER bifurcation can be
computed by directly integrating Eq. (2.18) at r = 1, but a more intuitive argument relies
on the fact that the presence of the saddle-node is still “felt” after the fixed points collide.
An eigenvalue of the system crosses zero at the bifurcation, and will thus be small nearby.
This results in a slowing down of the dynamics near the point in phase space where the
saddle point used to be. The ghost or saddle-node remnant acts as a bottleneck for the
dynamics along the orbit and a majority of the time in the period is spent near this point.

As a side note, while the SNIPER bifurcation is a codimension-one, the slightly modified
system

ṙ = r(ǫ− r2) (2.19)

θ̇ = µ− r cos θ (2.20)

generates a codimension-two bifurcation at ǫ = 0 and µ = 0 where the creation of the
periodic orbit can be detected through local analysis.
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2.3 Spatial dynamics

When considering stationary solutions to a PDE system on the real line, it is often useful
to study the corresponding time-independent system where all time derivatives are set to
zero. This restriction results in a set of ODEs that describes the spatial dynamics of the
system. In this approach the position coordinate x is interpreted as a time-like independent
variable of the dynamical system satisfied by time-independent solutions of the PDE system.
Fixed points of the dynamical system correspond to stationary homogeneous solutions to the
PDE system and periodic orbits describe stationary spatially periodic patterns. Stationary
fronts are, in terms of spatial dynamics, heteroclinic trajectories that approach two different
equilibria as x → ±∞. Localized states can be thought of as homoclinic orbits that evolve
away from an equilibrium as x increases from −∞ before returning to it as x → ∞. These
localized states may approach the neighborhood of a second equilibrium in phase space and
thus form approximate heteroclinic cycles consisting of two heteroclinic trajectories to and
from the equilibria. In this case, the edges of the localized state correspond to fronts that
connect one equilibrium state to another [22].

The issue with extending this approach to two or more spatial dimensions is that the equa-
tions describing the stationary solutions no longer reduce to a set of ODEs. The spatial dy-
namics interpretation thus requires accommodating multiple time-like variables. Moreover,
the time-independent equations tend to be elliptic and there can be issues of ill-posedness
as an initial value problem. Despite this, the spatial dynamics picture has provided useful
insight for two-dimensional patterns in SHE [59].

Reversible dynamical systems and the Hamiltonian–Hopf

bifurcation

A dynamical system (2.1) is said to be reversible if it is equivariant under the transformation
(t, u) → (−t,Ru) where R2 = id is called an involution [60, 61]. Intuitively, this describes
systems where the backwards-time dynamics can be expressed in terms of the forwards-time
dynamics. The simplest case of R = id describes a system that evolves the same forwards
in time as it does backwards in time. Pattern-forming systems are often symmetric under
spatial reflections R of the form (x,u) → (−x,Ru), where R2 = id, and thus the dynamical
system that describes their time-independent spatial trajectories is reversible. The SHE
provides an example of one such system with reversible spatial dynamics, but because of its
gradient structure (Eq. 1.9), the spatial dynamics are additionally Hamiltonian.

Reversibility constrains the possible configuration of the eigenvalues of fixed points in-
variant under the reflection R. If λ is an eigenvalue of a fixed point in fixR, then so is
−λ. Moreover, if λ is complex then λ̄ is also an eigenvalue since f is assumed to be a real-
valued function. The characteristic polynomial that determines the spatial eigenvalues of
the system can therefore be written as a function of λ2 and the simplest nontrivial case is a
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four-dimensional system with eigenvalues given by

λ4 − bλ2 + a = 0, (2.21)

where a and b are real parameters. The nonzero eigenvalues of a fixed point satisfying
ufp = Rufp come as either: (1) a quartet of complex eigenvalues, (2) two pairs of real
eigenvalues, (3) a pair of real eigenvalues and a pair of imaginary eigenvalues or (4) two
pairs of imaginary eigenvalues. The possible configurations of eigenvalues are mapped out
as a function of a and b in Fig. 2.6 [62]. Along the curve C2 ∪C3 defined by a = b2/4, there

Figure 2.6: A map of the roots of λ4 − bλ2 + a = 0 in the (a, b) plane that correspond to
the eigenvalues of a fixed point of a four-dimensional, reversible dynamical system. Four
regions with distinct types of behavior are labeled and sample configurations of the roots
in the complex plane are depicted throughout the parameter space. A Hamiltonian–Hopf
bifurcation occurs along the curve C2 defined by b = −√

a/2. Taken from [62].

are two nonzero eignevalues λ = ±
√
b/2 each with multiplicity two. During the transition

through C2 depicted in Fig. 2.7 where a complex quartet of eigenvalues collides pairwise at
the imaginary axis and remain their afterwards (Fig. 2.7). This is known as a Hamiltonian–
Hopf bifurcation (or reversible 1:1 resonance) which has been studied in detail in Refs. [63,
64, 21].

The Hamiltonian–Hopf bifurcation is an important mechanism for generating time-independent
spatially periodic patterns in systems with reflection symmetry. The standard Hopf bifur-
cation occurs when a complex conjugate pair of eigenvalues λ, λ̄ of a fixed point cross the
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Figure 2.7: Eigenvalues of a system undergoing a Hamiltonian–Hopf bifurcation. The center
panel indicates the bifurcation point at which periodic orbits are generated at the origin.

imaginary axis. In reversible systems, this pair becomes a quartet where ±λ and ±λ̄ each
collide at the imaginary axis to become a pair of roots with multiplicity two. We can iden-
tify this bifurcation in SHE (1.6) by considering the dispersion relation that arises from its
linearization about u = 0:

σ = r − (1− k2)2, (2.22)

where σ is the linear growth rate in time, k is the spatial wavenumber and the solution takes
the form u = A exp(σt+ikx)+c.c. for some amplitude A ∈ C. The spatial eigenvalues of this
time-independent state are determined from the marginal stability curve defined by σ = 0
and this maps onto a line in the (a, b) plane of Eq. (2.21) defined by b = 2 and a = 1+r. The

marginal equation (Eq. (2.22) with σ = 0) is solved by the four wavenumbers k = ±
√

1±√
r

which form two pairs of real roots for k (corresponding to pure imaginary eigenvalues) when
r > 0 and represent the wavenumbers of perturbations that are marginally stable in time.
The eigenvalues collide pairwise at the imaginary axis at r = 0 to create a pair of double
roots k = ±1 in a 1 : 1 spatial resonance. For r < 0 the spatial eigenvalues have nonzero
real part which is a prerequisite for the existence of fronts that connect to u = 0.

Homoclinic orbits and the heteroclinic tangle

The linear theory described above sets the stage for the study of homoclinic connections
and thus spatially localized states. In order for an orbit homoclinic to a fixed point to
exist, the fixed point must have at least one stable and one unstable spatial eigenvalue.
Moreover, the stable and unstable manifolds associated with this fixed point must intersect
in order for the trajectory to be able to approach the point as x→ ±∞. If, in addition, the
codimension of the intersection of the manifolds is zero and the fixed point is hyperbolic,
these homoclinic orbits are structurally stable and the associated localized states remain
stationary over a finite parameter interval. For example, consider a fixed point from regions
(1) or (2) of Fig. 2.6 with two-dimensional stable and unstable manifolds dim(W s,u) = 2.
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The intersection of W s and W u is codimension-one in a generic four-dimensional system but
codimension-zero when the system is reversible.

A series of homoclinic orbits can be organized around a heteroclinic cycle between a
homogeneous state and a periodic state in a structure known as homoclinic snaking (cf.
Fig. 1.3) [21, 65]. An excellent introduction to the heteroclinic tangle that lies at the heart
of homoclinic snaking can be found in [66]. Consider intersections between the invariant
manifolds of a fixed point which we choose to be 0 and a periodic orbit γ. We assume
that both 0 and γ are fixed by the involution R and that dim(W u,s(0)) = 2. Owing to
the symmetry R, if we further assume that γ has one stable Floquet multiplier then it
will also have one unstable multiplier and two +1 multipliers. The center-stable eigenspace
is therefore three-dimensional and W s(γ) is thus also three-dimensional. The intersection
of W u(0) and W s(γ) is therefore codimension-zero and thus structurally stable. Moreover
reversibility implies the existence of another structurally stable intersection between W s(0)
and W u(γ), i.e., a heteroclinic cycle exists over a finite parameter interval.

We now turn to homoclinic orbits in the Hamiltonian–Hopf bifurcation in order to study
localized states in a region of bistability between a trivial state and spatially periodic one.
This bifurcation is described by the normal form [64]

A′ = ikA +B + iAP
(
|A|2, K, µ

)
(2.23)

B′ = ikB + iBP
(
|A|2, K, µ

)
+ AQ

(
|A|2, K, µ

)
, (2.24)

where A,B ∈ C, µ is a real bifurcation parameter, P and Q are polynomials with real
coefficients, and K = i(AB̄ − ĀB)/2. The normal form is equivariant under the reflection
(x,A,B) → (−x, Ā, B̄) and the phase rotation (A,B) → (A,B)eiφ for φ ∈ S1. Moreover, it
is completely integrable with constants of motion

K =
i

2
(AB̄ − ĀB) (2.25)

H = |B|2 −
∫ |A|2

0

Q(u,K, µ)du. (2.26)

In the context of spatial dynamics, a quartet of complex spatial eigenvalues collide pairwise
on the imaginary axis at ±ik where a bifurcation occurs in which spatially periodic states
of wavenumber k are created.

The system (2.23)-(2.24) can be reduced to a single equation for u = |A|2 by making use
of the conserved quantities (2.25)-(2.26) and the fact that u′ = AB̄ + ĀB:

E =
1

2
(u′)2 + V (u), (2.27)

where E = 2K2 can be interpreted as the total energy of a one-dimensional particle in the
potential

V (u) = −2u

(
H +

∫ u

0

Q(v,K, µ)dv

)
, (2.28)
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and the standard methods of classical mechanics can be applied to analyze the system.
The fixed point at the origin (A,B) = (0, 0) is given by u = 0 and the periodic orbits are
represented by a single fixed point u = upo. Orbits that are homoclinic to u = 0 must
have K = H = 0. Homoclinic orbits appear when V (u) has a local maximum at u = 0 and
V (u) > 0 for some u > 0 to bound the orbit. When, in addition to a local maximum at u = 0,
u = upo is also a local maximum and V (0) = V (upo) = 0 with V (u) < 0 for 0 < u < upo
a heteroclinic cycle exists between u = 0 and u = upo. Here we have assumed that upo is
in the set K = H = 0 as well. Sample effective potentials that allow for homoclinic and
heteroclinic orbits are shown in Fig. 2.8.

(a) (b)

u

V(u)

u

V(u)

u

u'

u

u'

Figure 2.8: Sample effective potential (top) and the corresponding trajectory in (u, u′) plane
for cases where there exists (a) a homoclinic orbit to u = 0 at the origin, and (b) a heteroclinic
orbit between u = 0 and another fixed point upo representing periodic states.

While the normal form given by Eqs. (2.23)-(2.24) is completely integrable, many systems
exhibiting a Hamiltonian–Hopf bifurcation such as SHE are not. We must therefore also
consider persistence under perturbations of this system that break integrability. In what
follows we make the assumption that the reversible system remains Hamiltonian and consider
perturbations that break integrability. While this assumption is not strictly necessary, it does
simplify the description significantly. The essential behavior remains unchanged even in cases
where the Hamiltonian structure is also broken by the perturbations.
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Figure 2.9: Schematic of the intersections of the unstable and stable manifolds of the fixed
point u = 0 and the periodic orbit γ(φ) that lead to spatially localized states as homoclinic
orbits to u = 0. Taken from Ref. [67].

Let us now consider what happens to the heteroclinic cycle under perturbations of the
type described above. We select out a particular periodic orbit that is invariant under R
and construct an appropriate two-dimensional Poincaré map within the zero level set of
the Hamiltonian that contains both the trivial fixed point 0 and the point γ(φ) on the
periodic orbit that is a fixed point of the map. Figure 2.9 shows phase portraits of the map
with black dots representing the fixed points, which lie on the green line that represents
the set invariant under the reflection R. The blue lines represent the stable W s(0) and
unstable W u(0) manifolds of the trivial state. As this is a map, an initial condition on
W u(0) produces a sequence of points on the line that approach γ(φ) after an infinite number
of forward iterations. The perturbation to the heteroclinic cycle causes the stable manifold
of the periodic orbit W s(γ) (shown in red) to separate from W u(0). Under appropriate
conditions, we expect an infinite number of transversal intersections of W u(0) and W s(γ)
(top right panel): each intersection point is contained on both invariant manifolds and is
thus mapped to other intersection points by forward and backward iterations. Moreover,
forward iterations must approach γ(φ) since the intersections are on W s(γ) and backward
iterations must approach 0 since the intersections are also on W u(0).

These intersections lie at the heart of the heteroclinic tangle and, along with the area-
preserving property of Hamiltonian maps, cause W u(0) to oscillate wildly as it approaches
γ(φ). Reversibility ensures that W s(0) behaves similarly near γ and intersects FixR at the
same point thatW u(0) does. The intersections accumulate on γ(φ) and each one corresponds
to a homoclinic orbit. Each additional oscillation of the manifold W u(0) corresponds to an
additional period of the periodic orbit in the trajectory of the solution. As we are consid-
ering spatial dynamics, these homoclinic points correspond to spatially localized solutions
that contain more and more wavelengths of the periodic pattern. We note that there are
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also secondary intersections not on FixR which correspond to asymmetric localized states
(bottom right panel of Fig. 2.9). These states appear on the rungs of the snakes-and-ladders
structure described in Sec. 1.3. The heteroclinic tangle exists over a finite range of the bi-
furcation parameter µ and breaks as the stable (W s(γ)) and unstable (W u(γ)) manifolds of
the periodic state become tangent toW u(0) and W s(0), respectively (left panels of Fig. 2.9).
These points define the edge of the pinning region where the symmetric spatially localized
states annihilate in fold bifurcations. The asymmetric states are also created and destroyed
at these folds.

An analogous picture occurs near the origin where intersections of W s(γ) and W u(γ)
accumulate on 0. Each intersection generates an orbit homoclinic to γ and each additional
oscillation of the manifold W u(γ) corresponds to an additional period of the periodic orbit
spent near 0. These orbits correspond to “holes” in an otherwise periodic pattern in which
a certain number of wavelengths is replaced by the trivial u = 0 state.

The Swift–Hohenberg equation

The SHE has the minimum number of spatial derivatives for a robust heteroclinic cycle
to occur, and thus provides a simple model for studying localized structures associated
with homoclinic snaking. We emphasize that because it is a consequence of transversal
intersections of manifolds the snakes-and-ladders structure is robust with respect to changes
in parameters and even the equation. Indeed, examples of this snaking behavior have been
identified in both gradient and nongradient systems, including buckling of slender structures
[68, 23], shear flows [69], doubly diffusive convection [70, 71, 72], porous media convection [73]
and rotating convection [74].

The spatial dynamics of SHE can be formulated using the free energy F given in Eq. (1.9)
as a Lagrangian since ut = 0. The equation of motion, the time-independent SHE, is given
in terms of this second-order Lagrangian F [u, u′, u′′] by

d2

dt2
∂F

∂u′′
− d

dt

∂F

∂u′
+
∂F

∂u
= 0, (2.29)

where the prime indicates derivative with respect to x and the nonlinear terms N = dV/du
of interest are quadratic-cubic (Eq. (1.7)) or cubic-quintic (Eq. (1.8)). The spatial dynamics
conserve the quantity

H = −1

2
(r − 1)u2 + (u′)2 − 1

2
(u′′)2 + u′u′′′ − V (u), (2.30)

and this is in fact a Hamiltonian of the system [75]. The coordinate transformation

u = u, v = u′, pu = −u′′′ − 2u′, pv = u′′, (2.31)

puts the time-independent SHE into canonical form with two degrees of freedom. Equa-
tion (2.30) becomes

H = vpu +
1

2
p2v + v2 +

1

2
(r − 1)u2 − V (u), (2.32)
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and the equations of motion are

u′ =
∂H

∂pu
, p′u = −∂H

∂u
, (2.33)

v′ =
∂H

∂pv
, p′v = −∂H

∂v
. (2.34)

As has already been noted, a Hamiltonian–Hopf bifurcation occurs for u = 0 at r = 0
where spatially periodic states upo are created. We are interested in the case that these

states bifurcate subcritically which occurs for b >
√
27/38 in the quadratic-cubic case with

N = N23 and for b > 0 in the cubic-quintic case withN = N35. In this subcritical case, weakly
nonlinear analysis can be used to locate a branch of homoclinic orbits of the type shown in
Fig. 2.8(a) emerging from r = 0 along with the spatially periodic branch. Additionally, we
can find a heteroclinic cycle between u = 0 and upo through a higher-order calculation in
the weakly subcritical limit where the nonlinear coefficient b is tuned to near the transition
between subcritical and supercritical. This cycle occurs at the Maxwell point between the
two states and the calculation predicts the cycle only exists at a single parameter value
(Fig. 2.8(b)).

The weakly nonlinear calculation in this weakly subcritical limit fails to capture the
persistence of the heteroclinic cycle because the multiple length scales approximation used
decouples the dynamics of the envelope of the state from the phase of the periodic pattern
at all finite orders. A calculation beyond all orders reveals that the heteroclinic tangle
and thus homoclinic snaking does in fact occur, but only in an exponentially thin region
around the Maxwell point [76, 77]. For larger values of the nonlinearity coefficient b the
region of bistability increases and the structure persists on a larger parameter interval.
The homoclinic snaking that results still surrounds the Maxwell point where a heteroclinic
connection between u = 0 and upo is expected, but occurs far away from the Hamiltonian–
Hopf bifurcation and cannot be captured via weakly nonlinear analysis.

The wavelength of the stationary localized states varies across the snaking region. This
variation is small (on the order of one percent) and the wavelength chosen by the state is
not the one that minimizes the free energy F . This is a consequence of the fact that these
states, which are orbits homoclinic to u = 0, are constrained to the H = 0 level set of the
Hamiltonian. The dependence of the wavelength on the parameter r matches what one might
intuitively expect from energy considerations: the state is compressed and the wavelength
is smaller when u = 0 is energetically favored while the state expands and the wavelength is
longer when upo is energetically favored.

2.4 Parametric resonance

A dynamical system exhibiting oscillations typically responds strongly to an external pe-
riodic forcing when the frequency of the drive is commensurate (or nearly commensurate)
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with an intrinsic frequency of the system. This phenomenon, known as resonance, is ubiqui-
tous throughout the physical world and the simplest model of a parametrically driven linear
oscillator captures the essential dynamics in many cases when the forcing is parametric.
Consider a rigid pendulum whose pivot is vertically vibrated and is undergoing small oscil-
lations about one of the two fixed points of the system. The equation of motion follows a
Mathieu equation (see, e.g., Ref. [78]) of the form

ü+ (a− 2q cos 2t)u = 0. (2.35)

Time has been scaled to the half the frequency of the external drive, ω =
√

|a| is a char-
acteristic timescale for dynamics of the system and q characterizes the vibration amplitude
of the pivot. We begin the discussion by asking the question: under what conditions will
the oscillations about u = 0 remain bounded near u = 0 for all time? In the absence of an
external drive (q = 0), the oscillations are stable for a > 0 which corresponds to the system
linearized about the standard configuration for a pendulum. The case of a < 0, on the
other hand, describes an inverted pendulum where the system has been linearized about the
unstable upright position which, as we shall see, can actually be stabilized by the vibration.

From Floquet’s theorem (Eq. (2.8)) we see that the solution takes the form

u = eσ1tp1(t) + eσ2tp2(t), (2.36)

where pj(t) are π-periodic functions. Applying Eq. (2.11) (or using reversibility under
(t, u) → (−t, u)) implies that σ1 + σ2 = 0. Moreover, if the Floquet exponents are com-
plex, they must be complex conjugate pairs: σ2 = σ̄1. We also note that the exponents
are not unique, σj → σj + in/2 is also a multiplier because the additional term just adds
an nπ periodic multiplicative factor which can be absorbed by pj . Therefore, the Floquet
multipliers must be pure real, pure imaginary or complex of the form σj = ηj + in/2 where
η1 = −η2 are real. They cannot be general complex numbers because the above conditions
imply Re(σj) = −Re(σj) when Im(σj) 6= in/2. Because σ1 = −σ2 the condition for stability
is that Re(σj) = 0. The Floquet exponents are given by ±iω when q = 0, a > 0 and they
are in general functions of q. We consider an asymptotic expansion of the exponents near
q = 0 for a > 0 and write the exponent as σ = iω + qσ1 + q2σ2 + O(q3). There are regions
of instability near ω = n/2, or equivalently near a = n2/4.

A multiple scales analysis (see Ref. [52]) can be used to compute approximations of
the solutions within the region of instability. However if we are just interested in finding
the boundaries between regions of stability and instability, we can make use of the fact
that the solutions will be periodic with period nπ along these transition curves. We look
near the region of instability by making the expansions a = n2/4 + qa1 + q2a2 + . . . and
u = u0 + qu1 + q2u2 + . . . . We can apply standard perturbation theory as in Ref. [53] to
find solutions with period nπ by removing secular terms at each order. Alternatively, we
can use the Poincaré–Lindstedt method as in Ref. [79]. Both methods approximate the
regions of instability by finding the edges near a = n2/4 for q ≪ 1. Within these so-called
Arnold tongues a small amplitude periodic drive can excite large oscillations of the pendulum
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when the frequency is tuned to be near resonance. Figure 2.10 shows numerically computed
tongues that open as a increases and lead to regions of instability caused by resonances
between the natural oscillation period and vibration period. We see that the shaded regions
of stability where small oscillations remain bounded near u = 0 extend to a < 0. Thus a
fine-tuning of parameters to within one of these regions can stabilize an inverted pendulum
with a periodic forcing.

Figure 2.10: Stability diagram for the Mathieu equation (2.35) showing the opening of
resonance tongues as the amplitude a of vibration increases. The state u = 0 is unstable
in the white regions while oscillations about u = 0 remain bounded for all time in the gray
regions and u = 0 is therefore stable there.

2.5 Phase oscillators and synchronization

Many situations are described by a system of coupled oscillators that each exhibit stable
time-periodic motion and the seminal work of Winfree [80] provides a framework for study-
ing such systems in biology. When weakly coupled, the oscillators can adjust their frequency
and relative phase to undergo a collective motion through a process called synchronization.
Frequency synchronization or frequency entrainment occurs when oscillators with different
intrinsic periods all execute periodic motion with a common frequency. In phase synchro-
nization or phase locking, the oscillators align the phase of their oscillation cycles with one
another such that the phase difference remains constant. Synchronization has been famously
studied in the context of fireflies [81] where large groups of phase-locked fireflies have been
observed to flash in phase across a large field. It is theorized to be key to healthy cardiac
dynamics [82] but also the root of Parkinson’s disease in neural dynamics [83]. When the
coupling is weak, coupled oscillator systems can often be described just in terms of the
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phases of the individual oscillators. We explicitly describe the reduction for two oscillators
presented in Ref. [84], and this approach extends to N oscillators in a straightforward way.

Consider a dynamical system composed of two nearly identical coupled oscillators

u̇1 = f(u1) + ǫf1(u1) + ǫg(u1,u2) (2.37)

u̇2 = f(u2) + ǫf2(u2) + ǫg(u2,u1), (2.38)

where u̇ = f(u) has a stable T -periodic orbit upo, g is the coupling function, fj describe
possible small differences in the oscillators, and ǫ≪ 1. The first step in the reduction process
is to transform the system into a phase coordinate φ along the limit cycle upo that satisfies

φ̇ = 1. (2.39)

Physically, this map takes the nonuniform motion along the limit cycle to a motion at
constant speed around a circle. The next step is to extend the mapping from the limit cycle
into a small neighborhood around it. This allows us to associate a phase to orbits in the
presence of small perturbations ǫp introduced by heterogeneities in the oscillators and the
coupling. This extension is accomplished via the sensitivity function or the phase response
curve Z(φ). One can gain some intuition about Z by using the definition based on the
concept of isochrons [80, 85]. The phase is extended off the periodic orbit as follows: the
phase associated with a point off the periodic orbit is the phase of the initial condition on
the periodic orbit that it approaches as t → ∞ when both are time-evolved. The set of all
points with the same phase defined in this way is called an isochron. We can then compute
the phase response curve Z = ∇φ with components given by Zj = ∂φ/∂uj in terms of the
extended phase φ(u) that is now defined on a neighborhood of the phase space around upo.
The phase response curve Z(φ) is often computed in practice by numerically solving

dZ

dφ
= −{Df |po}TZ (2.40)

with the normalization condition that Z(φ) · f(upo(φ)) = 1. See Ref. [86] for an overview of
this adjoint approach and other standard methods for computing Z(φ).

Writing the original coupled oscillator system in terms of the phase variables and making
use of the definition of the phase response curve, we get

φ̇1 = 1 + ǫZ(φ1) · p1 (upo(φ1),upo(φ2)) (2.41)

φ̇2 = 1 + ǫZ(φ2) · p2 (upo(φ2),upo(φ1)) , (2.42)

where the perturbation function is given by pi(u,v) = fi(u)+ g(u,v). By defining new slow
phase variables θj = φj − t that track the phases in a frame rotating with the unperturbed
oscillation frequency and averaging over the fast timescale with period T, we can reduce the
system to the form

θ̇1 = ω1 + Γ(θ1 − θ2) (2.43)

θ̇2 = ω2 + Γ(θ2 − θ1), (2.44)



CHAPTER 2. BACKGROUND 31

where, for j 6= k,

ωj =
1

T

∫ T

0

Z(θj + t) · fj (upo(θj + t)) dt (2.45)

Γ(θj − θk) =
1

T

∫ T

0

Z(θj + t) · g (upo(θj + t),upo(θk + t)) dt, (2.46)

and the dot represents the standard vector dot product. Taking the difference of the two
equations allows for the system to be expressed in terms of a single variable ψ = θ1 − θ2 as

ψ̇ = r + (Γ(ψ)− Γ(−ψ)), (2.47)

where r = ω1 − ω2. It is clear that only the odd component of Γ, which we denote as Γo,
contributes and the equation finally reduces to

ψ̇ = r + 2Γo(ψ). (2.48)

This reduction method can be applied to N oscillators to produce a system of N coupled
phase equations in the form

θ̇j = ωj +
N∑

k=1

Γjk(θj − θk). (2.49)

A great amount of analytic progress can be made under the simplifying assumption that
Γjk(ψ) = (K/N) sinψ. The result

θ̇j = ωj −
K

N

N∑

k=1

sin(θj − θk) (2.50)

is known as the Kuramoto model [87] and effectively takes the simplest odd functional form
for Γjk along with the assumption that the oscillators are globally coupled (every oscillator
is coupled to every other) with equal strength. Kuramoto was able to simplify the system
by defining the complex order parameter

ReiΦ =
1

N

N∑

j=1

eiθj , (2.51)

where 0 ≤ R ≤ 1 and 0 ≤ Φ < 2π are mean field quantities that characterize the synchro-
nization of the motion of the individual oscillators and give their average phase, respectively.
This allows for the system to be written as

ψ̇j = ωj − Φ̇−KR sinψj , (2.52)

where ψj = θj − Φ. These equations have an effective coupling strength KR and frequency
parameter ωj−Φ̇ that depend on the order parameter and can, in general, be time-dependent.
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The new phase variables ψj represent the phase difference of each oscillator from the average
phase of the system Φ. The oscillations only couple to each other through the dynamics of
the order parameter.

Equations (2.52) represent a reduced description of N weakly coupled oscillators in terms
of just their phases. The collective behavior of the oscillator system can now be studied
through the order parameter (Eq. (2.51)). An equation determining the dynamics of R and
Φ can be developed by enforcing a self-consistency condition on the system [87, 84]. In
particular, the equality in the definition of the order parameter (Eq. (2.51)) must hold when
the solutions to Eq. (2.52) for each of the phases are substituted into the right-hand side.

2.6 Relaxation oscillations and the canard explosion

Canards trajectories were first discovered by Benôıt in 1981 [88] and subsequently analyzed
via singular perturbation theory in Ref. [89]. The defining characteristic is that the trajectory
follows an unstable manifold for some amount of time before quickly jumping to a stable one.
Canards appear in the transition from small amplitude oscillations to relaxation oscillations
and mixed-mode oscillations that are of great interest for spiking and bursting in neural
models [90] and for oscillating chemical reactions [91]. They also play a role in the creation
of shocks in traveling waves of advection-reaction-diffusion systems [92], and may be relevant
for wound healing [93] and solar winds [94]. However, very little work has been done on
canards trajectories in PDE systems where a reduced ODE description does not exist.

The classical example of canards occurs during the transition from small amplitude os-
cillations to large amplitude relaxation oscillations in the van der Pol equation,

d2x

dτ 2
− µ(1− x2)

dx

dτ
+ x = a, (2.53)

with large damping µ ≫ 1 and constant external forcing strength a. We can make use of
the Liénard transformation by defining a new variable z with

µ
dz

dτ
=
d2x

dτ 2
− µ(1− x2)

dx

dτ
(2.54)

so that Eq. (2.53) simply becomes µdz/dτ + x = a. Upon integration of Eq. (2.54), the van
der Pol equation can be recast as the dynamical system

dx

dτ
= µ(z + x− x3/3) (2.55)

µ
dz

dτ
= a− x. (2.56)

The large damping results in slow-fast dynamics in the system, and we can analyze the
behavior on slow and fast time scales separately by introducing an appropriately scaled time
and considering the limiting case µ → ∞.
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In order to capture the dynamics that occur on short time scales, we rewrite the system
in terms of a fast time t = µτ and a small parameter ǫ = 1/µ2 ≪ 1. The resulting fast
dynamics is given by the system

dx

dt
= (z + x− x3/3) (2.57)

dz

dt
= ǫ(a− x). (2.58)

The dynamics of the limiting case (ǫ = 0) for the fast system reduces to trajectories that
follow lines of constant z and stationary points along

zc(x) = −x+ x3/3. (2.59)

This so-called critical manifold zc(x) has a local maximum (minimum) at x = −1 (x = 1)
and is attracting (repelling) for |x| > 1 (|x| < 1). We will find it useful to segment this
curve into three pieces: z−c (x) indicates the attracting section on x < −1, zuc (x) indicates
the repelling section on −1 < x < 1, and z+c (x) indicates the attracting section on x > 1.
Considering 0 < ǫ ≪ 1 will add corrections to the manifold of stationary points of the fast
dynamics but an initial condition (x0, z0) will still evolve on a time scale t ∼ O(µ−1) toward
a point within a small (∼ O(µ−2)) neighborhood of (xc, z0) on one of the two attracting
sections of the critical manifold where xc is defined by z0 = z±c (xc).

The long-time dynamics of the system can be examined by writing Eqs. (2.55)-(2.56) in
terms of a slow time T = τ/µ and the same small parameter ǫ = 1/µ2 ≪ 1:

ǫ
dx

dT
= (z + x− x3/3) (2.60)

dz

dT
= a− x. (2.61)

The limiting case (ǫ = 0) of the resulting slow system is restricted to zc(x) where the dynamics
are determined by dz/dT = a − x. Considering 0 < ǫ ≪ 1 again introduces corrections
such that trajectory, upon entering a small neighborhood around z±c , drifts slowly within
this neighborhood and only exits near x = ±1. The fixed point of this limiting case at
(x, z) = (a,−a + a3/3) is also a fixed point of the full system and will be stable for |a| > 1
and unstable for |a| < 1.

Figure 2.11 summarizes the dynamics of the van der Pol oscillator as a function of a > 0.
We note that the results extend to a < 0 with use of the symmetry (x, z, a) → (−x,−z,−a).
The fixed point at x = a will be stable for a > 1 and all trajectories will approach this
point upon entering the neighborhood of z+c . A Hopf bifurcation occurs at a = 1 in which
small amplitude oscillations are born at the local minimum of zc(x) at x = 1. These small
amplitude oscillations exist for a narrow parameter interval before transitioning to relaxation
oscillation consisting of fast jumps in x with fixed z separated by a slow drift along the
attracting sections z±c . The trajectories followed by these relaxation oscillations can be
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constructed by gluing together the drift from the slow system and the jumps from the fast
system via matched asymptotics. The large amplitude relaxation oscillations persist all the
way to the unforced case a = 0.

The transition between small amplitude oscillations and relaxation oscillations has an
exponentially thin width (∆a ∼ e−µ

2

) and occurs through a sequence of canards that spend a
significant amount of time drifting along the repelling section zuc (x). As a decreases just below
a = 1, the trajectory of a small amplitude oscillations drifts along zuc (x) for an increasing
amount of time before jumping back to z+c (x). This continues until a maximal canard is
reached in which the trajectory traverses the entire repelling section zuc (x) before jumping
back to z+c (x). As a decreases below this point, the trajectory follows zuc (x) for a decreasing
amount of time and now jumps to z−c (x) instead of z+c (x). The trajectory then tracks z−c (x)
until x = −1 before jumping to back to z+c (x). The end of the canard explosion occurs when
the trajectory no longer drifts along zuc (x) and instead jumps directly from z+c (x) to z

−
c (x)

and back.

Amplitude

Hopf bifurcation
Canard explosion

a<0.998... a=0.998740451245 a=0.998740451246 a>1

a
1

z

x

Figure 2.11: Transition from no oscillations to small amplitude oscillations to relaxation oscil-
lations near a = 1 in the van der Pol oscillator with µ = 10. A supercritical Hopf bifurcation
occurs at a = 1 and a canard explosion appears in an exponentially small neighborhood of
a = 0.998740451245 as small amplitude oscillations transition to relaxation oscillations. A
bifurcation diagram of oscillation amplitude as a function of a is shown in the bottom panel
while sample trajectories in the (x, z) plane are shown in the top panels. Taken from [95].
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Chapter 3

Phase locking and phase slips in

systems with time-periodic

modulation

The main focus of this dissertation is the dynamics of spatially-localized patterns in spatially-
extended systems with time-periodic forcing. The underlying resonance mechanism at play in
these systems, however, is a more general phenomenon that appears even in simple dynamical
systems. This chapter, which describes work published in [48], uses the Adler equation to
explore the effects of time-periodic frequency modulation in the context of synchronization of
coupled oscillators. This work serves to demonstrate the framework used to study spatially
extended systems with time-periodic parameters in later chapters. Moreover, a deeper level
of theoretical and numerical analysis is possible here and many of the insights gained transfer
over to the spatially extended cases considered in Chs. 4 and 5. Finally, this chapter opens
the door to further study of the role of this resonance mechanism in applications that can
be described by systems of coupled oscillators.

The Adler equation [96]
θ̇ = r − sin θ (3.1)

has been used to describe phase synchronization between a pair of coupled oscillators. In
this case θ ≡ φ1 − φ2 represents the difference in the phases φj of the two oscillators and
r represents the normalized frequency difference. When |r| < 1 the equation describes a
phase-locked state; when |r| > 1 the phase difference increases or decreases monotonically,
corresponding to repeated phase slips. The transition between these two states is an example
of a SNIPER bifurcation [56] and the phase slip period diverges like 1/

√
r − 1 as r decreases

towards r = 1.
The nonautomous equation (3.1) with r = r(t) and r(t) a periodic function of time thus

describes the effects of temporal modulation of the SNIPER bifurcation. Such modulation
is of interest since for part of the modulation cycle the oscillators may be phase-locked while
for the rest of the cycle they may undergo phase slips. In this chapter we show that the
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interplay between these two states is complex, and characterize the resulting behavior for
both high and low frequency modulation r(t); the intermediate case in which the modulation
period is comparable to the phase slip period is of particular interest and is also investigated
here in detail.

The nonautonomous Adler equation arises in a number of applications. First and foremost
it arises in systems of driven identical active rotators [97, 98] or, equivalently, driven arrays
of Josephson junctions [99] described by the equations

φ̇j = ω(t)− sinφj −K

M∑

m=1

sin(φj − φm). (3.2)

Here ω relates to the intrinsic frequency of the individual rotators and K measures their

coupling strength. In terms of the Kuramoto order parameter R exp iΦ ≡
M∑

m=1

exp iφm, this

system can be written in the equivalent form

θ̇j = ω(t)− α̇−KR̃ sin θj , (3.3)

where θj ≡ φj−α, KR̃ =
√
1 + (KR)2 + 2KR cos Φ and tanα = KR sinΦ(1+KR cosΦ)−1.

Since R and Φ̇ are in general functions of time [100] the quantities R̃ and α will also be
functions of time and these are determined by the collective dynamics of the remaining
M−1 oscillators. WhenM is large the latter are unaffected by the behavior of an individual
oscillator, and R̃ and α can therefore be assumed to be given. The dynamics of each oscillator
are thus described by an Adler equation with a time-dependent effective frequency and a
time-dependent effective coupling constant. The latter dependence can be removed using
the simple substitution dτ = KR̃ dt provided K(t) remains bounded away from zero.

Nonautonomous effects also arise in phase-coupled oscillator systems of Kuramoto type
[87] and these are of interest in neural models. In models of this type the coupling strength
Kjk between oscillators j and k is taken to be a function of time, reflecting either evolution of
the network [101, 102, 103, 104, 105] or the effects of a drug, during anesthesia, for example
[106]. The simplest model of this type,

φ̇j = ω −K(t)

M∑

m=1

sin(φj − φm), (3.4)

can be written in the equivalent form

θ̇j = ω − Φ̇−K(t)R(t) sin θj , (3.5)

where θj ≡ φj − Φ. Thus the dynamics of each individual oscillator are determined by the
global behavior of the system through the quantities KR and Φ. When M is large both R
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and Φ may be taken as given, independent of the behavior of the oscillator j. The resulting
system can be cast in the form

θ′j = ω̃(τ)− sin θj , (3.6)

where the prime denotes differentiation with respect to a new time τ , dτ = KRdt, and
ω̃(τ) = [ω/K(τ)R(τ)]−Φ′(τ), withK(τ) ≡ K[t(τ)], R(τ) ≡ R[t(τ)] etc. It suffices, therefore,
to consider the effects of a time-dependent effective frequency only. Related models arise in
systems with frequency adaptation [107]. An excellent review of the origin of nonautonomous
effects in the Kuramoto model and its variants can be found in [108].

Finally, the nonautonomous Adler equation also describes a single resistively shunted
Josephson junction driven by a biased AC current [109]. Theoretical investigations of this
equation, motivated by observations of Shapiro steps [110] in the supercurrent, have illumi-
nated a wealth of mode-locking behavior [111, 112, 113]. Large arrays of coupled Josephson
junctions are thus amenable to the same type of analysis as active rotator systems [99, 114].

The chapter is organized as follows. In the next section we summarize the basic properties
of the Adler equation with and without time-periodic modulation. In Sec. 3.2 we study, under
a variety of conditions, periodic orbits of the nonautonomous Adler equation that take the
form of oscillations about a phase-locked state. In Sec. 3.3 we study the so-called phase-
winding trajectories describing repeated phase slips and identify the regions in parameter
space where different states of this type are found. In Sec. 3.4 we show that an adiabatic
analysis describes accurately the resulting parameter space not only for low modulation
frequencies but in fact remains accurate far outside of this regime. Section 3.5 provides a
brief summary of the results and discusses potential applications of the theory.

3.1 The Adler equation

The Adler equation (3.1) with constant r has several symmetries of interest. The equation is
invariant under complete rotations W : θ → θ+2π, and time translations Tτ : t→ t+τ by an
arbitrary real τ . In addition, it is invariant under the phase symmetry P0 : (t, θ) → (−t, π−θ)
and the parameter symmetry R0 : (r, θ) → −(r, θ). As already mentioned, the fixed points
or equilibria of Eq. (3.1) correspond to phase-locking between the two oscillators, and these
exist in the parameter interval |r| < 1:

θeq = sin−1 r. (3.7)

If θ is defined mod 2π, this condition determines two branches of equilibria that merge
in a saddle-node bifurcation at r = ±1 and are related by P0. One of these branches is
stable and can be identified by the condition ∂rθeq > 0 while the other is unstable and is
characterized by ∂rθeq < 0. No fixed points exist for |r| > 1: θ increases monotonically when
r > 1 and decreases monotonically when r < −1. When θ is defined mod 2π the resulting
trajectories are both periodic in time and the steady-state SNIPER bifurcations at r = ±1
generate periodic orbits, a consequence of the global organization of the stable and unstable
manifolds of the fixed points.
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In the present work we find it convenient to think of θ as a variable defined on the real
line. When this is done the equation has an infinite number of stable and unstable equilibria
that differ in the number of 2π turns relative to an arbitrary origin θ = 0. We refer to these
turns as phase slips since one of the two oscillators is now ahead of the other by an integer
number of 2π rotations. Trajectories outside of the phase-locked region will incur positive
or negative phase slips with frequency

ω0 =
√
r2 − 1. (3.8)

This frequency approaches zero in a characteristic square root manner as |r| approaches
|r| = 1 from above [56].

When the frequency parameter r oscillates in time,

r = r0 + a sin(2πt/T ), (3.9)

the system retains the winding symmetry W, while the translation symmetry becomes
discrete T : t → t + T . The phase symmetry now includes a time shift, P : (t, θ) →
(T/2− t, π− θ). The parameter symmetry takes the form R : (r0, a, θ) → −(r0, a, θ). There
is also an additional parameter symmetry S : (t, a) → (t + T/2,−a). We remark that, as
already explained, any time-dependence in the coupling parameter K > 0 can be removed
by a simple transformation, and this parameter is therefore scaled to unity.

Depending on the amplitude a and the period T of the frequency modulation (3.9) the
solutions of the resulting equation take the form of oscillations about a phase-locked state
or describe repeated phase slips in which the phase difference θ drifts with a nonzero mean
speed. We identify below a series of resonances between the modulation period T and the
time scale for the generation of a phase slip. The resulting parameter space structure is
determined using a combination of numerical simulations, numerical continuation [115] and
asymptotic methods. Regions with an integer number of phase slips per period are separated
by regions with noninteger numbers of phase slips and include canard trajectories that drift
along unstable equilibria. Both high and low frequency modulation is considered. We do
not consider noise-triggered phase slips.

3.2 Periodic orbits

Phase-locked states of the autonomous system (3.1) may undergo phase slips in the presence
of modulated frequency while remaining phase-locked on average. For such solutions the
number of negative phase slips balances the number of positive phase slips over one modula-
tion cycle. Figure 3.1 shows the bifurcation diagram for the nonautonomous Adler equation
(3.1) with the periodic modulation (3.9) along with sample trajectories at two points on
the solution branches, both superposed on the corresponding equilibrium solutions of the
autonomous system, i.e., r = r0. The solution branches snake, i.e., they undergo repeated
back-and-forth oscillations as the parameter r0 varies. The extrema of these oscillations
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correspond to the SNIPER bifurcations at r = ±1; the equilibria with a positive slope cor-
respond to stable solutions while those with a negative slope are unstable. Thus along the
branch of equilibria stability changes at every fold.
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Figure 3.1: (a) Bifurcation diagram showing the average phase 〈θ〉 ≡ T−1
∫ T
0
θ(t) dt of pe-

riodic orbits in the periodically modulated Adler equation as a function of r0 when a = 2
and T = 15 (blue dashed line), T ≈ 23.01 (red dash-dotted line) and T = 25 (black solid
line). (b) Sample trajectories, in corresponding line type, in the (r, θ) plane for solutions
with r0 = 0 and 〈θ〉 = 2π and 7π, superposed on the branch of equilibria of the autonomous
system (a = 0), represented by a green dotted line.

The trajectories shown in Fig. 3.1(b) are periodic, with period T , and their bifurcation
structure parallels that of the phase-locked states in the autonomous system: the solutions
snake within an r0 interval determined by a pair of folds on either side as shown in Fig. 3.1(a).
The amplitude of this oscillation and its shape depends on the period T of the forcing which
also affects the solution stability. For example, for 〈θ〉 = 2π and r0 = 0, the solution of
the autonomous problem is stable, but becomes unstable for T = 15 as most of the periodic
orbit tracks the unstable branch of the autonomous problem, before becoming stable again

for T = 25. A numerical computation of the Floquet multiplier exp
[
−
∫ T
0
cos θ(t)dt

]
for

the Adler equation linearized about the periodic orbit during the continuation procedure
confirms that the upward (downward) sloping portions of the solution branch remain stable
(unstable) all the way to the folds.

The presence of the symmetries allows us to generate other solutions from the one cal-
culated. Figure 3.2 shows the four different orbits produced by applying the eight different
symmetries generated by (I,R,P,S): I,R,P,S,RP,RS,PS,RPS to a periodic orbit ob-
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tained for r0 = 0.2, T = 15 and a = 2. These periodic orbits lie on the same solution branch
in Fig. 3.1(a). The symmetry S acts like the identity, the time shift compensating for the
sign reversal of a. Application of T does not produce new orbits, and we can shift any
periodic orbit to higher or lower values of θ by multiples of 2π using powers of W. We take
advantage of the latter to avoid overlap among the different solutions shown in Fig. 3.2.

−2 −1 0 1 2
r

−4π

−2π

0
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θ
PRW,SPRW

I,S

PW,SPW

R,SR

Figure 3.2: The four distinct orbits of the periodically modulated Adler equation generated
by applying the symmetries (I,R,P,S) to the stable periodic orbit computed for T = 15,
r0 = 0.2, and a = 2. A sequence of orbits with θ → θ+2πn can be found by applying Wn to
each of the four solutions. These orbits lie on the branch displayed in Fig. 3.1(a) for T = 15.
The symmetry W has been applied in order to prevent overlap between the four distinct
orbits. The equilibria of the autonomous system (a = 0) are shown as a green dotted line.

Figure 3.3 shows how the existence region of the periodic orbit, labeled PO, evolves with
T . Numerical continuation of the folds at the two edges of PO reveals a series of pinched
regions in which the folds “cross” and the PO region is reduced to the single value r0 = 0.
This accounts for the switch in the orientation of the branch as T increases (see Fig. 3.1(a)).
We call the sections between the pinched regions sweet spots. Within each of these sweet
spots, the number of positive and negative phase slips during one cycle is the same, and
the orbits are therefore qualitatively similar. The resulting structure, shown in Fig. 3.3(a),
is reminiscent of the structure observed in [49]. Figure 3.3(b) shows the amplitude of the
oscillation in θ for periodic orbits at r0 = 0 as a function of the period T . The figure reveals
that N positive and negative phase slips can occur even when ∆θ = θmax−θmin < 2πN . This
is a consequence of the fact that the two successive saddle-nodes at r = ±1 are separated
by a phase difference of π. Figure 3.4 shows a series of periodic orbits that transition from
zero to one positive and one negative phase slip as a (equivalently T ) increases.



CHAPTER 3. PHASE LOCKING AND PHASE SLIPS IN SYSTEMS WITH

TIME-PERIODIC MODULATION 41

(a) (b)

−1.0 −0.5 0.0 0.5 1.0
r0

0

10

20

30

40

T

0 2π 4π 6π 8π

∆θ

0

10

20

30

40

T

Figure 3.3: (a) Locus of the folds that define the boundary of the PO region in the (r0, T )
plane of the periodically modulated Adler equation. The horizontal dashed and solid lines
indicate the values of T corresponding to the branches of periodic orbits computed in
Fig. 3.1(a). (b) The amplitude ∆θ ≡ θmax − θmin of a periodic orbit with r0 = 0 and
a = 2 as function of the period T . The dotted horizontal lines correspond to the pinched
regions at T ≈ 9.33, 23.01 and 37.31 in panel (a); at these the corresponding periodic or-
bits are characterized by ∆θ ≈ 4.95, 11.32 and 17.71 and deviate from multiples of 2π by
(2πn−∆θ)/2π ≈ 0.21, 0.20, 0.18, respectively.

Birth of periodic orbits

To understand the effect of a time-dependent frequency parameter on the dynamics of phase-
locked oscillators, we start out by considering the high-frequency modulation limit of the
Adler equation (3.1) with the time-periodic modulation (3.9). We write T = 2πǫ/ω, where
ǫ ≪ 1, and ω ∼ O(1) is a suitably scaled frequency, and define the fast time φ by ωt = ǫφ.
The Adler equation becomes

ω∂φθ = ǫ(r0 + a sinφ− sin θ − ∂tθ). (3.10)

We assume that θ(φ, t) = θ0(φ, t) + ǫθ1(φ, t) + ǫ2θ2(φ, t) + . . . and carry out the calculation
order by order. The leading order equation shows that θ0 = ψ0(t) is independent of the
fast oscillation time. The O(ǫ) equation yields, after integration over the fast period of the
forcing,

∂tψ0 = r0 − sinψ0. (3.11)

Thus, at leading order, the averaged system follows an autonomous Adler equation with
constant forcing equal to the average of the periodically modulated case.
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Figure 3.4: A series of periodic orbits (solid black) of the periodically modulated Adler
equation for T = 25, r0 = 0 and increasing values of a, corresponding to increasing oscillation
amplitude ∆θ = π, 5π/4, 3π/2, 7π/4, 2π, superposed on top of the bifurcation diagram of the
phase-locked solutions of the autonomous system a = 0 (green dotted line). The transition
from zero phase slips to one positive and one negative phase slip is indicated by a dashed
blue line and corresponds to a ≈ 1.29 and ∆θ ≈ 1.65π.

The solution at order ǫ reads

θ1(φ, t) ≡ − a

ω
cosφ+ ψ1(t), (3.12)

where ψ1 is determined through the solvability condition at the next order. This next order
equation reads

ω∂φθ2 = −θ1 cos θ0 − ∂tθ1, (3.13)

and integration over the fast period gives the solvability condition

∂tψ1 = −ψ1 cosψ0. (3.14)

The solution at order ǫ2 is thus

θ2(φ, t) =
a
ω2 sin φ cosψ0(t) + ψ2(t), (3.15)

while the order ǫ3 equation reads

ω∂φθ3 = −θ2 cos θ0 + 1
2
θ21 sin θ0 − ∂tθ2, (3.16)

leading to a solvability condition for ψ2:

∂tψ2 + ψ2 cosψ0 =
a2

4ω2 sinψ0 +
1
2
ψ2
1 sinψ0. (3.17)
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To study the average dynamics, we define the period-averaged phase

ψ = (2π)−1

∫ 2π

0

(
θ0 + ǫθ1 + ǫ2θ2

)
dφ. (3.18)

This expression is accurate to order O(ǫ2). Summing the solvability conditions now yields
the equation

∂tψ = r0 −
(
1− a2T 2

16π2

)
sinψ +O(T 3), (3.19)

where we have replaced ω/ǫ by 2π/T . Thus, in the high-frequency limit, the averaged
dynamics follows an Adler equation for which the amplitude of the nonlinear term that
characterizes the coupling strength between the two oscillators decreases in proportion to
(aT )2. The phase-locked region of the averaged equation (3.19) that defines the PO region for
the time-dependent Adler equation thus exists for |r0| = 1− (aT/4π)2, and the introduction
of high-frequency modulation narrows the width of the phase-locked region in the parameter
r0 by 2(aT/4π)2.

Death of periodic orbits

Asymptotic analysis near the folds that define the edges of PO can provide some insight into
the break-up of the periodic orbits. We consider perturbations about the marginally stable
orbit at the left (r0 = r−) and right (r0 = r+) edges of PO for a given modulation frequency
ω = 2π/T and amplitude a, namely Eq. (3.1) with r = r0+a sinωt, where r0 = r±+ ǫ2µ and
ǫ ≪ 1. We use multiple time scales by introducing a slow time τ = ǫt on which the system
incurs net phase slips and expand the phase variable as θ = θ0 + ǫθ1 + ǫ2θ2 + . . . .

The leading order equation, ∂tθ0 = r±+a sinωt−sin θ0, is solved by the marginally stable
periodic orbit, which we have computed numerically via continuation. The O(ǫ) equation is

∂tθ1 + θ1 cos θ0 = −∂τθ0 (3.20)

which has a solution of the form θ1 = A exp
(
−
∫
cos θ0dt

)
for a slowly-varying amplitude A

as θ0 does not depend on the slow time. At O(ǫ2), the equation reads

∂tθ2 + θ2 cos θ0 = µ+
1

2
θ21 sin θ0 − ∂τθ1. (3.21)

The existence of a solution in θ2 that is T -periodic requires that the solvability condition

∂τA = µα1 +
1

2
α2A

2 (3.22)

be satisfied where the coefficients can be computed numerically from the integrals

α1 =
1

T

∫ T

0

exp

(∫
cos θ0dt

)
dt, α2 =

1

T

∫ T

0

sin θ0 exp

(
−
∫

cos θ0dt

)
dt. (3.23)
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Thus, just outside PO, the system will incur net phase slips with a frequency of

Ωslip =
√

2|α1α2(r0 − r±)|. (3.24)

Figure 3.5 shows a comparison of this frequency as a function of r0 with simulations near the
right edge of PO for T = 15, where r+ ≈ 0.305, and α =

√
2|α1α2| ≈ 1.163. The coefficient

that describes the square root dependence of the frequency on the distance from the left
edge of PO will be identical to the one computed for the right edge owing to the symmetry
R.

0.00 0.05 0.10 0.15√
r0−r+
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Figure 3.5: (a) A plot of the frequency Ωslip at which phase slips of the periodically modulated
Adler equation occur just outside of PO as a function of distance

√
r0 − r+ from the right

edge when a = 2 and T = 15. The solid green line is the prediction in Eq. (3.24) from
asymptotic theory while the blue dots are computed from time simulations.

The asymptotics of sweet spots

When large excursions of the forcing parameter are allowed during a high-frequency cycle,
a balance is struck that allows a finite number of phase slips to occur. We keep T = 2πǫ/ω
but link the amplitude of the forcing to the frequency by a = ρ/ǫ ≡ 2πρ/ωT . Upon defining
the fast time-scale φ = ωt/ǫ, the Adler equation becomes

ω∂φθ − ρ sin φ = ǫ(r0 − sin θ − ∂tθ). (3.25)

Using an asymptotic series of the form θ(φ, t) = θ0(φ, t) + ǫθ1(φ, t) + ǫ2θ2(φ, t) + . . . and
solving the leading order equation we obtain

θ0(φ, t) = − ρ
ω
cos φ+ ψ0(t). (3.26)
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The evolution of ψ0 is determined from a solvability condition at next order. Since the order
ǫ equation reads

ω∂φθ1 = r0 + sin
(
ρ
ω
cosφ− ψ0

)
− ∂tψ0, (3.27)

the required solvability condition is

∂tψ0 = r0 − J0(
ρ
ω
) sinψ0, (3.28)

where J0 is the Bessel function of the first kind. The averaged dynamics thus follow
an autonomous Adler equation with a constant frequency and a coupling strength given
by J0(ρ/ω) = J0(aT/2π). The boundaries of the PO region are thus defined by r0 =
±J0(aT/2π) and these oscillate in r0 as aT increases with an amplitude that decreases with
increasing T (Fig. 3.6). The location of the pinched regions is thus determined by the zeros
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Figure 3.6: (a) The PO region in the (r0, aT ) parameter plane corresponding to stable phase-
locked solutions of the periodically modulated Adler equation when the modulation has high
frequency and a large amplitude. (b) The leading order amplitude ∆θ ≡ θmax − θmin of a
periodic orbit at r0 = 0 as a function of aT/2π. Horizontal dotted lines correspond to the
first three pinched regions which coincide with the zeros of J0(aT/2π): aT/2π ≈ 2.40, 5.52
and 8.65.

of J0(aT/2π). Between these are the sweet spots where periodic orbits exist over the finite
range |r0| < |J0(aT/2π)|. The reversal of orientation of the folds seen in Fig. 3.1(a) is anal-
ogous to sign changes of J0(aT/2π) in this high frequency, large amplitude limit, as shown
in Fig. 3.6.
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Amplitude dependence

We now examine how periodic solutions within PO behave as a function of the amplitude
of the modulation by fixing r0 = 0 and performing numerical continuation in a (Fig. 3.7).
As long as r0 is in the interior of PO, each value of a admits two periodic orbits on a 2π
interval for 〈θ〉. One is stable, one is unstable, and they are related by the phase symmetry
P. The symmetries of the system further imply that the locations of these orbits at r0 = 0
are fixed at 〈θ〉 = mπ for m ∈ Z and such solutions persist for all values of a (horizontal lines
in panel (a) of Fig. 3.7). The pinched regions where the PO boundaries cross (Fig. 3.3(a))
and the snaking branch becomes vertical (red dash-dotted line in Fig. 3.1(a)) correspond to
codimension two points in the (a, T ) plane; at these points a continuum of periodic orbits
parametrized by the phase average 〈θ〉 is present. Thus when r0 = 0 the periodic orbits
create the grid-like bifurcation diagram shown in Fig. 3.7(a). This grid structure breaks
apart into isolated loops of solutions as soon as r0 6= 0, and gaps between the regions of
existence of periodic orbits begin to emerge (cf. Fig. 3.3(a)). The loops that emerge from
the breakup of the rectangular grid structure at r0 = 0 when r0 6= 0 shrink to zero with
increasing a (or T ), as expected from Fig. 3.3(a). Numerical continuation of the boundary
of the PO region as a function of a when r0 = 0.1 and T = 25 reveals that periodic orbits
persist only to a ≈ 14.5.

Figure 3.8[A-E] shows solutions for r0 = 0 at the parameter values indicated in Fig. 3.7(a)
by red dots labeled with the corresponding capital letter. The equilibria for the autonomous
problem are shown for reference (dotted line). These reveal that the periodic orbits alter-
nately track branches of unstable and stable equilibria for part of each oscillation cycle (orbits
A, B, C), and likewise for C, D, E. Since orbits that track stable equilibria are expected to
be stable when the drift along such equilibria is sufficiently slow, we expect that orbits B
and D are stable while A, C and E are unstable. This expectation is confirmed by explicit
stability calculations.

Canards

Figure 3.9 shows periodic orbits from the first vertical solution branch in Fig. 3.7(a) cor-
responding to the dark blue dots not labeled with capital letters. These periodic orbits all
have the same value of a ≈ 1.2 and correspond to pinched zone solutions with 〈θ〉 = π,
5π/4, 3π/2, 7π/4 and 2π. These solutions illustrate how the periodic orbit expands to larger
〈θ〉 while tracking the equilibria of the autonomous system. These are beginning to reveal
characteristics of the so-called canard states familiar from studies of slow-fast systems. For
example, the third panel shows an orbit that slowly tracks a branch of stable equilibria
towards lower θ and smaller r followed by tracking a branch of unstable equilibria towards
yet smaller θ but increasing r, before an abrupt transition near the right fold that restores
the original θ value essentially instantaneously, i.e., at essentially constant r. This difference
in timescales is not as pronounced in the last panel of Fig. 3.9 but can be enhanced by
increasing the modulation period.
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Figure 3.7: Bifurcation diagrams showing (a,c) the average phase 〈θ〉 ≡ T−1
∫ T
0
θ(t)dt (solid

lines) and (b,d) the oscillation amplitude ∆θ ≡ θmax − θmin of periodic orbits of the periodi-
cally modulated Adler equation as a function of a when r0 = 0 and T = 25. The solutions
shown in (a) collapse onto a single curve when plotted in terms of ∆θ in (b). When r0 = 0.1
and T = 25, the grid structure of (a) separates into isolated loops shown in (b) that collapse
onto disconnected line segments when plotted in terms of ∆θ in (d).

Figure 3.10 shows typical “two-headed” canard trajectories with a clear separation of
timescales, obtained for T = 100, r0 = 0 and slightly different modulation amplitudes a.
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Figure 3.8: (A)-(C) Periodic orbits of the periodically modulated Adler equation with 〈θ〉 = π
in the (r, θ) plane when r0 = 0, T = 30 and a = 1, 1.5, 2. (C)-(E) Periodic orbits with
〈θ〉 = π, 2π, 3π in the (r, θ) plane when r0 = 0, T = 30 and a = 2. The orbits shown here
correspond to the red dots in Fig. 3.7(a) labeled with capital letters.

The two canards with the smallest values of a (red, yellow) appear just below the transition
from no phase slips to one positive and negative phase slip that occurs at the first pinched
zone of PO and spend the majority of their trajectory tracking a stable equilibrium. The
next two canards (green, light blue) appear just above the first pinched zone and both incur
one positive and negative phase slip within the phase-locked region |r| < 1. A majority of
the time along these canard trajectories is spent tracking unstable equilibria. These four
canard trajectories illustrate the transition of a stable orbit within the lowest region of PO
to an unstable orbit within the first sweet spot such as the dark blue trajectory that tracks
unstable equilibria through the entire orbit.

Increasing the amplitude a slightly further leads the canard to overshoot the right saddle-
node and can make it depart from the branch of unstable equilibria upwards, i.e., in the
opposite direction as compared to the solutions for slightly smaller a. The latter case leads
to a different type of canard: the system jumps from the unstable solution branch to the
upper branch of stable equilibria, which it then follows downward in θ. After reaching the
upper left fold of the equilibria the trajectory jumps to the lower left fold and thereafter
follows the lower unstable equilibria towards larger r, resulting in the same sequence of
transitions but now as r increases. The resulting solution is periodic but is characterized by
phase slips that take place inside the phase-locked region |r| < 1. This behavior is exemplified
by the outer canard trajectory (purple) in Figs. 3.10(a); the associated θ̇ displays an inverse
peak, as shown in Fig. 3.10(b). This canard appears as a approaches the second pinched
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Figure 3.9: Periodic orbits of the periodically modulated Adler equation along the first
vertical solution branch in Fig. 3.7 in the (r, θ) plane when r0 = 0, T = 25 and a ≈ 1.2.
These solutions are characterized by 〈θ〉 that is a fraction of 2π, viz. π, 5π/4, 3π/2, 7π/4
and 2π. The orbits shown here correspond to the unlabeled blue dots in Fig. 3.7(a).

zone and begins the transition to a stable orbit with two positive and negative phase slips.
Figure 3.11 shows the corresponding canard trajectories with the same parameter values

as in Fig. 3.10 but opposite stability properties. In particular, the transition from unstable
periodic orbit with no phase slips to stable periodic orbit with one positive and negative
phase slip is depicted by the orbits with the four smallest values of a (red, yellow, green,
light blue).

Canard trajectories with additional time separation along the stable and unstable man-
ifolds can be achieved by increasing T further. For example, Fig. 3.12 shows several “two-
headed” canard trajectories obtained for T = 300.

3.3 Winding trajectories

Outside of the phase-locked region of the Adler equation with constant frequency parameter
(r0 ∈ [−1, 1], a = 0) there exist winding solutions that complete phase slips with the fre-
quency given by Eq. (3.8). The introduction of a modulation in r with period T (Eq. 3.9,
a 6= 0) generates winding solutions even when the average value r0 lies within [−1, 1]. This
occurs for values of r0 outside of PO (but |r0| < 1), and is a consequence of an imbalance
between positive and negative phase slips.

We define the winding number of a trajectory in the modulated system as the average
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Figure 3.10: (a) Two-headed canard trajectories θ(r) of the periodically modulated Adler
equation for r0 = 0, T = 100 and a ≈ 1.064807, 1.064872, 1.064876, 1.066086, 1.177531 and
1.198182. The red and yellow orbits with the smallest values of a appear in the lowest region
of PO and track stable equilibria over a majority of the orbit. The remaining four (green,
light blue, dark blue, purple) appear within the first sweet spot of PO and track unstable
equilibria over a majority of the orbit. (b) The corresponding solutions θ(t) and θ̇(t).

number of net phase slips per period,

N = lim
m→∞

θ(mT )− θ(0)

2πm
(3.29)

with m ∈ Z. Figure 3.13 shows solution branches with integer winding numbers N = 1, 2, 3
when a = 2 and T = 25 (solid lines). These were computed by numerical continuation as
a boundary value problem with the constraint that θ(T ) − θ(0) = 2πN . Trajectories with
integer winding number exist over finite ranges of the parameter r0. Solutions displaying an
extra positive phase slip over each modulation cycle have winding number N = 1; these exist
for r1,min ≈ 0.1 < r0 < r1,max ≈ 0.4. To the right of this interval lie solutions with winding
number N = 2, extending from r2,min ≈ 0.4 to r2,max ≈ 0.6. Solutions with higher integer
winding number exist beyond this point as exemplified by the N = 3 solutions in Fig. 3.13.

Resonance tongues

The parameter range containing integer winding solutions forms through the opening of
resonance tongues as the modulation amplitude a increases from zero. We write, following
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Figure 3.11: (a) Two-headed canard trajectories θ(r) of the periodically modulated Adler
equation for r0 = 0, T = 100 and a ≈ 1.064807, 1.064872, 1.064876, 1.066086, 1.177531 and
1.198182. These orbits have the same parameter values as those in Fig. 3.10 but opposite
stability properties. The red and yellow orbits with the smallest values of a appear in the
lowest region of PO and track unstable equilibria over a majority of the orbit. The remaining
four (green, light blue, dark blue, purple) appear within the first sweet spot of PO and track
stable equilibria over a majority of the orbit. (b) The corresponding solutions θ(t) and θ̇(t).

Ref. [112], x = tan θ/2 to put the Adler equation in the form

ẋ =
1

2
r − x+

1

2
rx2. (3.30)

The Riccati transformation x = −2ẏ/ry now generates a second order linear equation for
the variable y(t):

ÿ +

(
1− ṙ

r

)
ẏ +

r2

4
y = 0. (3.31)

Using the standard transformation y = ze−
1
2

∫
1− ṙ

r
dt we finally obtain the Hill equation

z̈ +

[
r2

4
+

r̈

2r
− ṙ2

2r2
− 1

4

(
1− ṙ

r

)2
]
z = 0. (3.32)

Substituting the time-dependent frequency parameter r specified in Eq. (3.9) and assuming
a≪ 1 yields the Mathieu equation

z̈ +

(
r20 − 1

4
+

a

2r0

√
ω2 + (r20 − ω2)2 sin(ωt− ξ)

)
z +O(a2) = 0, (3.33)
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Figure 3.12: Two-headed canard trajectories of the periodically modulated Adler equation
computed by numerical continuation of periodic orbits in the parameter a. The parameters
are r0 = 0, T = 300 and a ≈ 1.02115308, 1.02116560, 1.02116562.

where ω ≡ 2π/T and tan ξ ≡ (r20 − ω2)/ω. Phase slips in the original Adler equation
correspond to divergences of x; these in turn correspond to zero crossings of y and z.

The resonance tongues grow in this asymptotic limit according to the characteristic curves
of the above Mathieu equation. We compare these asymptotic predictions with the numerical
computation of the resonance tongues through two-parameter continuation of folds on the
branches of winding solutions. The tongues associated with the 1:1, 2:1, and 3:1 resonances
between the winding frequency and the modulation frequency are shown in Fig. 3.14 alongside
the predictions from the characteristic curves of the Mathieu equation (3.33).

The resonance tongues enter farther into the phase-locked region |r0| < 1 as a increases.
We observe that as a increases the location of the tongues begins to depart from the Mathieu
equation predictions, as noted already in the context of Josephson junction models (Ch. 11
of Ref. [109]). In particular, the interaction of these tongues with their negative winding
counterparts leads to qualitative changes: for a > 1.29, the width of the 1:1 resonance tongue
stops growing monotonically and its left boundary turns abruptly from r0 ≈ 0 to larger r0;
at r0 ≈ 0.25 , a ≈ 1.57 the tongue collapses to a single point before growing again. This
situation repeats as a increases and the tongue therefore describes a succession of sweet spots
and pinched regions. The same behavior is observed for the subsequent resonance tongues:
the 2:1 resonance tongue starts to shrink at r0 ≈ 0.25, a ≈ 1.57 and collapses to a point at
r0 ≈ 0.50, a ≈ 1.86, etc.
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Figure 3.13: (a) The phase 〈θ〉 ≡ T−1
∫ T
0
θ(t) dt averaged over T of winding orbits of the

periodically modulated Adler equation as a function of r0 when a = 2 and T = 25. Since
θ is no longer periodic all points with the same 〈θ〉, mod 2π, at a particular value of r0 lie
on the same trajectory. The black (with circle), red (with square) and blue (with triangle)
branches have winding numbers N = 1, 2, 3, respectively. The branches of solutions with
the same winding numbers but constant frequency parameter r = r0 are shown as (vertical)
dotted lines. (b) Sample winding trajectories corresponding to the colored symbols in panel
(a).

Partitioning of the parameter space

The parameter plane (r0, T ) can be partitioned in terms of winding number by following the
folds of the N :1 resonant winding trajectories such as those shown in Fig. 3.13. The resulting
partitioning of parameter space is shown in Fig. 3.15. To obtain this figure the branches
with winding numbers 1 ≤ N ≤ 7 were continued in r0 for a = 2 and T = 5, followed by
continuation of the saddle-nodes on these branches in the parameters r0 and T . The region
PO of periodic orbits was computed in a similar way for completeness. The sweet spot and
pinching structure of regions with constant integer winding number that begins to emerge
in Fig. 3.14(a) can also be seen as T increases for fixed a. The width of these sweet spots
decreases with T . For infinite periods, any small departure from the symmetry axis r0 = 0
leads to the dominance of positive or negative phase slips over the other.

Thus the parameter plane is partitioned into regions with solutions displaying zero, one,
two or more net phase slips per cycle. Each of these regions possesses a structure similar
to that of the PO region with zero net phase slips. The first region to the right of PO



CHAPTER 3. PHASE LOCKING AND PHASE SLIPS IN SYSTEMS WITH

TIME-PERIODIC MODULATION 54

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
r0

0.0

0.5

1.0

1.5

2.0

a 1:1 2:1 3:1

0.9 1.0 1.1 1.2 1.3
r0

0.0

0.1

0.2

0.3

a

1:1 2:1 3:1

Figure 3.14: (a) Resonance tongues for the 1:1, 2:1 and 3:1 resonances between the winding
frequency and the modulation frequency in the (r0, a) plane of the periodically modulated
Adler equation when T = 25. The resonance tongues correspond to the solution branches
shown in Fig. 3.13 with 1, 2 and 3 phase slips per period of the modulation cycle, respectively.
The boxed region in the lower right of panel (a) is replotted in panel (b) along with the
predictions for the location of the tongues from Eq. (3.33) in dashed lines.

corresponds to solutions that undergo one extra positive phase slip within each period of
the modulation. The first sweet spot of this band, at low T , corresponds to solutions that
complete one positive and no negative phase slip per cycle; the second sweet spot, further up,
consists of solutions that complete two positive phase slips and one negative phase slip per
cycle, etc. The second region on the right corresponds to solutions that undergo two extra
positive phase slips, and so on as r0 increases. All these regions have a similar structure as
the modulation period T increases. They all correspond to the resonance tongues in Fig. 3.14
and are separated by transition zones with solutions that have a non-integer winding number.
These transition zones narrow as T increases and solutions within them can have periods that
are a multiple of the modulation period, or not be periodic at all. Solutions with negative
winding number are found in analogous regions obtained by reflection in r0 = 0.

Figure 3.16 shows the winding number between PO and the 1:1 resonance tongue as
computed from time simulations averaged over 5000 modulation periods T = 25. The figure
shows that the winding number increases monotonically and smoothly within this transition
zone, as expected on the basis of theoretical considerations [112]. However, modifications
of the nonautonomous Adler equation, such as the inclusion of an inertial term or a more
general time dependence, can generate subharmonic resonances that populate the transition
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Figure 3.15: Average winding number per period T of the frequency parameter shown in
the (r0, T ) plane of the periodically modulated Adler equation for a = 2. No net phase slips
occur over the course of a modulation period in the dark region to the left; the alternating
lighter yellow and darker orange regions to the right indicate 1, 2, 3, . . . net phase slips
as r0 increases. The (lightest) gray transition zones have non-integer winding numbers.
Trajectories with negative winding number are located in regions obtained by reflection in
r0 = 0.

zones [109]. Subharmonic resonances have also been observed to produce a devil’s staircase
type structure in the related problem of spatially localized states in the periodically forced
Swift–Hohenberg equation (Fig. 4.12).

Asymptotic formation of sweet spots

We can extend the above predictions by analyzing the limit in which the trajectory barely
exits the phase-locking region −1 < r < 1 but the modulation period is slow enough that
phase slips still take place. Explicitly, we take r(t) = ǫ2µ + (1 + ǫ2ρ) sin ǫ2ωt, where ǫ2µ
represents a small offset of the average value of r(t) from r0 = 0. We introduce the slow
time scales τ = ǫt and Φ = ǫ2ωt and employ an asymptotic expansion of the form θ =
θ0 + ǫθ1 + ǫ2θ2 + . . . .

At leading order, the Adler equation (3.1) gives sin θ0 = sinΦ for which we choose the
stable phase locked solution θ0 = Φ + 2πn that has no τ dependence. The alternate choice,
θ0 = π − Φ + 2πn, produces unstable periodic orbits or unstable winding trajectories. At
order ǫ, we obtain the equation ∂τθ0 = −θ1 cos θ0. When θ0 6= π/2 + πn, θ1 = 0 in order to



CHAPTER 3. PHASE LOCKING AND PHASE SLIPS IN SYSTEMS WITH

TIME-PERIODIC MODULATION 56

0.30 0.32 0.34 0.36 0.38
r0

0.00

0.25

0.50

0.75

1.00

N

Figure 3.16: The winding number N as a function of r0 across the transition zone between
PO and the 1:1 resonance tongue of the periodically modulated Adler equation with T = 15
and a = 2.

satisfy the condition that θ0 be independent of τ . At order ǫ2, we obtain

θ2 cos θ0 = µ+ ρ sinΦ + 1
2
θ21 sin θ0 − ∂τθ1 − ω∂Φθ0, (3.34)

leading to the second order correction

θ2 = (µ− ω) secΦ + ρ tanΦ (3.35)

provided that θ0 6= π/2 + πn.
To examine the dynamics near θ0 = π/2 + nπ where the system is transitioning between

phase-locked dynamics and winding, we take the slow time to be Φ = π/2 + ǫφ. Equation
(3.1) then becomes

ǫω∂φθ = ǫ2µ+ (1 + ǫ2ρ) cos ǫφ− sin θ. (3.36)

The leading order and order ǫ equations are identical to the general case above while θ1 is
determined from the order ǫ2 equation,

θ2 cos θ0 = µ+ ρ− 1
2
φ2 + 1

2
θ21 sin θ0 − ω∂φθ1, (3.37)

which differs from Eq. (3.34). Since θ0 = π/2 the Riccati transformation θ1 = −2ω∂φψ/ψ
transforms this equation into the Weber equation

∂2φψ = − 1
2ω2 (µ+ ρ− 1

2
φ2)ψ. (3.38)
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We now use a matching procedure to connect the relevant solution of this equation to the
case when Φ 6= π/2 + nπ. Noting that θ1(Φ) → 0 as Φ → π/2 + nπ, we choose our solution
such that θ1 → 0 as φ → −∞. This matching condition is satisfied by the parabolic cylinder
function [116] ψ = Dν(s), where

ν =
µ+ ρ

2ω
− 1

2
, s =

φ√
ω
. (3.39)

Each zero s = s0 of ψ = Dν(s) corresponds to one phase slip. Care must be taken in
interpreting these results since the zeros of ψ correspond to divergences of θ1 and thus a
breakdown of the asymptotic series used to obtain Eq. (3.38). The above calculation holds
between the asymptotic breakdowns where θ1(τ) diverges, so a complete trajectory can be
constructed by “gluing” solutions across each individual phase slip. Thus ψ can be used to
describe a series of phase slips via this gluing process.

The number of zeros of ψ corresponds to the number of phase slips and thus determines
which solution branch the system will follow upon re-entering the phase-locked region π/2 <
Φ < 3π/2. In particular, [n+] phase slips are undergone when

[n+]− 1
2
<
µ+ ρ

2ω
< [n+] +

1
2
. (3.40)

More generally, we can express the number of positive (negative) phase slips that occur
near the boundaries of the phase-locked region in terms of the parameters of the problem as

[n±] =

{
±
[
(a±r0−1)T

4π

]
(a± r0 − 1) ≥ 0

0 (a± r0 − 1) < 0,
(3.41)

where the square bracket indicates rounding to the nearest integer. The predictions of
this theory match well with time simulations for a = 1.005, as seen in Fig. 3.17. The
simulations employed a fourth order Runge–Kutta scheme for 12 periods of the modulation
using the initial condition θ(0) = sin−1 r0. The winding number was computed from 2πN =
(θ(12T )− θ(2T )) /10 as a function of the parameters r0 and T . Time simulations were used
in place of numerical continuation because the extremely long time scales make continuation
a computationally challenging task. Owing to symmetry the PO region is always centered on
r0 = 0, and states with negative winding number are found in regions obtained by reflection
in r0 = 0.

The figure reveals the formation of sweet spots in this limit whenever a > 1. When a < 1,
there are two distinct sets of resonance bands – one set formed by regions with a fixed number
of positive phase slips n+, and the other by regions with a fixed number of negative phase
slips n−. At a = 1 the two sets of resonance bands both asymptote to r0 = 0 as T → ∞
(Fig. 3.18(a)). The sweet spot and pinching structure emerges through the intersections of
these resonance bands that take place once a > 1 (Fig. 3.18(b,c)). In particular, the pinched
region separating the n and n+1 sweet spots in PO is located at (a−1)T/4π = n+1/2 and
marks the transition from n to n+ 1 positive and negative phase slips within a modulation
cycle.
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Figure 3.17: Average winding number per period T of the frequency parameter shown in the
(r0, T ) plane of the periodically modulated Adler equation for a = 1.005. Colors represent
results from numerical simulation: no net phase slips occur over the course of a modulation
period in the dark region to the left; the alternating yellow and orange regions to the right
indicate 1, 2, 3, . . . net phase slips as r0 increases. The red (negative slope) and blue (positive
slope) lines mark the transitions between the regions of constant n+ and n− as predicted by
the asymptotic theory (Eq. (3.41)). Trajectories with negative winding number are located
in regions obtained by reflection in r0 = 0.
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Figure 3.18: Transitions between the regions of constant n+ (red, negative slope) and n−
(blue, positive slope) in the (r0, T ) plane of the periodically modulated Adler equation as
predicted by the asymptotic theory (Eq. (3.41)) for a = 1.0000, 1.0025, 1.0050, respectively.
A sweet spot and pinching structure begins to emerge as a increases.

3.4 Adiabatic theory

We now consider a more general time-dependence for the parameter r, but assume it varies
slowly enough that we can treat the dynamics quasi-statically: r = r(2πt/T ) with T ≫ 1.
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In this adiabatic limit, two distinct types of dynamics arise: slow dynamics that track the
steady state phase-locked solution when −1 . r(2πt/T ) . 1 and a fast phase rotation with
an adiabatically varying parameter when |r(2πt/T )| & 1. No matter how low the frequency
is, there is always an intermediate regime around the transition from a phase-locked state
to rotation where the phase rotation is slow enough that it occurs on the same scale as the
parameter drift. We apply WKB theory [52] to capture the dynamics in each of the two
regions separately and provide a condition for matching the solution across the transitions
at r ≈ ±1.

We start with Eq. (3.32) but assume that r = r(ωt) with ω ≪ 1. We do not need to
specify the form of r(ωt). We transform this equation into a standard form for WKB theory
by recasting it in terms of the slow time φ = ωt:

z′′ +
1

ω2

(
r2 − 1

4
+
ωr′

2r
+
ω2r′′

2r
− 3ω2(r′)2

4r2

)
z = 0. (3.42)

The system transitions from a phase-locked state to winding near r2 − 1 ∼ O(ω), and we
can use the standard WKB ansatz z = AzWKB = A exp(iS/ω)+c.c., where A is an arbitrary
complex constant determined from initial conditions and/or matching procedure when we
are away from these points. We suppose that S = S0 + ωS1 + . . . and match orders to solve
for each Si.

Making the WKB substitution generates, at leading order,

S ′2
0 =

r2 − 1

4
. (3.43)

The leading order WKB solution, in terms of the original time scale, is z = A exp
(
± i

2

∫ √
r2 − 1dt

)
.

The equation at next order is, after simplification,

−2S ′
0S

′
1 + iS ′′

0 +
r′

2r
= 0, (3.44)

yielding

S1 =
1

2

(
i log

√
r2 − 1∓ tan−1

(
1√
r2 − 1

))
, (3.45)

depending on the choice of root for S0.
Including this correction, the solution becomes

z =
A

(r2 − 1)1/4
exp± i

2

(∫ √
r2 − 1dt− tan−1 1√

r2 − 1

)
. (3.46)

When r < 1, we find it convenient to rewrite the expression for S1 as

S1 =
i

2

(
log

√
1− r2 ± log

1 +
√
1− r2

r

)
, (3.47)
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and the solution now takes the form

z =
A

(1− r2)1/4

(
1 +

√
1− r2

r

)∓1/2

exp∓1
2

∫ √
1− r2dt. (3.48)

Near a transition point r = 1 (we take it to be at t = 0), we suppose that r ≈ 1 + αt,
where α = ṙ(0) = ωr′(0) is a constant. To leading order, the equation becomes

z̈ +
α

2
(t+ 1)z = 0, (3.49)

which has solutions in terms of the Airy functions Ai(s) and Bi(s) [116], where s = −
(
α
2

)1/3
(t+

1).
We will further assume α > 0 so that the transition occurs as the system leaves the

phase-locked region and enters the winding region and remind the reader that

tan
θ

2
= −2

r

ż

z
+

1

r

(
1− ṙ

r

)
. (3.50)

We consider the solution within the phase-locked region that follows, for t < 0, the stable
steady-state solution branch θ = sin−1 r, corresponding to taking the negative root of S0.
Thus, Eq. (3.48) reduces to

z =
Apl

(1− r2)1/4

(
1 +

√
1− r2

r

)1/2

exp 1
2

∫ √
1− r2dt, (3.51)

where Apl depends on the choice of initial condition. In terms of θ, expression (3.51) reads

tan
θ

2
=

1−
√
1− r2

r

(
1− ṙ

r(1− r2)

)
. (3.52)

In order to match solutions across the transition region, we must take the t→ 0 (equivalently
r → 1 limit of this solution and match it to the t → −∞ (equivalently s → ∞) limit of
the Airy function solution of Eq. (3.49). This procedure selects the Airy function Ai with
amplitude proportional to Apl. On the other side, the winding solution coming from Eq.
(3.46) can be matched to the Airy solution when written in the form

z =
Aw

(r2 − 1)1/4
cos

1

2

(∫ √
r2 − 1dt− tan−1 1√

r2 − 1

)
, (3.53)

where Aw = Aw(Apl). The matching is achieved by comparing the r → 1 (t → 0) limit
of expression (3.53) to the t → ∞ (s → −∞) limit of the Airy function obtained in the
matching procedure with the phase-locked solutions. Expression (3.53) yields:

tan
θ

2
=

1

r

[
1 +

√
r2 − 1 tan

1

2

(∫ √
r2 − 1dt− tan−1 1√

r2 − 1

)](
1− ṙ

r(r2 − 1)

)
. (3.54)
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Figure 3.19: The phase θ(t) mod(2π) near the transition from a phase-locked state to winding
from a time simulation of the periodically modulated Adler equation with T = 2π × 103,
a = 2, and r0 = 0 (black solid line). The simulation represents the evolution of θ in the
time window [−100, 160] of a converged periodic orbit for which t = 0 corresponds to r = 1.
The dashed lines are computed using the adiabatic predictions (3.52) and (3.54) without the
“subdominant” term proportional to ṙ while the dotted lines take it into account. Predictions
in the phase-locked (winding) regime are shown in blue (green) for t < 0 (t > 0).

Figure 3.19 shows a comparison of the WKB solution in terms of θ with a periodic orbit
obtained through simulation with r(t) = 2 sin(10−3t + π/6).

The results obtained from the WKB approximation in the limit of a slowly-varying fre-
quency parameter can be generalized using a theorem that places bounds on the number
of zeros of solutions to linear second order differential equations. Given an equation of the
form

z̈ + q(t)z = 0 (3.55)

with q(t) > 0 in C2 and bounded, such that q̇(t) = o
(
q3/2(t)

)
as t→ ∞, it can be shown [117]

that the number of zeros [n] between 0 ≤ t ≤ T for a given solution z(t) 6= 0 is bounded by

∣∣∣∣π[n]−
∫ T

0

√
q(t)dt

∣∣∣∣ ≤ π +

∫ T

0

∣∣∣∣
5q̇2

16q5/2
− q̈

4q3/2

∣∣∣∣ dt. (3.56)

It follows that when q̇ ≪ 1

π[n] ∼
∫ T

0

√
q(t)dt as T → ∞, (3.57)
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thereby reproducing the quasi-static prediction from WKB theory. In the case of the Adler
equation, the corresponding frequency parameter is given by

q(t) =
r2 − 1

4
+

ṙ

2r
+

r̈

2r
− 3ṙ2

4r2
. (3.58)

The conditions on r for the applicability of the bound within the time interval of interest
are that |q(t)| > 0, r ∈ C4 and is bounded. We can make some further approximations in
the limit that r = r(ωt) is slowly varying, i.e., ω ≪ 1, and the first condition reduces to
|r|+O(ω) > 1. In this adiabatic limit, the integral in the bound becomes

∫ √
q(t)dt =

∫ √
r2 − 1

2
dt− tan−1 1√

r2 − 1
+O(ω). (3.59)

The bound on the number of zeros of the Hill equation translates into a bound on the
number of phase slips incurred by a solution to the Adler equation over a given time interval
where q(t) > 0, i.e., when r(t) is outside of the phase-locking region. We define n± by the
integral

n± =
1

π

∫

T±

√
q(t)dt (3.60)

over the time interval T± spent with q(t) > 0 and r(t) > 1 (r(t) < −1) for n+ (n−). The
bound described above restricts the number of phase slips over T± to either rounding up or
down (⌊n±⌋ or ⌈n±⌉) to order O(ω). This is a generalization of the WKB solution in the
sense that the bound can apply even when the slowly-varying assumption does not hold.
Some care must be taken when applying this bound as q → ∞ as r → 0. The bound applies
to positive and negative phase slips separately in order to place a bound on the winding
number of a particular trajectory.

The WKB approximation can be used to predict the partitioning of the parameter space
by winding number (see Fig. 3.15) by computing the net winding number N = [n+] + [n−],
where

n± = ± T

2π2

∫ π/2

φ±

√
(r0 ± a sinφ)2 − 1 dφ, (3.61)

and r0 ± a sinφ± = 1. The first correction from WKB theory cancels because the system
always enters and exits the phase-locked region at the same value of r. Replacing the
expression in the square root with q(t) provides a way to estimate the winding number from
the bound. Figure 4.21 shows a comparison of the resulting prediction with the numerical
results in Fig. 3.15. We see that the adiabatic theory agrees well with the numerical results
far beyond the low frequency limit for which it was constructed, a conclusion supported by
the generalization (3.56).

3.5 Discussion

This chapter has investigated the dynamics of two coupled oscillators when the frequency
difference is modulated in time. The same equation describes a multitude of other sys-
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Figure 3.20: Average winding number per period T of the frequency parameter shown in the
(r0, T ) plane of the periodically modulated Adler equation for a = 2. Colors represent results
from numerical simulation: no net phase slips occur over the course of a modulation period
in the dark region to the left; the alternating lighter yellow and darker orange regions to
the right indicate 1, 2, 3, . . . net phase slips as r0 increases. The red/blue (negative/positive
slope) lines represent predictions of adiabatic theory. The left panel shows the prediction
based on the WKB approximation (Eq. (3.61)) while the right panel shows the prediction
based on the bound in Eq. (3.57).

tems, ranging from Josephson junctions to systems of large numbers of coupled oscillators.
Specifically, the Adler equation [96] with a sinusoidally varying frequency parameter has
been studied. The frequency modulation introduces two new parameters into the problem,
in addition to the mean frequency difference r0: the amplitude a and the period T of the
modulation. While the autonomous Adler equation leads to phase locking for −1 ≤ r0 ≤ 1
and persistent drift for |r0| > 1, we have unveiled much richer dynamics that take place
when frequency modulation is activated: the phase-locked solutions turn into periodic orbits
and the phase difference θ between the oscillators becomes a periodic function of time. The
region PO of the existence of these periodic orbits is centered around r0 = 0 and exhibits
a succession of sweet spots as a or T increases, interspersed with pinched regions where the
width of PO vanishes. The width of these sweet spots decreases with increasing a and T .
On either side of PO one finds regions within which the solution grows or decays by one,
two, etc. phase slips per modulation cycle. These regions have the same basic structure as
the PO region, and are separated by exponentially thin transition zones where the number
of phase slips fluctuates from cycle to cycle. This intricate behavior is a consequence of a
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sequence of resonances between the time needed for a phase slip and the period of the mod-
ulation, and can be described, in an appropriate regime, in terms of an interaction between
n:1 and −n:1 resonance tongues.

Canard orbits form an essential part of this picture [118]. These are present in the
vicinity of the boundaries of the PO region and consist of trajectories that drift along a
branch of stable equilibria for part of the cycle; after reaching a fold at which the equilibria
lose stability the trajectory drifts for a time along the branch of unstable equilibria, instead
of detaching, before an abrupt jump back to a stable equilibrium. Equation (3.38) describes
the emergence of such trajectories for low frequency modulation with mean near r0 = 0 and
amplitude slightly larger than a = 1; Fig. 3.21 shows several examples of the predicted canard
solutions, for comparison with the “larger” periodic canard orbits computed numerically in
Sec. 3.2.

Figure 3.21: Canard behavior in the periodically modulated Adler equation near r = 1
in the limit T ≫ 1 as predicted by Eq. (3.38) for ν = −10−1 (red, inner), −10−6 (blue,
middle), −10−12 (green, outer) and 0 (black). In terms of the parameters of the original

problem ν ≡ 1

4πT
(r0 + a − 1) − 1

2
; the horizontal and vertical scales are r − 1 ∼ 1/T and

θ−π/2 ∼ 1/
√
T . The stable (solid purple) and unstable (dashed brown) stationary solutions

to the autonomous problem are shown for reference.

Similar behavior has been observed in the partial differential equation description of
the dynamics of spatially localized states [49]. In this work, which is described in Ch. 4
the quadratic-cubic Swift–Hohenberg equation (SHE23) is forced in a time-periodic manner
and a similar partitioning of parameter space is observed. The reason for this similarity
can be traced to the nature of the motion, under parametric forcing, of fronts connecting
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a spatially periodic state of SHE23 to the trivial, homogeneous state: the front motion is
analogous to repeated phase slips, with each “phase slip” corresponding to a nucleation or
annihilation event that adds or subtracts one wavelength of the pattern at either end of
the localized structure. However, the resulting partitioning of the parameter space is not
symmetric owing to a lack of symmetry between positive and negative “phase slips.” An
adiabatic theory of the type described here works equally well in SHE23 and its predictions
are in excellent agreement with the results of numerical simulations [50]. Indeed SHE23 also
displays canards associated with the transitions between different states [51].

The work presented here has a direct application to Josephson junctions driven by an
AC current. In the overdamped limit such junctions are modeled by Eq. (3.1) [109], with
r representing the external drive and θ the phase difference of the Ginzburg–Landau order
parameter across the gap. The so-called supercurrent across the gap is proportional to sin θ
while the voltage produced corresponds to the derivative θ̇. In this context, phase-locking and
phase-slips are closely related to the existence of Shapiro steps [110] for a single Josephson
junction. Related dynamics arise in arrays of Josephson junctions that are globally coupled
via an LRC circuit [114]. These systems provide a physical realization of the phase-coupled
oscillator models at the beginning of this chapter. Using the reduction method of Ref. [99]
that has been developed in the context of Josephson junctions, the system of M oscillators
in Eq. (3.3) can be recast into the three-dimensional dynamical system

γ′ = γ(1− γ2) cosΘ, (3.62)

Θ′ = γr − sinΘ, (3.63)

Ψ′ = −
√

1− γ2 sin Θ, (3.64)

where the prime denotes a derivative with respect to a variable τ defined by γdτ = KR̃dt and
the time-dependent frequency parameter γr ≡ γω/KR̃ − α′. Thus the collective dynamics
described by Eq. (3.63) also obey an Adler equation, although it has to be solved self-
consistently with Eq. (3.62). The solution to Eq. (3.2) in terms of these collective variables
is given by

tan

[
1

2
(φj − α−Θ)

]
=

√
1 + γ

1− γ
tan

[
1

2
(ψj −Ψ)

]
, (3.65)

where the ψj are constants of motion. The phase Θ is related to the Kuramoto order

parameter R exp iΦ ≡
M∑

m=1

exp iφm through

[
(1− γ2)

∂H
∂γ

− i

√
1− γ2

γ

∂H
∂Ψ

]
exp(iΘ) = R exp [i(Φ− α)] , (3.66)

where

H =
M∑

m=1

log

[
1− γ cos(ψm −Ψ)√

1− γ2

]
. (3.67)
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Phase portraits of the dynamics projected onto the (Θ, γ) plane are shown in Fig. 3.22. The
oscillators are synchronized for the case depicted in panel (a), while they are not for the case
in panel (b).

(a) (b)

Figure 3.22: Phase portraits of Eqns. (3.62)-(3.64) in the (Θ, γ) plane. (a) r = 0.5 (b) r = 2.

We see that, while the reduction assumes γ < 1, the dynamics of the system follows the
Adler equation in the γ → 1 limit. Noting that Ψ is uncoupled from γ and Θ and defining
α = γ/

√
1− γ2 allows one to further simplify the description of the dynamics to a dynamical

system with Hamiltonian
H = r

√
1− α2 − α sinΘ. (3.68)

Weakly coupled systems can often be decomposed into two parts with part A obeying
dynamics that are largely insensitive to the dynamics of part B. In these circumstances it
often suffices to consider system B on its own but with prescribed time-dependence arising
from the coupling to A. This is the case, for example, in globally coupled phase oscillator
systems, in which each oscillator responds to the global dynamics of the system but the
global dynamics are insensitive to the details of the dynamics of an individual oscillator.
These systems have properties closely related to the periodically modulated Adler equation
studied here. For these reasons we anticipate applications of the techniques developed here to
studies of synchronization in oscillator networks. Considering a time-dependent parameter r
in the system described by Eq. (3.68) may also provide additional insight into the response
of systems of globally coupled oscillators to time-periodic modulation.
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Chapter 4

Localized states in systems with

time-periodic forcing

Localized states are encountered in systems with a fluctuating or noisy background [119,
120, 121, 122] as well as in periodically driven systems [15, 123, 124, 125, 126, 127, 128].
Temporal forcing has, in general, a number of consequences. In extended systems it may
destabilize existing patterns or lead to resonant excitation of new patterns and a variety of
phase-locking phenomena [129, 130]. In addition, new structures may be generated by rapid
switching between two coexisting attractors [131, 132]. Localized structures may be impacted
in two different ways. First, the temporal forcing may render existing localized structures
time-dependent, and second, it may generate bistability between a homogeneous state and
an extended parametrically driven spatially periodic pattern. The latter case creates a
parameter regime where spatially localized time-dependent patterns may be found [133].

In this chapter we focus on time-independent systems supporting spatially localized states
and study the effect of time-periodic forcing on these states. For reasons described in Sec. 1.3,
we adopt the quadratic-cubic Swift–Hohenberg equation (SHE23) as our model system for
localized states. We identify a number of new structures in this system when subjected to
time-periodic forcing, including time-dependent breathing states and structures that grow or
shrink in an episodic manner. In particular, we identify a resonance phenomenon between the
forcing period and the times required to nucleate and annihilate wavelengths of the pattern.
This resonance leads to a complex partitioning of the parameter space whose structure can
be understood qualitatively, and in some cases quantitatively, using appropriate asymptotics.

The main numerical results of this chapter along with an adiabatic theory were first
published in Ref. [49] with a more detailed analysis of the underlying resonance mechanism
appearing in Ref. [50]. The properties of canard trajectories associated with the transitions
between the partitions of the parameter space were further expanded upon in Ref. [51]. The
story is similar to that described for the periodically modulated Adler equation in Ch. 3.
The spatial extent of the state plays the role of the phase variable, pinning of the fronts
that define the edges of the state plays the role of phase-locking and wavelength nucleations
(annihilations) play the role of positive (negative) phase slips.
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This chapter is organized as follows. In the next section we summarize pertinent results
concerning dynamics of localized states in the autonomous SHE23. In Sec. 4.2 we consider
the effect of high frequency temporal forcing of this equation, and then in Sec. 4.3 we focus
on the different breathing states present for intermediate frequencies. Low frequency forcing
is considered in Sec. 4.4 and in Sec. 4.5 we discuss canard trajectories that track an unstable
equilibrium for some time before quickly jumping to a stable one. Finally, we provide brief
conclusions in Sec. 4.6. We map out the parameter space of SHE23 using time-simulations
instead of numerical continuation as was done in Ch. 3. We are able to analytically study
many of the limits considered in Ch. 3 for the periodically forced Adler equation, though the
situation is complicated here by the fact that we are dealing with a PDE. These complications
make the analysis more challenging both numerically and analytically, but also allow for
interesting dynamics not present in the simpler ODE model.

4.1 The quadratic-cubic Swift–Hohenberg equation

The SHE23 serves as a model for pattern formation in a broad range of physical systems.
This equation which, in one dimension, takes the form

ut = ru−
(
1 + ∂2x

)2
u+ bu2 − u3, (4.1)

describes the dynamics of a real field u(x, t) in time. The parameter r specifies the strength
of the forcing while the parameter b >

√
27/38 determines the extent of the bistability region

between the trivial state u ≡ 0 and the patterned state up(x), up(x) = up(x+ 2π) for all x.
In analogy with Eq. (3.9), we consider the time-depending forcing

r = r0 + ρ sinωt, (4.2)

where r0 is the average value of the forcing, ρ is the amplitude of modulation, and T = 2π/ω
is the period. Note that this type of parametric forcing leaves the trivial state u = 0
unchanged. In the following we take b = 1.8 [134, 135] and use periodic boundary conditions
on a domain of Γ = 80π (i.e. 40 characteristic wavelengths), unless otherwise noted. In
addition we impose the symmetry x → −x of SHE23 on all solutions of the system thereby
focusing on even solutions. This procedure allows us to perform computations on the half
domain. We integrate the equation forward in time using a fourth order exponential time
differencing scheme [136] on an equidistributed mesh. Our calculations are performed in
Fourier space and fully dealiased. In cases where a larger domain was necessary, the spatial
density of grid points is kept constant. Steady state solutions of the constant forcing case
were computed using the numerical continuation software AUTO [115]. Appendix A provides
a more detailed discussion of the numerical methods used.

Stationary localized states

For b = 1.8 and r ≡ r0, a spatially periodic solution up bifurcates subcritically from u = 0 at
r = 0. The periodic state passes through a saddle-node at rsn ≈ −0.3744 gaining stability
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and creating a region of bistability with u = 0 in −0.3744 < r < 0. The Maxwell point
between the trivial state u = 0 and the periodic state up is located at rM ≈ −0.3126 within
the bistability region. The pinning or snaking region r− < r < r+ straddles this point
(r− ≈ −0.3390, r+ ≈ −0.2593), and contains a pair of intertwined branches (Fig. 4.1a)
of even parity spatially localized states with maxima (L0) or minima (Lπ) at x = 0 as
described in Sec. 1.3 and with more detail in Ref. [24]. In a finite domain, snaking continues
until the domain is (almost) filled with pattern. The solution branches then exit the pinning
region and terminate on branches of periodic states near their saddle-node. Throughout this

r

||u
||

0

1

A+D+P±D−A−

r+ 0r−rsn

(a)

f

Asn A− A+ A0

0

Γ/2

(b)

x

u

(c)

Figure 4.1: (a) Bifurcation diagram showing the normalized L2 norm ||u|| =
√

1
Γ

∫ Γ/2

−Γ/2
u2 dx

of time-independent solutions of SHE23 as a function of the constant forcing parameter r.
Vertical dashed lines delimit the amplitude regime A−, the depinning regimes D± and the
pinning region P±. The characteristics of each regime are described in the text. (b) The
same as (a) but projected on the amplitude A = maxx(u) and the position f > 0 of the right
front, as defined in the text. (c) Solutions u(x) corresponding to the red circles in (a) and
(b), with black dashed lines indicating the locations x = ±f of the fronts.

chapter we present our results in terms of the amplitude of the pattern, A = maxx(u), and
the location x = f of the front connecting the pattern to the homogeneous state relative to
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the axis of symmetry x = 0 of the pattern,

f = 2

∫ Γ/2

0
xu2 dx

∫ Γ/2

0
u2 dx

. (4.3)

Figure 4.1 shows a comparison of the steady state solutions represented in the (A, f) plane
to the standard (r, ||u||) bifurcation diagram along with sample solutions. As the amplitude
A of snaking localized solutions is comparable to that of the periodic state at the same
parameter values, larger values of f indicate broader localized structures. However, between
the pinning region and r = 0 the solutions broaden to fill the available domain as their
amplitude decreases to zero. Thus f increases without bound as A→ 0.

Temporal dynamics of localized initial conditions

The gradient structure of SHE23 ensures that spatially localized initial conditions eventually
settle on a steady state that is a local mininum of the free energy

F [u] =
1

Γ

∫ Γ/2

−Γ/2

−1

2
ru2 + 1

2

[
(1 + ∂2x)u

]2 − 1

3
bu3 +

1

4
u4 dx. (4.4)

The type of steady state and the transient leading to it depend on r and the initial condition.
The relevant regimes organized around the presence of steady spatially localized states can
be identified in Fig. 4.1 and are summarized below:

1. Regime A−: r < rsn. Only the trivial state is stable. The dynamics is dominated by an
overall amplitude (or body) mode and the amplitude of any localized initial condition
decays homogeneously to zero.

2. Regime D−: rsn ≤ r ≤ r−. Two stable states are present: u = 0 and up, with F [0] <
F [up]. Spatially localized initial conditions evolve via a depinning (or edge) mode
responsible for the progressive loss of spatial periods while keeping their amplitude
constant. The solution collapses to the trivial state only when its extent becomes
comparable to one wavelength.

3. Regime P±: r− ≤ r ≤ r+. There is a large number of coexisting stable and unstable
states: trivial, spatially periodic and spatially localized with different numbers of pe-
riods. The long-time behavior of the system is determined by the basins of attraction
of the stable states and hence by the initial conditions provided.

4. Regime D+: r+ ≤ r ≤ 0. The situation is similar to that in D− but this time
F [up] < F [0]. Spatially localized initial conditions nucleate additional wavelengths
under the influence of the depinning mode, and in periodic domains evolve into the
spatially periodic state.
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(a) A
−
, r = −0.40

(b) D
−
, r = −0.36

(c) P+, r = −0.28

(d) D+, r = −0.20

Figure 4.2: Space-time plots (left panels) and sample phase space trajectories (right panels)
illustrating the dynamics of localized solutions of L0 type in the different parameter regimes
of SHE23 with constant forcing in Fig. 4.1, initialized with different values of r. Green dots
indicate stable periodic states for the given forcing while blue dots indicate stable localized
states. The purple region shows the pinning region.

5. Regime A+: r > 0. The only stable state is the spatially periodic state.
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These regimes are depicted in the phase portraits in Fig. 4.2. The computations use L0

localized solutions from the snaking region, hereafter u0(x), as initial conditions. These
evolve first in A to the appropriate amplitude, followed by depinning if r falls outside the
pinning region.

If r = r± + δ, where |δ| ≪ 1, the resulting front propagates at an overall constant
speed determined by the nucleation time T dpn ∝ |δ|−1/2 computed in reference [24]. In this
calculation, the solution takes the form u(x, t) = u0(x) +

√
|δ|a(t)v±(x) + O(|δ|), where

a is the time-dependent amplitude associated with the eigenmode v± that is responsible
for triggering a nucleation (+) or annihilation (−) event. The equation that governs the
dynamics of a is

α1ȧ =
√

|δ|(α2 sgn(δ) + α3a
2), (4.5)

where sgn(δ) is the sign of δ and the coefficients αj for each of the two cases (r±) are
computed numerically from the following integrals:

α1 =

∫ Γ/2

0

v±(x)
2 dx, α2 =

∫ Γ/2

0

v±(x)u0(x) dx, α3 =

∫ Γ/2

0

v±(x)
3(b− 3u0(x)) dx.

(4.6)
We now discuss the solutions describing a nucleation event near r+, where α3 > 0;

analogous arguments apply in the vicinity of r−, where α3 < 0. Within the pinning region,
δ < 0, a pair of stable and unstable steady state solutions u0 is present, corresponding to the
vicinity of a fold on the right of the snaking branch L0 (Fig. 4.3(b)) and all initial conditions
approach the stable state or diverge. Outside of the pinning region, δ > 0, there are no
stable solutions and the amplitude a → ∞ for all initial conditions. The upper panels of
Fig. 4.3(a,c) show typical trajectories a(t) corresponding to the dynamics represented by the
arrows in Fig. 4.3(b), with the right panel showing three successive nucleation events. We
approximate the time between depinning events, i.e. the nucleation time T dpn

+ , as the time
interval between successive asymptotes where a diverges.

Near the fold of the snaking branch L0 and to its right (0 < δ ≪ 1) the system undergoes
dynamics on the time scale δ−1/2 [24] and thus T dpn

+ = O(δ−1/2). Upon leaving the vicinity
of the fold (i.e. when a → ∞), the system transitions toward the next fold on the snaking
branch (Fig. 4.3) before slowing down again. This transition corresponds to a nucleation
event that adds a wavelength to each side of u0(x) and the process repeats at successive
folds. Since the structure of v+(x) is almost independent of the length 2f of the localized
state (it is an edge mode) the resulting process is periodic, a fact that can be highlighted by
introducing the Riccati variable q defined by a = −α1q̇/α3

√
|δ|q. In terms of q, Eq. (4.5)

becomes the oscillator equation q̈ + δΩ2
+q = 0, where Ω2

+ ≡ α2α3/α
2
1 > 0. The lower panels

of Fig. 4.3(a,c) show the oscillator amplitude q(t) corresponding to the a(t) solutions shown
just above. In summary, we have the generation of periodic dynamics through the collision
of two fixed points at δ = 0 and the period of the motion scales like T ∼ 1/

√
δ. A similar

discussion applies to annihilation events near r = r−. It is in this sense that we call the fold
bifurcations at the edges of the pinning region SNIPER bifurcations and can think of the
Adler equation as a qualitative description of the front dynamics. However, care must be
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r+δ < 0 δ > 0

(b) Stability diagram
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t
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(c) δ > 0

Figure 4.3: Amplitude of the depinning mode of SHE23 with constant forcing in terms of
a(t) (upper panels) and q(t) (lower panels) near r+ for (a) δ < 0 and (c) δ > 0; (b) shows
the corresponding bifurcation diagram. Panels in (c) show three successive nucleation events
corresponding to times where a(t) → ∞ (top panel) or q(t) = 0 (lower panel).

taken in the interpretation of this equation, because q → 0 implies a → ∞ while Eq. (4.5)
breaks down already when a = O(δ−1/2). Despite this caveat we shall find the variable q
useful since it highlights the possibility of a temporal resonance when SHE23 is periodically
forced in time. It also provides a clear analogy to the periodically modulated Adler equation
discussed in Ch. 3.

Figure 4.4 compares the leading order theoretical prediction T dpn
+ = π/

√
δΩ+ obtained

from Eq. (4.5) (dashed lines) with numerical simulations of SHE23. The theory works well
for 0 < δ ≪ 1 but improved agreement can be obtained using a numerical fit to the results of
the simulations. Motivated by the leading order theory we seek a fit of the form (T dpn)−1 =∑
σnδ

n/2, n ≥ 1, and compute the coefficients σn using the method of least squares. A
fifth order truncation accounts accurately for the results in Fig. 4.4 even when r ∼ rsn.
The figure shows the nucleation time in D+ (red) and annihilation time in D− (blue). The
symbols represent results from simulations, the dashed lines represent the prediction from
the leading order asymptotic theory, while the solid lines represent the fifth order numerical
fit. The times T col for a marginally stable periodic state at rsn (black crosses) and a localized
state at r− (black diamonds) to reach the trivial state by amplitude decay in A− are shown
in black. The black dashed line represents the leading order asymptotic theory applied to
the periodic state near rsn. The coefficients σn for both the asymptotic theory and the fifth
order numerical fit for our choice of parameters are summarized in table 4.1. We will find
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that the numerical fit is required for quantitative agreement between the theory presented
in Sec. 4.4 and numerical simulations presented in Sec. 4.3. However, the theory cannot be
applied directly to localized states in A− since these states undergo both amplitude decay
and depinning.

Ω σ1 σ2 σ3 σ4 σ5

T
dpn
+ 0.5285 0.1687 0.1141 0.7709 -0.4000 0.0803

T
dpn
−

0.7519 0.2381 -0.8445 33.37 -306.4 1067
T col
sn

0.7705 0.4829 -1.738 10.62 -35.00 48.31
T col
loc - 0.2081 0.4431 2.962 -34.15 79.52

Table 4.1: Values of the coefficients σj determined from a least squares fit of the de-
pinning/collapse time to simulations of SHE23 with constant forcing of the form T−1 =
5∑

n=1

σn|r−r±,sn|n/2. The frequency Ω is calculated numerically from the integrals in Eq. (4.6)

in each case.

4.2 The high frequency limit

We begin our study of the effects of time-periodic forcing on localized states by considering
the limit of fast oscillations. We first consider the case when the frequency of the forcing
cycle is so fast that the motion of the fronts does not permit nucleation/annihilation of
additional/existing periods. We then increase the amplitude of the forcing cycle so that the
structure remains unpinned for an appreciable amount of time.

The averaged system

The qualitative behavior of Eq. (4.1) is unchanged when the forcing frequency is high enough
that insufficient time is spent outside of the pinning region for depinning to occur. The effect
of the periodic forcing in this case is small, producing rapid amplitude fluctuations of the
existing localized states. We introduce the effective Maxwell point r̄M using the relation

〈F [u]〉 = 0, (4.7)

where the brackets indicate an average over the forcing cycle. We assume that the periodic
forcing occurs at a high frequency, ω → ω/ǫ, where ǫ ≪ 1 and define a fast timescale
φ = ωt/ǫ. We seek solutions of Eq. (4.1) in the form u(x, t) = u0(x, t, φ) + ǫu1(x, t, φ) +
ǫ2u2(x, t, φ) + . . . , satisfying

ω∂φu = ǫ
[
(r0 + ρ sinφ)u−

(
1 + ∂2x

)2
u+ bu2 − u3 − ∂tu

]
, (4.8)
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Figure 4.4: For SHE23 with constant forcing, (a) the time between nucleation events (T dpn
+ ,

red crosses), annihilation events (T dpn
− , blue circles) and the time for the spatially periodic

state to collapse to the trivial state (T col
sn , black crosses) as functions of the parameter r,

starting from marginally stable L0 solutions at r = r+, r = r− and the periodic state at
r = rsn, respectively. The symbols show results from direct numerical simulations, the solid
lines are fits to this data, and the dashed lines are predictions from the leading order theory
in [24]. The corresponding results for the collapse time for a localized state at r− are also
shown (T col

loc , black diamonds). (b) Comparison between numerical data (circles/crosses) and
the leading order theory (dashed lines), showing (T dpn

± )−1 as a function of the square root of
the distance δ from the pinning region. The corresponding fifth order fits are shown using
solid lines. (c) A space-time representation of a simulation at r ≈ −0.2583 (δ ≈ 0.001)
initialized using a marginally stable localized solution at r+, with red representing high
values and blue low values of u(x). The solid black line shows the instantaneous front
position x = f(t).

where t is the original timescale on which the averaged dynamics take place, and assume
that ρ, r0, b, ω = O(1). The leading order equation (u0)φ = 0 gives u0(x, t, φ) = A0(x, t). At
order O(ǫ), we obtain

ω∂φu1 = (r0 + ρ sinφ)u0 −
(
1 + ∂2x

)2
u0 + bu20 − u30 − ∂tu0. (4.9)
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The solvability condition requires that the integral over a single period of the fast oscillation
of the right side of Eq. (4.9) vanishes. This condition yields the governing equation for A0:

∂tA0 = r0A0 −
(
1 + ∂2x

)2
A0 + bA2

0 − A3
0. (4.10)

Thus, in the limit of a high frequency forcing cycle with order unity amplitude, the leading
order behavior follows the time-independent SHE23. Corrections arise at second order, as
we now show.

Equations (4.9) and (4.10) show that the O(ǫ) correction to the leading order behavior
is given by

u1(x, t, φ) = − ρ
ω
cosφA0(x, t) + A1(x, t). (4.11)

At O(ǫ2) we obtain

ω∂φu2 = (r0 + ρ sinφ)u1 −
(
1 + ∂2x

)2
u1 + 2bu0u1 − 3u20u1 − ∂tu1 (4.12)

leading to the solvability condition

∂tA1 = r0A1 −
(
1 + ∂2x

)2
A1 + 2bA0A1 − 3A2

0A1. (4.13)

Similarly, the second order correction to the solution takes the form

u2 =
ρ2

4ω2
cos 2φA0(x, t)−

ρ

ω2
sinφ

(
bA0(x, t)

2 − 2A0(x, t)
3
)

(4.14)

− ρ

ω
cosφA1(x, t) + A2(x, t),

and we obtain, at O(ǫ3),

ω∂φu3 = (r0 + ρ sinφ)u2 −
(
1 + ∂2x

)2
u2 + 2bu0u2 − 3u20u2 + bu21 − 3u0u

2
1 − ∂tu2, (4.15)

yielding

∂tA2 = r0A2 −
(
1 + ∂2x

)2
A2 + b(2A0A2 + A2

1)− 3(A2
0A2 + A0A

2
1)− 1

2

(
ρ
ω

)2
A3

0. (4.16)

We can define an averaged variable with error at order O(ǫ3) that describes the dynamics
on the long timescale:

A ≡ 1

2π

∫ 2π

0

(
u0 + ǫu1 + ǫ2u2

)
dφ = A0 + ǫA1 + ǫ2A2. (4.17)

On summing the solvability conditions, we obtain the following equation for the dynamics
of the averaged variable

∂tA = r0A−
(
1 + ∂2x

)2
A + bA2 −

[
1 +

1

8π2
(ρT )2

]
A3 +O(T 3), (4.18)
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where, for clarity, we have introduced the period of the forcing cycle T ≡ 2πǫ/ω. The result
is an SHE23 with a modified cubic term.

We find that the averaged Maxwell point of the system, defined by Eq. (4.7), is in fact
the Maxwell point of the averaged system (4.18). This can be checked explicitly by noting
that

F̄ [A] = 〈F0[u0 + ǫu1 + ǫ2u2]〉+O(ǫ3), (4.19)

where F̄ is the free energy of the averaged system with periodic forcing, F0 is the free energy
of the system with a constant forcing r0, and the average is over a forcing cycle. Furthermore,

F̄ [A] = F0[u0] +
ρ2T 2

32π2Γ

∫ Γ/2

−Γ/2

u40 dx+O(T 3), (4.20)

implying that the free energy in the fluctuating system is greater than that of the system
with constant forcing r0. We can use this expression to calculate the frequency-induced
shift of the Maxwell point explicitly by finding the value of r where F̄ [A] = 0. Because the
periodic forcing has increased the energy of the spatially periodic state, the Maxwell point
of the averaged system necessarily shifts to the right (r̄M > rM) to compensate while the
boundaries of the pinning region also shift to the right. Following [24] we obtain

r̄± = r± +
ρ2T 2

8π2

∫ Γ/2

−Γ/2
u30v± dx

∫ Γ/2

−Γ/2
u0v± dx

. (4.21)

Here u0 is the marginally stable solution of the constant forcing system at r±, and v± are the
eigenmodes of the linearized problem at r± responsible for wavelength nucleation/annihilation.
Both integrals are positive and we find that

2p̄ ≡ r̄+ − r̄− ≈ 2p− 0.0039(ρT )2, (4.22)

where p = (r+ − r−)/2 is the half-width of the pinning region in the constant forcing case.
Thus the introduction of the periodic forcing shrinks the width of the pinning region and
shifts it to the right.

Large amplitude forcing

We may repeat the above calculation in the case ρ → ρ/ǫ so that we are now dealing with
fast oscillations with a large amplitude. This allows the system to spend enough time outside
of the pinning region for depinning to take place. However, in this limit, a large fraction of
the forcing cycle is actually spent in the amplitude decay/growth regimes A±, and thus the
leading order dynamics will not be comprised simply of nucleation and annihilation events.
This regime is described by the equation

ω∂φu− ρ sin(φ)u = ǫ
[
r0u−

(
1 + ∂2x

)2
u+ bu2 − u3 − ∂tu

]
, (4.23)
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where r0, b, ρ = O(1), and we look for solutions in the form u = u0 + ǫu1 + ǫ2u2 + . . . . At
leading order we obtain (ωu0)φ − ρ sin(φ)u0 = 0, with solution

u0(x, t, φ) = e−(ρ/ω) cosφA0(x, t). (4.24)

At O(ǫ), the governing equation becomes

ω∂φu1 − ρ sin(φ)u1 = r0u0 −
(
1 + ∂2x

)2
u0 + bu20 − u30 − ∂tu0. (4.25)

Imposing the requirement that u1 is periodic on the fast timescale leads to the solvability
condition

∫
RHS e(ρ/ω) cosφ dφ = 0, where RHS stands for the right-hand side of Eq. (4.25),

and an evolution equation for A0:

∂tA0 = r0A0 −
(
1 + ∂2x

)2
A0 + bI0(

ρ
ω
)A2

0 − I0(
2ρ
ω
)A3

0. (4.26)

Here I0(x) is the modified Bessel function of the first kind. Thus the slowly evolving ampli-
tude A0 of the leading order solution u0 satisfies an SHE23 with modified coefficients.

The correction u1 to the leading order solution can be found by integrating Eq. (4.25)
using the integrating factor e(ρ/ω) cosφ and substituting in Eqs. (4.24) and (4.26):

u1(x, t, φ) =
1
ω
e−(ρ/ω) cosφ

[
J( ρ

ω
, φ)bA0(x, t)

2 − J(2ρ
ω
, φ)A0(x, t)

3 + ωA1(x, t)
]
, (4.27)

where A1 is yet to be determined. The time-dependent coefficients, which are periodic in
the fast time φ, are given in terms of the integral

J(γ, φ) =

∫ φ

0

[e−γ cosψ − I0(γ)] dψ, (4.28)

where γ = ρ/ω, 2ρ/ω. At O(ǫ2) we obtain

ω∂φu2 − ρ sin(φ)u2 = r0u1 −
(
1 + ∂2x

)2
u1 + 2bu0u1 − 3u20u1 − ∂tu1 (4.29)

and the solvability condition can be written in the form

1

2π

∫ 2π

0

dφ
[
r0 −

(
1 + ∂2x

)2 − ∂t + 2be−(ρ/ω) cos φA0(x, t)− 3e−2(ρ/ω) cosφA0(x, t)
2
]

(4.30)

×
(
J( ρ

ω
, φ)bA0(x, τ)

2 − J(2ρ
ω
, φ)A0(x, τ)

3 + A1(x, τ)
)
= 0.

The solvability condition can be simplified by defining the integral

K(σ, γ, φ) =

∫ φ

0

e−σ cosψJ(γ, ψ) dψ (4.31)

and noting that K(σ, γ, 2π) = 0. The result is

∂tA1 =
[
r0 −

(
1 + ∂2x

)2]
A1 + 2bI0(

ρ
ω
)A0A1 − 3I0(

2ρ
ω
)A2

0A1. (4.32)
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We can now define the averaged amplitude A ≡ A0 + ǫA1 by

I0
(
ρ
ω

)
A =

1

2π

∫ 2π

0

u0 + ǫu1 dφ ; (4.33)

this amplitude satisfies the equation

∂tA = r0A−
(
1 + ∂2x

)2
A + bI0(

ρ
ω
)A2 − I0(

2ρ
ω
)A3 +O(ǫ2). (4.34)

Thus there is no additional correction at O(ǫ) and the averaged dynamics follows a Swift–
Hohenberg equation with modified nonlinear coefficients up to O(ǫ2).

In contrast to the ρ ∼ O(1) case, the cubic nonlinearity is now dramatically increased
relative to the quadratic one. This results in a rapid decrease in the region of bistability
of the averaged equation (4.34) as ρ/ω increases. For b = 1.8, the region of bistability
disappears at ρ/ω ≈ 7.02 when the bifurcation that creates the periodic state transitions
from subcritical to supercritical. Thus the region of existence of periodic orbits in the high
frequency, large amplitude limit narrows as it shifts towards increasing r0 and eventually
disappears at r0 = 0 when ρ/ω ≈ 7.02. Figure 4.5 shows the predicted edges of the region
of existence of localized states that remain stationary on average in the (r0, ρ/ω) plane for
b = 1.8.

−0.3 −0.2 −0.1 0.0
r0

0

2

4

6

ρ
/ω

Figure 4.5: The edges of the region where localized states remain stationary on average in
the large amplitude, high frequency limit of SHE23 with time-periodic forcing as predicted
by Eq. (4.34). The (r0, ρ/ω) plane is depicted with using the parameter b = 1.8. This region
in the analogous limit for the periodically modulated Adler equation is shown in Fig. 3.6.

We note that the result in this high frequency, large amplitude limit qualitatively dif-
fers from the analogous limit for the nonautonomous Adler equation presented in Sec. 3.2
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(compare Fig. 3.6 to Fig. 4.5). The amplitude dynamics that occur outside of the region of
bistability in SHE23 are responsible for the demise of localized states that remain stationary
on average in this limit. This is manifested by the appearance of modified Bessel functions
in Eq. (4.26) for SHE23 as opposed to the Bessel function found in Eq. (3.28) for the Adler
equation.

4.3 Intermediate frequencies: Breathing localized

structures

We now move away from the high frequency limit and investigate parameter combinations
that permit depinning. For this purpose we consider parameter excursions that allow the
system to traverse P± and spend a significant time in both D+ and D−, i.e., we take r− <
r0 < r+, and ρ > p, where p ≡ (r+ − r−)/2 is the half-width of the pinning region. The
resulting structures oscillate in width and amplitude and we refer to them as “breathing”
localized structures. The numerical results of this section rely on time-simulation as opposed
to numerical continuation that was employed for the computation of periodic orbits and
winding trajectories in the periodically modulated Adler equation (Ch. 3).

The fate of stable localized initial conditions

Figure 4.6 shows sample results for ρ = 0.1, r0 = −0.28, in each case starting from the same
stable spatially localized L0 solution of the time-independent problem r ≡ r0. The figure
shows that, depending on T , the solution can undergo growth/decay through a depinning-
like process (Fig. 4.6(a,c)), decay to the trivial state via an amplitude mode (Fig. 4.6(d)), or
take the form of a periodic orbit corresponding to a localized solution with no net motion of
the fronts (Fig. 4.6(b)). Moreover, the growth/decay of new wavelengths can occur regularly
from one period of the forcing to the next, or in a seemingly irregular way. In particular,
Fig. 4.6(a) shows a growth scenario for T = 50 in which the solution grows in length by
one wavelength on each side after approximately three cycles of the forcing. This process is
irregular in the sense that the number of nucleation and decay events is not constant from
one period of the forcing to the next. It is also interesting to note that this simulation does
not reach the spatially periodic state, but instead approaches an oscillating state with a
defect at the edge of the periodic domain. In contrast, Fig. 4.6(c), obtained for T = 250,
shows a very regular pattern of five nucleations events followed by six decay events during
the course of each forcing cycle, resulting in an overall decay of the state. Finally, Fig. 4.6(d)
for T = 350 shows an initial growth phase followed by abrupt amplitude decay to the trivial
state.

Although the wavelength of a localized solution depends on the forcing parameter r, it
is always near the preferred wavelength 2π, and thus f undergoes abrupt jumps by approx-
imately 2π whenever the fronts depin. These jumps are most evident during the growth
phase since the time between nucleations is longer than the time between annihilations. The
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Figure 4.6: Space-time plots (left panels) and the corresponding phase space trajecto-
ries (right panels) for solutions of the periodically forced SHE23 with r(t) = −0.28 +
0.1 sin(2πt/T ), b = 1.8, initialized using an L0 solution at r = −0.28. The red dashed
lines in the right panels correspond to evolution past the time window represented in the left
panels, while the green lines represent spatially periodic solutions of the time-independent
case. The period T is indicated below each plot. The trajectory in (a) terminates on time-
periodic defect state.
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results shown in Fig. 4.6 are independent of the length of the initial stable state selected for
the simulation, provided that 6π . f . Γ/2 − 6π throughout the simulation, i.e., provided
the structure remains well localized. We likewise report that the initial phase of oscillation
does not affect the dynamics.

We distinguish periodic orbits from growing and decaying orbits using the instantaneous
front velocity Vf defined by the relation Vf ≡ ḟ . We look at the averaged front velocity
〈Vf〉 over a cycle period (calculated for oscillation periods for which 6π . f . Γ/2 − 6π
and disregarding the first oscillation period), and consider an orbit periodic if |〈Vf〉| < 10−4

(corresponding to no net nucleation or annihilation within a time period of about 6 × 104

units). For example, the orbit shown in Fig. 4.6(b) is deemed periodic since |〈Vf〉| falls below
the cut-off value of 10−4 after 12 periods of the forcing cycle (in fact |〈Vf〉| is still decreasing,
even after the 1800 units of time). For decaying and growing orbits, the average change in the
front position 〈∆f〉 over one cycle helps distinguish the regular behavior in Fig. 4.6(c) where
〈∆f〉/2π ≈ 1.0108 from the irregular dynamics in Fig. 4.6(a) where 〈∆f〉/2π ≈ 0.3087:
regular dynamics translate into 〈∆f〉 close to an integer number of nucleation/decay events
(〈∆f〉 ≈ 2nπ).

Spatially localized periodic orbits

We now investigate the existence of periodic orbits like the state exemplified in Fig. 4.6(b).
For ρ = 0.1, we do a parameter scan varying the mean forcing amplitude r− ≤ r0 ≤ r+ in
steps of ∆r0 = 10−4 and the oscillation period 10 ≤ T ≤ 400 in steps of ∆T = 1. At each
point a simulation is run to calculate 〈Vf〉 initialized with a steady state localized solution
at r ≡ r0. In most cases the simulations were run for 2000 units of time (4000 units were
necessary for the longer oscillation periods). The results are shown in Fig. 4.7. The region
where |〈Vf〉| < 10−4 is labeled PO and corresponds to parameter values at which periodic
orbits are found. For short periods T for which there is insufficient time for nucleation or
annihilation within a cycle, the region of periodic orbits spans nearly the whole pinning
region (bottom part of Fig. 4.7). With increasing T the range of existence of periodic
orbits narrows as predicted by the theory in Sec. 4.2 for fast oscillations but does not do
so monotonically. The figure reveals that sweet spots where the range is larger than in the
pinched regions above and below occur at regular intervals of the forcing cycle period. For
ρ = 0.1, the pinched regions are separated by ∆T ≈ 43. The region of existence of periodic
orbits is asymmetric owing to major differences in the depinning dynamics in regimes D−
and D+. Moreover, the region slants to higher values of the forcing as the period T increases,
a property that is related to the additional time spent in regime A− during the decay phase.
Region PO eventually asymptotes to r0 ≈ −0.2744 as T → ∞, the threshold for entering
regime A−, where amplitude decay takes over from depinning as the leading mode of decay.
In contrast to the high frequency case, here the Maxwell point determined from the time-
averaged free energy moves to lower values of r and is no longer a good predictor of the region
of periodic orbits. Despite this, the high frequency prediction of the width of the pinning
region in Eq. (4.22) remains within ∼ 10% of the results of numerical simulation with ρ = 0.1
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Figure 4.7: Diagram showing the region of existence of periodic orbits PO (shaded region) of
the periodically forced SHE23 as defined by |〈Vf〉| < 10−4 for oscillation amplitude ρ = 0.1.
The simulations are initialized with a L0 solution that is stable for constant forcing r0. The
range of r0 shown corresponds to the pinning interval (r−, r+) in the time-independent case.
The three dots (lower right corner, 2nd and 7th sweet spots from bottom) indicate parameter
values for the periodic orbits shown in Fig. 4.8. The green dashed line shows the predicted
location of the left edge of PO for 10 ≤ T ≤ 20 from the high-frequency theory of Sec. 4.2.

and T = 10, even though the ω ≫ 1 assumption no longer applies. Numerical continuation
indicates that the analogous pinched regions for the Adler equation in fact narrow to a single
point (cf. Fig. 3.3). The first several pinched regions of SHE23, on the other hand, have a
finite width up to the precision at which we are able to compute the periodic orbits and the
location of the pinching in parameter space. It is unclear whether this discrepancy is real or
just an artifact of the numerics.

Figure 4.8 shows three different stable periodic orbits from different sweet spots, corre-
sponding to T = 10, 100 and 300. The left panels indicate that these solutions are converged
to machine precision and do not seem to suffer from slow instabilities, while the remaining
panels provide insight into the balance between growth and decay over the course of the
cycle period. Figure 4.8(a), for T = 10, shows a periodic pulsation in amplitude but no front
motion. Figure 4.8(b), for T = 100, reveals a periodic orbit characterized by both amplitude
and front oscillation as does Fig. 4.8(c) for T = 300. The T = 100 orbit, which is located in
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Figure 4.8: Periodic orbits of the periodically forced SHE23 for three parameter combina-
tions: The normalized L2 norm of the difference of two solutions exactly one period apart
showing convergence to machine precision (left panels), space-time plots of the corresponding
converged solution over one cycle period (middle panels), and the (A, f) trajectory of the
converged solution (right panels).

the second fully formed sweet spot from the bottom of Fig. 4.7, undergoes two nucleation
events followed by two decay events during the course of each forcing cycle. The T = 300
example is from the 7th sweet spot and undergoes 7 nucleation/decay events per cycle and
shows that the nucleations occurring during the growth phase of the forcing between t ≈ 50
and t ≈ 150 are significantly slower than the decay between t ≈ 200 and t ≈ 250. Note that
periodic orbits are present despite entering A−, something that is only possible because of
the short amount of time spent in this regime.

We also examined the dependence of the region PO on the amplitude of oscillation,
ρ. The results for T ≤ 200 (Fig. 4.9) show that as ρ increases, the sweet spots span an
increasingly smaller interval in the period T and thus a larger variety of periodic orbits can
be observed within a given range of T as ρ increases. In addition, the whole sweet spot
structure asymptotes more quickly towards r0 = −0.2744 as ρ increases.
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Figure 4.9: Region of existence of periodic orbits in the periodically forced SHE23 when (a)
ρ = 0.06, (b) ρ = 0.08, (c) ρ = 0.1, using the same color code as in Fig. 4.7.

Structures undergoing net growth or decay

The existence of the periodic orbits discovered above is closely related to the dynamics of
the fronts connecting the localized patterned state to the background state, suggesting that
we can use the net displacement 〈∆f〉 of the fronts within a forcing cycle to classify the
growing/decaying solutions. We therefore calculated 〈∆f〉 on the same grid as that used to
find the periodic orbits PO, starting from narrower localized states to the right of PO and
broader localized states to the left of PO, all stable. In some cases (e.g. for T > 200), a
domain of twice and sometimes four times the size used in the PO calculations was necessary
to capture enough oscillations.

The results are summarized in Fig. 4.10. The different colored regions are determined by
the conditions (n − 0.25)2π < 〈∆f〉 < (n + 0.25)2π, n = ±1,±2, . . . and represent regions
where regular behavior is observed. The zones between these regions (shown in gray) are
“transition zones” that will be discussed below. The figure shows that the region of existence
of the periodic orbits is surrounded by regions of decay (to the left) and growth (to the right).
Beginning in the periodic orbit region PO and moving to the right (increasing r0), the first
region encountered (O+1) corresponds to growth by one wavelength on either side of the
pattern per cycle. The next region (O+2) corresponds to growth by two wavelengths on
either side, and so on for the subsequent regions which we refer to as On, where n is a
positive integer. The regions to the left of PO correspond to decay instead of growth. The
closest region to PO, O−1, exhibits one wavelength decay on either side of the pattern per
cycle and so on for On, n < −1. Each of these regions is separated from its neighbor by
a transition zone where irregular dynamics are observed and displays the same sweet spot
and pinching structure as the PO region: the regions expand and contract successively as
T increases. Some insight into this structure can be gained by looking at the number q
(m) of wavelengths gained (lost) on each side of a localized structure during an excursion
of the trajectory into regime D+ (D−). A sketch of the corresponding results in Fig. 4.11
shows that areas corresponding to the gain (loss) of a fixed number of wavelengths during a
D+ (D−) excursion form bands, and that the intersections of these bands define subregions
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Figure 4.10: The number of spatial periods added/lost per cycle for localized states of the
periodically forced SHE23 with an oscillation amplitude ρ = 0.1. The simulations were
initialized with L0 localized solutions that are stable at r0 in the time-independent system.
The central dark region corresponds to PO (cf. the shaded region in Fig. 4.7). The light blue
region to the left corresponds to decay by one wavelength on each side of the localized state
per cycle, the next to decay by two wavelengths per cycle etc. The regions to the right of
PO correspond instead to net growth by one wavelength, two wavelengths etc. on each side
of the localized state per cycle. The large white region to the left indicates the location of
decay to the trivial state within one cycle period. Transition zones where irregular behavior
is observed are shown in gray. The dots indicate the location in parameter space of the
solutions plotted in Fig. 4.6 while the horizontal line refers to a region that is studied in
Fig. 4.13.

labeled −mO+q
n , where n = q−m, corresponding to net gain or loss of n wavelengths per cycle

resulting from the annihilation of m wavelengths followed by the nucleation of q wavelengths
(Fig. 4.11(c)). This procedure allows us to assign a unique label to each subregion in the
parameter plane (excluding the transition zones in between). Spending more time or going
farther into D+ (D−) will result in more nucleations (annihilations) over a forcing cycle
because more time is spent outside of the pinning region. This explains the evolution of the
−mO+q

n structure as r0 increases: the time spent in D+ increases and the time spent in D−
decreases. Similarly, as the period T of the forcing increases, more time is spent in both D+

and D−, resulting in an increase of both q and m. This translates into larger oscillations in
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Figure 4.11: Sketch of the sweet spot classification scheme for the periodically forced SHE23.
The lines indicate transitions between the number of wavelengths gained in (a) and lost in (b)
on each side of the localized pattern during one cycle period. These lines are superimposed
over the data from numerical simulations in (c) as a means to classify the regions of growth
and decay.

the location of the fronts of the localized structures for longer periods. Finally we can gain
intuition about the cliff beyond which localized solutions collapse to the trivial state within
a single forcing cycle by considering the length of time spent in the regime A−. This region
is characterized by the time required for solutions to decay to the homogeneous state. As
the cycle period increases, the center of oscillation that allows the system to just reach this
threshold time is pushed further to the right. So the edge of the cliff moves to increasing
values of r0 as the cycle period T increases.

The transition zones narrow as the period T increases, and a closer look reveals a complex
structure resembling a devil’s staircase, a characteristic feature of mode-locking. Figure 4.12
shows 〈f〉 within the transition zone between PO and O+1 at T = 80 calculated on a
domain of 160 spatial periods using a grid of r0 values with spacing ∆r0 = 10−5. The results
reveal the presence of increasingly thin regions in which n wavelengths are gained/lost from
either side of the localized structure within N cycles. These regions thus correspond to
fractional growth/decay of the solutions suggesting a complex structure on all scales. We
note that this structure does not appear in the analogous transition zones of the periodically
modulated Adler equation as subharmonic resonances do not exist (cf. Fig. 3.16). It does,
however, appear in variants of the periodically modulated Adler equation such as those that
include a second derivative term [109]. Whether there are regions of nonperiodic dynamics
corresponding to irrational numbers cannot be determined through simulations, but the
small amplitude asymptotic results of this section seem to indicate that they form a dense
subset of the transition zone.
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Figure 4.12: The quantity 〈∆f〉/2π in the transition zone between PO and O+1 of the
periodically forced SHE23 with T = 80 exhibits a structure characteristic of a devil’s staircase
(see inset).

Amplitude decay

In addition to the depinning-like dynamics observed in the colored regions outside of PO
in Fig. 4.10, amplitude decay occurs in the white region. In this region the initial localized
solution collapses to the trivial state within a single forcing cycle. The boundary of this
region is formed by the accumulation of the depinning bands identified in Fig. 4.11(b).
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Figure 4.13: (a) The quantity N ≡ 〈∆f〉/2π, representing the shift in the front location
averaged over a cycle period, as a function of r0 in the periodically forced SHE23 with
T = 100 (Fig. 4.10, horizontal line). (b) Length of the plateaus (green crosses) and of the
transition regions between them (red circles) as determined from (a), shown in a semilog
plot, together with linear approximations to the data (straight lines, given in the text). The
plateaus are plotted at integer values of N while the transition zones between plateaus N = n
and N = n + 1 are taken to correspond to N = n+ 0.5.

We look more carefully at the accumulation point of the decay bands in Fig. 4.13. The
plateaus correspond to the loss of integer numbers of wavelengths per forcing cycle. Fig-
ure 4.13(a) shows that the width of the plateaus as well as of the transition zones between
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them decreases as one approaches the accumulation point, while Fig. 4.13(b) shows the
width ∆r of the plateaus and the transition zones as a function of N , the number of wave-
lengths lost per cycle (N < 0). The data obtained shows that both these widths decrease
exponentially with increasing |N | and are consistent with the fits

∆rP (NP ) = 0.01056 e1.0188NP , (4.35)

∆rT (NT ) = 0.003307 e0.9584NT , (4.36)

where ∆rP (resp. ∆rT ) denotes the width of the plateau corresponding to the loss of NP

wavelengths per cycle (resp. width of the transition zone between the pair of closest integers
to NT ). To obtain these fits we used all the data in Fig. 4.13(b) on the plateau widths but
only the transition zones between N = −6.5 and N = −3.5. To consider even smaller values
ofN would have required considerably more numerical effort without improving substantially
the accuracy of the fit, while values of N closer to 0 lead to departures from the asymptotic
regime. Both formulas show similar exponential decrease, thereby confirming the presence
of an abrupt “cliff” at the accumulation point (Fig. 4.13(a)). Furthermore, we see that the
width of the transition zones tends to about 1/3 of that of the plateaus as |N | increases.

Asymptotic theory: small oscillations

To understand the structure of the parameter plane in Fig. 4.10 we need to understand
the process of depinning in the time-dependent system. For this purpose we will consider
parameter excursions that take the system outside of the pinning region long enough for a
nucleation or annihilation event to occur. We therefore suppose that r → r++ǫ

2(δ+ρ sin ǫωt)
for which the oscillation period is of the same order as the nucleation time. The theory devel-
oped here is a straightforward extension of the small amplitude resonance tongue calculation
of Sec. 3.3 for the periodically modulated Adler equation and an analogous calculation near
r− produces similar results. In this regime the problem is governed by the equation

∂tu =
(
r+ + ǫ2(δ + ρ sin ǫωt)

)
u−

(
1 + ∂2x

)2
u+ bu2 − u3. (4.37)

Since the dynamics takes place on an O(ǫ−1) timescale we define the slow timescale τ = ǫt
and write ∂t → ǫ∂τ . We look for a solution in the form u = u0 + ǫu1 + ǫ2u2 + . . . , obtaining,
at leading order,

r+u0 −
(
1 + ∂2x

)2
u0 + bu20 − u30 = 0. (4.38)

As a result we pick u0 to be a localized solution at a saddle-node bifurcation of the snaking
branch in the time-independent case. In this case u0 is stationary but only marginally stable.
At O(ǫ), we obtain

∂τu0 = r+u1 −
(
1 + ∂2x

)2
u1 + 2bu0u1 − 3u20u1. (4.39)

Since u0 is stationary, u1 must be of the form of a zero eigenvector of SHE23 linearized about
the saddle-node solution. The relevant eigenvector v+ corresponds to wavelength addition
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and is symmetric with respect to x→ −x. Since we focus on states that do not drift we can
ignore the marginal but antisymmetric eigenvectors corresponding to translation and phase.
Thus u1 = a(τ)v+.

To determine the amplitude a we must go to O(ǫ2). At this order, the equation is

∂τu1 = r+u2 −
(
1 + ∂2x

)2
u2 + 2bu0u2 − 3u20u2 + (δ + ρ sinωτ)u0 + bu21 − 3u0u

2
1. (4.40)

The solvability condition for u2 is [24]

α1ȧ = α2(δ + ρ sinωτ) + α3a
2, (4.41)

with the coefficients αj calculated from the integrals defined in Eq. (4.6).
We can turn this equation into a Mathieu equation using the Riccati transformation

a = −α1q̇/α3q, obtaining

q̈ = −Ω2
+ (δ + ρ sinωτ) q, δ > 0, (4.42)

where Ω2
+ ≡ α2α3/α

2
1 > 0 with αj evaluated at r+ (cf. Sec. 4.1). Thus Ω+ ≈ 0.5285.

The same procedure at the left boundary of the pinning region leads to an equation for
the dynamics of the annihilation mode amplitude as a function of the distance δ from the
boundary, r0 = r− + δ:

q̈ = Ω2
− (δ + ρ sinωτ) q, δ < 0, (4.43)

where we have set a = α1q̇/α3q. The integrals αj are now evaluated at r = r− and Ω− =√
−α2α3/α2

1 ≈ 0.7159.
We can make use of the known properties of the solutions of the Mathieu equation to

understand the origin of the resonances between the forcing frequency ω and the charac-
teristic depinning frequency

√
δΩ+. The properties of Eq. (4.42) are summarized in the

standard stability diagram for the Mathieu equation [78] shown in Fig. 4.14 in terms of
the scaled distance from the boundary of the pinning region δ/ρ and the scaled oscillation
period Ω+

√
ρT/π. The shaded zones indicate that the solutions of (4.42) are bounded for

all time, while the solutions are unbounded in the white bands. In terms of the amplitude a
in Eq. (4.41), the shaded areas correspond to transition zones where a non-integer number
of nucleation events occurs during each cycle of the forcing. In fact, nonperiodic dynamics
occur for irrational values of the associated Mathieu characteristic exponent within these
zones. The first white band on the far left corresponds to stable periodic orbits that do not
undergo nucleation. The state undergoes one nucleation per oscillation in the white band
immediately to the right, and the number of nucleations per oscillation increases by integer
values within each subsequent white band.

We remark (cf. Sec. 4.1) that care must be taken in interpreting the solutions to
Eqs. (4.42) and (4.43) since the zeros of q(τ) correspond to solutions of Eq. (4.41) that
diverge to ±∞. During this process higher order nonlinearities enter Eq. (4.41) with the
result that the Riccati transformation no longer yields a linear equation. Thus the solutions
of Eqs. (4.42) and (4.43) in fact fail to describe the depinning process near the zeros of q(τ),
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Figure 4.14: (a) The stability diagram for Eq. (4.42). The white bands correspond, from left
to right, to states that undergo exactly 0,1,2,3,... nucleation events per forcing cycle. A non-
integer number of nucleations per cycle occurs in the gray transition zones in between. (b)
Sample solution a(τ) within the 0 region when δ = −ρ/2, T = 2π/Ω+

√
ρ. (c) Sample solution

a(τ) within the +2 region when δ = 0, T = 6π/Ω+
√
ρ. (d) Sample solution a(τ) within the

transition region between regions +3 and +4 when δ = ρ, T = 4π/Ω+
√
ρ. Nucleation events

correspond to divergences in a(τ).

and the corresponding solution a(τ) is determined by “gluing” together a series of individual
nucleation events. However, as suggested by the description in Eqs. (4.42) and (4.43), the
resulting nucleation process is indeed periodic, albeit in the frame moving with the front
x = f(τ).

Asymptotic theory: formation of sweet spots and pinching

With intuition gained from the small amplitude theory we now consider the case of large
parameter oscillations that take the system just outside of the pinning region, but with a
long enough period that there is time for depinning to occur. The analogous calculation
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for the periodically modulated Adler equation is described in Sec. 3.3 and produces similar
results. Because the system spends only a small fraction of the forcing cycle outside of P±,
we require the forcing cycle period to be yet longer, T = O(ǫ−2), in order that depinning
takes place. We therefore define the slow timescale T = ǫ2t and write the forcing parameter
in the form

r = rc + ǫ2r2 + (p+ ǫ2δ) sin
(
ǫ2ωt

)
, (4.44)

where rc ≡ (r++ r−)/2 corresponds to the center of the pinning region, and p ≡ (r+− r−)/2
is its half-width. This choice allows for the oscillations to take the system just outside of
the pinning region on both sides where depinning can be described quantitatively; the small
offset represented by r2 is included for greater generality, as is illustrated in the schematic
in Fig. 4.15(a). A periodic orbit from a simulation, colored according to the value of the
forcing parameter r is also shown.

(a) (b)

Figure 4.15: (a) A schematic of the forcing function r(t) used in the asymptotic theory in
the (r, ṙ) plane. (b) A periodic orbit of the periodically forced SHE23 with ρ = p + 10−3,
T = 5000, and r0 = −0.299. The orbit is colored by the magnitude of r: purple corresponds
to P± (slow phase), orange to D+ (fast phase), and blue to D− (fast phase).

We anticipate that in the above setup nucleation will occur on the faster timescale τ =
O(ǫ−1) and so look for solutions in the form u = u0+ ǫu1+ ǫ

2u2+ ..., where uj ≡ uj(x, τ, T ).
Writing ∂t = ǫ∂τ + ǫ2∂T , we obtain at leading order

[
rc + p sin (ωT )− (1 + ∂2x)

2
]
u0 + bu20 − u30 = 0. (4.45)

Thus we can choose u0(x, T ) to be a stable localized solution of the time-independent SHE23
within the pinning region, with T determining the value of the forcing parameter within this
region. The solutions follow the corresponding segment of the L0 branch (Fig. 4.15(b)) as
long as π(n− 1/2) < ωT < π(n+ 1/2), for any integer n. As we will see, special care must
be taken near the extrema of the forcing cycle when the system leaves the pinning region
and the dynamics take place on the faster timescale τ .
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The O(ǫ) correction reads

[
rc + p sin(ωT )− (1 + ∂2x)

2 + 2bu0 − 3u20
]
u1 = 0. (4.46)

When ωT = (2n + 1/2)π (resp. (2n + 3/2)π), the quantity u1 solves the linearized SHE23
at r+ (resp. r−) with symmetric solution v+ (resp. v−), i.e. the depinning mode responsible
for growth (resp. decay) of the localized pattern. In contrast, when (n − 1/2)π < ωT <
(n + 1/2)π, no reflection-symmetric marginally stable modes are present. To examine the
dynamics near r+ we take the slow time to be ωT = π/2 + ǫθ; a similar procedure can be
carried out near r− by taking ωT = 3π/2 + ǫθ, and subsequent cycles of the forcing can be
handled in the same way. The time derivative now becomes ∂t = ǫω∂θ and the O(ǫ) equation
(4.46) becomes [

r+ − (1 + ∂2x)
2 + 2bu0 − 3u20

]
u1 = ω∂θu0. (4.47)

Since u0 is the marginally stable localized solution at r+ it follows that ∂θu0 = 0 and hence
that u1 = a(θ)v+(x).

At O(ǫ2) we obtain

[
r+ − (1 + ∂2x)

2 + 2bu0 − 3u20
]
u2 = ω∂θu1 − (b− 3u0)u

2
1 − (r2 + δ − 1

2
pθ2)u0, (4.48)

for which the solvability condition is

α1ωa
′ = α2(r2 + δ − 1

2
pθ2) + α3a

2, (4.49)

where the prime denotes the θ derivative and the coefficients αj are determined by the
integrals in Eq. (4.6).

Using the transformation a = −α1ωq
′/α3q, we obtain a linear oscillator problem with a

time-dependent frequency,

q′′ = −pΩ
2
+

2ω2

(
θ2+ − θ2

)
q, (4.50)

where θ2+ = 2(r2 + δ)/p and, as before, Ω2
+ = α2α3/α

2
1. The system exits P+ when r2 + δ >

0, and in this case [−θ+, θ+] corresponds to the time interval spent in D+. We now use
a matching procedure to connect this solution to the case when ωT 6= π/2, noting that
u1(x, T ) → 0 as ωT → π/2, so that the solution remains stable as it approaches the boundary
of the pinning region. Since the leading order solution for large |θ| is given by a(θ) ≈√
pα2/2α3|θ| we require that a(θ) →

√
pα2/2α3θ < 0 as θ → −∞. The solution of Eq. (4.50)

satisfying this requirement can be written in terms of parabolic cylinder functions [116],
q = Dν(z), where

ν =

√
pΩ+θ

2
+

2
√
2ω

− 1

2
, z = −(2p)1/4

√
Ω+

ω
θ. (4.51)

Each zero z = z0 of q = Dν(z) corresponds to a nucleation event, since a diverges to ±∞ as
z → z0. To determine the outcome of such an event we must consider the limit as θ → ∞ to
match the ṙ > 0 phase of the forcing cycle with the ṙ < 0 phase that follows. This will tell
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us what branch the solution follows for π/2 < ωT < 3π/2. The parabolic cylinder function
behaves like

Dν(z) →
√
2π

Γ[−ν] |z|−(ν+1)ez
2/4 (4.52)

for real z → −∞, where Γ[−ν] is the Gamma function evaluated at −ν. Examining the sign
of Γ[−ν] shows that as long as ν is not a positive integer, a→

√
pα2/2α3θ > 0 in this limit,

and the solution does indeed settle on the nearest stable localized solution. The special cases
for which ν is a positive integer correspond to the solution landing exactly on an unstable
solution.

We can get a very simple expression for the number of nucleation events that occur near
r+ by counting the number of real zeros of Dν(z) for a given ν. We start by noting that for
z → ∞ (θ → −∞), Dν(z) approaches zero from above. When ν < 0, there are no real zeros
and Dν(z) > 0 for all z. Equation (4.52) shows that in the limit that z → −∞, the sign of
Dν(z) depends on the sign of Γ[−ν]. For ν < 0, the sign is positive and Dν(z) → +∞ as
z → −∞ without crossing zero. At ν = 0, Γ[−ν] = ∞ and Dν(z) → 0 from above; there are
still no zero crossings. For 0 < ν < 1, there will be one zero crossing as Dν(z) → −∞ as
z → −∞. The number of zeros continues to increase by one each time there is a sign change
in Γ[−ν] so that for n− 1 < ν < n, there will be n > 0 zeros of Dν(z). Therefore there will
be n+ nucleation events if

n+ − 1
2
<

Ω+T

2π
√
2p

(r0 + ρ− r+) < n+ + 1
2
, (4.53)

where we have re-expressed the condition in terms of the amplitude ρ ≡ p + ǫ2δ, offset
r0 ≡ rc + ǫ2r2, and the period T ≡ 2π/ǫ2ω. A similar relation applies for the number of
annihilations n− < 0:

n− − 1
2
<

Ω−T

2π
√
2p

(r0 − ρ− r−) < n− + 1
2
. (4.54)

The above conditions also reveal the presence of bifurcation delay, as expected of a
nonautonomous bifurcation problem. This delay manifests itself in the shift of the critical
value r2+δ = 0 for the presence of a fold to the threshold value determined by ν = 0, viz., r2+
δ = ω/

√
2pΩ+: the system entersD+ by as much as ω/

√
2pΩ+ without triggering a nucleation

event. Figure 4.16(b,c) show the amplitude a as a function of the scaled time (2p)1/4Ω+θ/ω
just before and after this threshold. The transition between these two cases involves canard
trajectories [118]. The discontinuous jump in Fig. 4.16(c) represents a nucleation event
and is obtained by gluing together two separate asymptotic calculations near different, but
adjacent saddle-nodes on the same snaking branch. The same “inertial” effect is observable
even when the system does not leave P+, i.e., δ + r2 < 0. Using the property

Dν(z) →
√
2νπ

(
1

Γ[(1− ν)/2]
−

√
2z

Γ[−ν/2] −
(1 + 2ν)z2

4Γ[(1− ν)/2]

)
, z → 0, (4.55)
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we see that even when the system just barely reaches the boundary of the pinning region,
r2 + δ = 0, the perturbation a(θ) remains finite (Fig. 4.16(a)). Indeed the minimum value
of a(θ) occurs for θ > 0 instead of θ = 0. In fact a(θ) can be calculated explicitly in terms
of parabolic cylinder functions using the relation

dDν(z)

dz
= 1

2
zDν(z)−Dν+1(z). (4.56)
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Figure 4.16: A plot of the amplitude a(θ) of the O(ǫ) correction u1(x) to the solution that
is marginally stable at r = r+ as a function of a scaled O(ǫ) time near the boundary of the

pinning region for different values of ν =
√
pΩ+θ2+
2
√
2ω

− 1
2
. The time θ = 0 corresponds to the peak

of the forcing cycle where “inertial” effects are expected. The thin solid (dashed) line shows
the amplitude a for the stable (unstable) localized solution as functions of r but replotted
in terms of the time θ. Below each frame is a schematic representation of the trajectory of
the amplitude a as a function of the forcing parameter r. The stable (unstable) steady state
branches of the constant forcing case are shown in solid (dashed) lines for reference. (a)
ν = −0.5: the system does not leave the pinning region, but there are still deviations from
the stable state. (b) ν = −0.1: the system exits the pinning region, but not far enough for
nucleations to occur. (c) ν = 0.1: the system penetrates into D+ past the threshold for a
nucleation to occur (represented by a discontinuous jump).

In the parameter regime analyzed here, the system tracks a given stable localized state
with a delay in r of up to O(ǫ2) for most of the forcing cycle. All of the interesting dynamics
occur within a small time interval when the system visits the vicinity of the boundary of the
pinning region. If it ventures far enough outside of this boundary, nucleation/annihilation
events begin to take place after a delay. Once the system reenters the pinning region,
the system settles on the nearest stable but longer/shorter localized structure. The settling
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process also happens within the vicinity of the boundary of the pinning region and there may
or may not be an additional nucleation/annihilation event during this settling, depending
on where in the process the system was upon re-entering the pinning region P±.

To understand the structure of growing, steady-state, and decaying solutions in this limit,
we need only compare the growth from depinning that occurs near ωT = π/2 to the decay
from depinning that occurs near ωT = 3π/2. The formation of the sweet spot and pinching
structure of the stationary solutions can be predicted by balancing the growth on the right
of the pinning region to the decay on the left as we shall now see.

The number of nucleation events n+ given by Eq. (4.53) and annihilation events −n−
given by Eq. (4.54) during one forcing period can be summarized by:

n± =

{[
Ω±T
2π

√
2p
(r0 ± ρ− r±)

]
if ± (r0 ± ρ− r±) > 0

0 if ± (r0 ± ρ− r±) ≤ 0
, (4.57)

where the brackets indicate rounding to the nearest integer and come from the settling of
the state to a stable localized solution upon re-entry into the pinning interval.

For ρ−p < 0, the resonance bands associated with the left and right edges of the pinning
interval are disjoint but asymptotically approach r0 = rc as T → ∞ for ρ = p. For ρ−p > 0,
an asymptotically small sweet spot and pinching structure begins to form as a result of
successive crossing between the resonance bands, as shown in Fig. 4.17.
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Figure 4.17: Predictions from the asymptotic theory for the periodically force SHE23,
Eq. (4.57). The blue (resp. red) lines correspond to parameter values where n− (resp.
n+) changes.

The prediction of Fig. 4.17(c) where ρ = p+10−3 is compared with numerical simulation
in Fig. 4.18, and shows excellent quantitative agreement. Specifically, the colored regions
are determined by numerical simulation (the colored regions shown in Figs. 4.18 to 4.20
correspond to 2π(n−0.5) < 〈∆f〉 < 2π(n+0.5) for n = 0,±1,±2, . . . .) and these match the
coding scheme of Fig. 4.10 without the gray transition zones, while the red and blue lines
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are predictions for the transitions between the various regions of the classification scheme
detailed in Fig. 4.11. Note, however, that the values of r0 in Fig. 4.18 span only about 1/40th
of the pinning region of the constant forcing system: the sweet spot–pinched structure here
is asymptotically small as a result of our choice of ρ.
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Figure 4.18: A comparison of the asymptotic theory (Eq. (4.57)) (red/blue lines) with nu-
merical simulations (colors) for the periodically forced SHE23 with ρ = p + 10−3 ≈ 0.04.
The dark region corresponds to the region PO. The red (blue) lines indicate transitions in
the number of nucleations (decays) that occur during one forcing cycle.

Figure 4.19 shows the (r0, ρ) parameter plane for T = 100 and T = 200, along with
an extension of the predictions from the above asymptotic theory (Eqs. (4.53) and (4.54)).
The extension has been computed by replacing

√
p in the denominator of the expressions

by
√
ρ as a means for correcting for the cases when ρ 6≈ p. The modified theory is able to

accurately predict the location of the transition between the zero and ±1 bands well outside
of the limit in which it was derived, owing to the fact that the first nucleation/annihilation
event necessarily occurs near the edge of the pinning region.

We note that PO and the On resonance bands slant towards increasing r0 as ρ increases,
and this is expected given that annihilation events happen more rapidly than nucleation
events for the same distance in forcing parameter r outside of the pinning region in SHE23
with constant forcing. Within PO, the system must at minimum reach D− if at least one
nucleation event occurs. This condition, r0 − ρ < r−, provides a strict maximum bound on
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Figure 4.19: For the periodically forced SHE23, the number of spatial periods gained/lost in
one forcing cycle when (a) T = 100 and (b) T = 200. All simulations were initialized with
stable L0 solutions at the corresponding r0 in the constant forcing case. The dark region
labeled PO indicates the location of periodic orbits and corresponds to the dark region in
Fig. 4.7. The light blue region immediately to the left indicates decay by one wavelength
on each side of the localized structure per forcing cycle, the next region to the loss of two
wavelengths per cycle, and so on. The solution grows by one wavelength on each side of
the localized structure per forcing cycle in the region immediately to the right of the dark
region, and so on. The white region to the left indicates solutions that collapse to the trivial
state within one cycle.

the value of r0 where PO can exist that is approached in the limit that T−
dpn ≪ T+

dpn. A
minimum bound can be found from noting that the system cannot go too far into A−. In the
limit that the amplitude collapse time T col

sn → 0 this reduces to the condition r0 − ρ > rsn.
The numerical simulations show that PO nearly reaches the maximum bound after the first
pinched region for both T = 100 and T = 200 while it nears the minimum bound for
T = 200 around the fourth pinched region. Above about ρ ≈ 0.1 the T = 200 PO region
approximately parallels the minimum bound. The periodic orbits remain centered within the
pinning region r− < r0 < r+ for the entire region mapped out for both cases in Fig. 4.19. It
would be interesting to continue the calculation to larger values of rho to see what happens
to PO. The high frequency, large amplitude limit considered at the end of Sec. 4.2 predicts
that PO will disappear in a codimension-two point at r0 = 0 and ρT/2π ≈ 7.02. The
dynamics related to the demise of PO seems to be related to the amplitude mode and PO
in Fig. 4.19(b) is clearly beginning to feel the effect from A−.



CHAPTER 4. LOCALIZED STATES IN SYSTEMS WITH

TIME-PERIODIC FORCING 99

4.4 The low-frequency limit: Adiabatic theory

In this section we consider the remaining case, that of low-frequency forcing. In this regime
we may neglect inertial effects that can cause delays in the onset of depinning or allow for
the completion of depinning events within the pinning region. We note that, by applying the
technique of matched asymptotics (see, for example, [137]), we can estimate the depinning
delay to be ∼ |dr/dt|−1/3 where the derivative is evaluated at r±. The analogous theory is
described in much greater detail for the simpler case of the periodically modulated Adler
equation in Sec. 3.4.

Sweet spot structure

Using the adiabatic approximation described above, the number n± of nucleation/annihilation
events over the course of a forcing cycle can be estimated from the expression

n± = ±
∫

T±

dt

T dpn
± (t)

, (4.58)

where T± is the time spent outside of the pinning region and T dpn
± (t) is the time between

nucleation/annihilation events of the constant forcing problem with parameter r(t). The
super/subscript + (resp. −) refers to regime D+ (resp. D−). We assume that the dynam-
ics within the pinning region allow the system to either complete the nucleation process
(corresponding to rounding n± up), or settle back down to the state already reached (corre-
sponding to rounding n± down). We also suppose that the threshold between completing a
nucleation event or settling back corresponds to n± + 1/2 and will use brackets, e.g. [n±],
to denote the nearest integer. We recall that leading order asymptotics near the edge of the
pinning region predict that (T dpn

± )−1 = Ω±δ
1/2
± /π [24] and use this prediction together with

the assumption r(t) = r0 + ρ sin 2πt/T to obtain

n± = ±2
√
2ρΩ±T

π2

[
E
(
1−η±

2

)
− 1+η±

2
K
(
1−η±

2

)]
, (4.59)

where η± = |r0 − r±|/ρ < 1 and

K(m) =

∫ π/2

0

1√
1−msin2 θ

dθ E(m) =

∫ π/2

0

√
1−msin2 θ dθ. (4.60)

are the complete elliptic integrals of the first and second kind [116].
The predictions of the adiabatic theory in Eq. (4.59) are shown in Fig. 4.20 for ρ =

p + 10−3 ≈ 0.04 and ρ = 0.1. The red and blue lines indicate transitions between adjacent
values of [n+] and [n−], respectively. The plot in Fig. 4.20(a) is colored according to the
simulation results to emphasize the quantitative accuracy of the adiabatic prediction for
ρ = p + 10−3. The accuracy of these predictions diminishes with increasing ρ as shown in
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Fig. 4.20(b) for ρ = 0.1 (cf. Fig. 4.10), although the predicted sweet spot and pinching
structure continues to resemble the simulations. The dark region in this graph corresponds
to the predicted location of PO based on the theory (Eq. (4.59)), i.e., PO is the region where
[n+] + [n−] = 0. The predictions for the ρ = 0.1 case fail in three ways: (i) the pinched

r0

T

−0.3000 −0.2995 −0.2990 −0.2985
50
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(a) ρ = p+ 10−3, theory and simulation (b) ρ = 0.1, theory only

Figure 4.20: Predictions from adiabatic theory for the periodically force SHE23 using the
asymptotic approximation Eq. (4.59) for the depinning time when (a) ρ = p + 10−3 ≈ 0.04
and (b) ρ = 0.1. The colors in (a) refer to the numerical simulation results for the locations
of PO (dark), O+n (alternating yellow and orange), and O−n (alternating shades of blue).
The dark region in (b) is the adiabatic theory prediction of the PO region.

regions are spaced too far apart, (ii) there is no cliff demarcating the dominance of overall
amplitude decay, and (iii) the region PO does not slant as in the simulations (Fig. 4.10).
The qualitative disagreement occurs because of a breakdown of the asymptotic prediction
for T dpn

± when the system enters too far into regions D±. In addition to the quantitative
disagreement of the depinning times, the theory omits the amplitude mode that destroys the
localized states in A−. We can account for (i) by making use of numerical fits in place of
the asymptotic theory for T dpn

± as described in Fig. 4.4 and can also extend the theory to
include predictions about the cliff mentioned in (ii) as described in the next section. The
theory cannot, however, account for (iii) as the slanting is a result of the coupling between
the amplitude and depinning modes which we have neglected.

The cliff

We can approximate the dynamics of the overall amplitude decay of a localized state in A−
by computing the time T col

sn (r), r < rsn, for a solution initialized with the periodic state
at rsn to decay to the trivial state. This calculation mirrors the asymptotic calculation for
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Figure 4.21: Adiabatic prediction in the (r0, T ) plane of the decay versus nucleation dynamics
of a spatially localized initial condition of SHE23 with time-periodic forcing. Positive (resp.
negative) numbers represent [n+] (resp. [n−]), the change in the number of wavelengths due
to nucleation (resp. annihilation) events during one cycle. The results are obtained using
the relation (4.59) with ρ = 0.1 and b = 1.8. The figure is plotted over the same r0 interval
as Fig. 4.10.

T dpn
± . For r = rsn + δcol, |δcol| ≪ 1, we find

(T col
sn )

−1 ≈ Ωsn
2π

|δcol|1/2. (4.61)

Substituting T col
sn into Eq. (4.58) in place of T dpn

± leads to an equation analogous to Eq. (4.59)
for ncol. Since ncol is at most one we assume that the threshold for the solution to decay
irrevocably is ncol = 1/2. This procedure yields a prediction for the location of the cliff
in parameter space. For improved numerical accuracy for forcing cycles that penetrate far
into A−, a numerical fit is useful (Fig. 4.4). Figure 4.21 reveals the dramatic improvement
in the (r0, T ) phase diagram that results from this procedure applied to T dpn

± . We have
also replaced the leading order theory for T col

sn with a numerical fit to T col
loc to obtain an

improved prediction for the cliff (bold black line). The hybrid adiabatic theory augmented
with numerical fits from simulations of the system under constant forcing is in remarkably
good agreement with the simulations even for ρ = 0.1. The predicted extent in T of the
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sweet spots is △T ≈ 45, independently of T , which is within 5% of the value computed from
simulations, viz., △T ≈ 43. In addition, the predicted period at which the cliff occurs for
a given value of r0 deviates from the value computed from simulations by △T . 10, with
the maximum deviation occurring for periods below T = 100. As expected, the agreement
improves for larger periods and away from the cliff: the top of the subregion −3O+10

+7 is
predicted to be at (r0, T ) ≈ (−0.2633, 373) but is located at (r0, T ) ≈ (−0.2637, 377) in the
simulations.

Two-frequency time-dependence

Once the front depinning times T dpn
± (r) and amplitude collapse time T col

sn (r) are known as a
function of the forcing parameter r with constant forcing, the adiabatic theory described by
Eq. (4.59) can be applied for forcing with arbitrary time-dependence. Here we consider the
effect of a second harmonic by taking the forcing to be of the form

r(t) = ρ sin(2πt/T ) + ρ2 sin(4πt/T + φ2). (4.62)

The forcing function can now enter each of the depinning regions D± more than once in a
single cycle and can thus have more than one growth or decay phase. Sample trajectories
from simulations of SHE23 with ρ = 0.8 and T = 200 are shown in Fig. 4.22. We note
that this choice of parameters puts the system within PO when ρ2 = 0. All three cases are
initialized with a state that is stable when ρ = ρ2 = 0 and have one long growth phase and
two shorter decay phases. Figure 4.22(a) shows a trajectory with one wavelength added on
each side per cycle of the forcing with three added during the single growth phase and two
lost over the decay phases. A periodic orbit is shown in Fig. 4.22(b) that varies by four
wavelengths over the cycle, and Fig. 4.22(c) shows a solution that loses two wavelengths
on each side per cycle. The parameter space (ρ2, φ2) is shown in Fig. 4.23 where the right
panel is colored by the average net front motion 〈∆f〉 per forcing cycle as computed from
simulations while the right panel shows the prediction of the adiabatic theory described by
Eq. (4.58).

The net change in the number of wavelengths shown on the right panel of Fig. 4.23 is
computed by generalizing the adiabatic theory of the sinusoidal case to include multiple
growth and decay phases:

N =
∑

j

[nj+] +
∑

k

[nk−]. (4.63)

Each nl± represents the number of growth or decay events occurring during a continuous
interval outside of the pinning range computed using Eq. (4.58). The state is said to collapse
if too much time is spent with r < rsn for any one of the decay intervals. The fact that there
are two decay phases in the forcing cycle allows for a sweet spot and pinching structure to
form within regions where a constant number of wavelength are added during the growth
phase. We see three sweet spots in PO between approximately 0.06 < ρ2 < 0.08 and
−π/2 < φ2 < −π/4 and this structure appears entirely within a region of parameter space
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Figure 4.22: Breathing localized structures observed in SHE23 (4.1) with two-frequency
forcing (4.62), ρ = 0.08, T = 200, and b = 1.8. Space-time diagrams over one forcing cycle
are shown for the right half of a state with positive (negative) values of the field u shown in red
(blue). To the left is plot of the forcing function with dashed lines indicating the boundaries
of the pinning, depinning, and bistability regions in the time-independent SHE23. Time
along the vertical axis is aligned to the vertical axis of the space-time diagram. The upper
panel provides a phase diagram plotting the trajectory of the front x = f of the localized
state as a function of the forcing and the horizontal axis is aligned with the horizontal axis of
the space-time diagram below. The blue line in the background indicates time-independent
solutions to SHE with constant forcing r = r0.
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Figure 4.23: Color map of the different dynamics observed from simulations of SHE23 with
two-frequency forcing (4.62) in the (ρ2, φ2) plane for r0 = −0.29, ρ = 0.08, T = 200, and
b = 1.8. Periodic orbits exist within region PO, which is defined by −0.5 < 〈∆f〉/2π < 0.5.
The regions to the right (left) of PO contain, in order, growing (decaying) solutions where
the pattern experiences net growth (decay) by 1, 2, . . . wavelengths on either side per cycle.
The white region indicates parameter values at which the amplitude of the localized pattern
decays within one cycle independently of its original size. The red (blue) lines show the quasi-
static predictions for the transitions between bands with a constant number of nucleation
(decay) events within a period of the forcing cycle. The bands are labeled with red (blue)
signed integers, and the thick black line marks the quasi-static prediction of the cliff beyond
which amplitude decay is expected.

where 4 wavelengths are added to each side during the growth phase. The sweet spot and
pinching structure in this case forms from intersections of resonance bands of the two decay
phases of the forcing cycle.

4.5 Canards

We have, up to this point, described stable localized breathing states that we obtained by
time-stepping a stable steady-state solution to SHE23 (4.1) with constant forcing r = r0.
As the snaking structure (Fig. 4.1) indicates, the localized states alternate between stable
and unstable as the branch snakes back and forth within the pinning region. The unstable
solutions also generate spatially localized periodic orbits under periodic forcing. These orbits
are similar to those presented in the previous sections of this chapter but instead of tracking
the stable part of the snaking branches as the forcing varies, they track the unstable part and
are therefore unstable as well. By virtue of being unstable, these states cannot be obtained
by direct numerical simulation but the analogous orbits for the periodically modulated Adler
equation have been studied via numerical continuation in Sec. 3.2.
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In this section, we use time-simulations to locate trajectories in SHE23 with sinusoidal
forcing (4.2) analogous to the canard trajectories shown in Figs. 3.10 and 3.12 for the peri-
odically modulated Adler equation. Just as with the periodically modulated Adler equation,
these trajectories appear near the transitions between neighboring resonance regions. They
follow a stable snaking branch during one traversal of the pinning region and begin to follow
an unstable one during the return trip and, by finely tuning parameters, one can control
when along the unstable branch a jump to one of the two nearby stable solution branches
occurs. During such a jump the fronts bounding the localized state move outward or inward
depending on whether the stable state reached is longer or shorter than the unstable state.
As the forcing period T increases, a separation of timescales between the slow tracking of
the equilibria and the fast jumps between them begins to develop. We refer to trajectories
that slowly drift along unstable states for part of the forcing cycle before undergoing a quick
jump to a stable state as canard trajectories [89]. We note that, even though these orbits
follow an unstable state for part of the trajectory, we are able to locate at least some of them
by numerically time-evolving an appropriate initial condition until it converges to a periodic
orbit. As is the case for the periodically modulated Adler equation, however, there are likely
also unstable canard trajectories (cf. Fig. 3.11) that cannot be found by this method.

We have in fact already seen evidence that canard trajectories exist in the asymptotic
limit that captures the formation of sweet spots and pinching described in Sec. 4.3. Fig-
ure 4.17 shows trajectories of the amplitude a of the depinning mode near r+ (Eq. (4.49))
which can follow the constant forcing state through the fold for specific parameter of r2, δ
and ω such that ν = 0. Tuning of parameters can control if the amplitude jumps up (ν > 0)
indicating a depinning event followed by an approach to a longer stable localized state or if
it jumps down (ν < 0) indicating an approach to a shorter stable localized state. Moreover,
fine tuning near ν = 0 can control where along the unstable solution branch this jump takes
place.

More generally, this type of canard behavior is predicted by Eq. (4.49) near integer values
of ν which correspond to transitions between the resonance bands generated by the periodic
forcing. Near ν = n where n ≥ 0, there will be n depinning events before the trajectory begins
to track the unstable branch. The system can then, depending on parameter values, execute
a jump to one of two nearby stable states as described above. Analogous canard dynamics
are also predicted near r− and we will refer to trajectories that exhibit such behavior near
both edges of the pinning region as “double-headed” canards. We note that the trajectories
predicted by this calculation follow an unstable state for an asymptotically small distance
in r as Eq. (4.49) only describes the trajectory in a small neighborhood of r = r+. Tuning
parameters so that ν = 0, including second higher-order corrections to the parameters, and
continuing the calculation to higher order may allow for an analytic expression for canards
that follow the unstable solution branch arbitrarily far into the pinning region. In what
follows, we use the asymptotically small canards predicted by the theory as a starting point
to numerically compute canards that follow an unstable state aO(1) distance into the pinning
region.

By varying parameters of the forcing near predicted transition between resonance regions,
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(a) r0 = −0.298525000000000, T = 1000 (b) r0 = −0.299390000000000, T = 1000
r0 = −0.298514648437500, T = 1000 r0 = −0.299414375000000, T = 1000
r0 = −0.298514516258240, T = 1000 r0 = −0.299414733886719, T = 1000
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ḟ
0 T 2T 3T

−0.03

0.09

(c) r0 = −0.299025000000000, T = 1442 (d) r0 = −0.299026550000000, T = 1444
r0 = −0.299026550000000, T = 1444

Figure 4.24: For the periodically forced SHE23: (a) C+ canards, (b) C− canards and (c)
C+

− canards represented through the front location f(t) versus the forcing strength r(t) for
ρ− p = 0.001 (Fig. 4.17(c)). The thin blue line represents the stable (∂fr > 0) and unstable
(∂fr < 0) parts of the branch of localized solutions for constant forcing (ρ = 0). In each case
the parameters are listed in order of increasing time spent on the unstable branch. (d) Three
periods of a two-headed C+

− canard from panel (c) shown using the front location x = f and

its speed ḟ as functions of time.

we can control how far along the unstable solution branch the trajectory reaches before
jumping to a stable branch and thereby generate a family of canard trajectories. Figure 4.24
shows three families of periodic canard trajectories computed from the periodically forced
SHE23 such that ||u(t)− u(t+ T )||L2 < 10−10 for some sufficiently large t. Solutions in the
family of C+ canards follow the unstable branch close to the saddle-node at r = r+ but
deviate before reaching the saddle-node at r = r− (panel (a)). Solutions of this type are
found near the transition between one growth band and the next. The C− canards shown
in panel (b) follow the unstable branch close to the r− saddle-node but do not reach the
r+ saddle-node; these are found near transitions between adjacent decay bands. Both sets
of transitions are approximated by Eq. (4.57). In regions where both bands intersect, it is
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possible to obtain C+
− canards (panel (c)) which temporarily follow two different unstable

branches; the associated front location x = f and its speed ḟ is represented in panels (d).
When the trajectory is drifting along the branch of steady states the fronts move slowly
inward or outward; however, the jumps from the unstable state to the stable state manifest
themselves in abrupt changes in the front location, or equivalently in dramatic peaks in the
front speed ḟ . Figure 4.25 shows how a small change in r0 (T remaining fixed) impacts
the time evolution of canard trajectories. Decreasing r0 delays the onset of the bursts and

ḟ

0 T
−0.05

0

0.20

Figure 4.25: One period of the C− (green) and C+ (black) canards in the periodically forced
SHE23 from Fig. 4.24(a) and Fig. 4.24(b) represented through the speed ḟ of the right front
as a function of time. The larger amplitude peaks are associated with the larger canards in
Fig. 4.24.

increases the front speed, a consequence of the fact that the trajectory now departs from
an unstable state farther from the saddle-node and hence with a larger unstable eigenvalue.
However, canards that manage to traverse almost the entire unstable part of the branch of
steady states are expected to display once again slower dynamics.

The canards shown in Fig. 4.24 correspond to the simplest canard families, organized by
a single stable portion of the branch of steady states with no depinning. However, a careful
tuning of the parameters reveals the presence of canards displaying depinning. Figure 4.26
shows several examples of the corresponding trajectories. The periodic orbits described by
these canards are organized around two segments of stable steady states and the adjacent
unstable steady states. The transitions between these segments are associated with the
addition or loss of one wavelength on either side of the localized structure. A whole flock
of canards can thus be obtained involving more segments of stable states and therefore
displaying more depinning events per cycle.

In a similar fashion, we can obtain periodic orbits whose solution amplitude follows that
of the lower branch spatially periodic state of the steady SHE. This gives rise to C− canards
characterized by a monotonic decrease in amplitude followed by a sudden jump to larger
amplitude. Since the spatially periodic state up only displays one saddle-node no C+ or C+

−
canards can be obtained. These canard trajectories, represented in Fig. 4.27 (left panel),
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(a) r0 = −0.299300000000000, T = 2000 (b) r0 = −0.299350000000000, T = 3000
r0 = −0.299336718750000, T = 2000 r0 = −0.299361282348633, T = 3000
r0 = −0.299336845397949, T = 2000 r0 = −0.299361284373701, T = 3000

f

18π

21π

ḟ
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(c) r0 = −0.299530000000000, T = 2621 (d) r0 = −0.299532712097168, T = 2622
r0 = −0.299532712097168, T = 2622

Figure 4.26: “Larger” canards of the periodically forced SHE23 represented in the same
fashion as in Fig. 4.24.

can be made to follow the unstable periodic state for a longer amount of time by choosing
r0 closer to the transition to amplitude collapse. Such trajectories spend more time in the
depinning regime (r < r−) as well as more time in the collapse regime (r < rsn). As a result
this regime is characterized by a competition between depinning and amplitude collapse as
illustrated in Fig. 4.28(a) but the state ultimately collapses as exemplified by the spiraling
trajectory in Fig. 4.27 (right panel). It may be possible, however, to generate similar front
creation and annihilation dynamics in a periodic orbit by considering a periodic array of
localized states that can interact. The simulation shown in Fig. 4.28(b) uses copies of the
interior of the state shown at 2.5T for the simulation in Fig. 4.28(a) as an initial condition.
While not periodic, it provides evidence that a periodic state could be located by varying
the initial condition as well as the parameters of the simulation. Moreover, taking a single
copy of the initial condition on a smaller domain will reduce the computation time.

As a final note, we point out that more complicated canard behavior can be predicted and
controlled when a more general forcing function is considered. Ref. [118] provides conditions
sufficient for the existence of canards with m downward jumps in an equation of the form
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Figure 4.27: Amplitude and front position of canard trajectories of spatially localized states
in the periodically forced SHE23 that follow the unstable amplitude of the spatially periodic
state up for some amount of time. Here ρ = −0.1, r0 = −0.276055, −0.276220, T = 1100,
and Γ = 640π. The fold on the up branch is at rsn ≈ −0.374370.

y′ = h(ǫt, µ) − f(y) with ǫ ≪ 1, h a C2 periodic function with m local maxima per period,
f a continuous and strictly increasing function and µ a set of m real parameters. Moreover,
the theorem specifies that the location of each of the m jumps can be controlled by tuning µ.
These results indicate that the simple sinusoidal forcing (4.2) is sufficient for canards with
at most two jumps as shown in Figs. 4.24(c) and 4.26(c). The two-frequency forcing (4.62),
on the other hand, allows the existence of canards that contain a total of three jumps along
the orbit.

4.6 Discussion

We have considered the effects of parametric time-periodic forcing on the dynamics of local-
ized structures in SHE23. In the high frequency limit averaging theory yields an averaged
system that is also of Swift–Hohenberg-type. When oscillations are large enough, the time-
varying forcing affects the averaged dynamics by modifying the coefficients of the nonlinear
terms, thereby reducing the region of existence of spatially localized states (the pinning re-
gion in the case of constant forcing) and displacing it to larger values of r0. For intermediate
frequencies, the dynamics become more complex owing to depinning of the fronts bounding
the localized structure over a significant fraction of the forcing cycle, resulting in breath-
ing localized structures exhibiting behavior analogous to pinning, depinning, and amplitude
collapse familiar from the constant forcing case.

Of particular significance is the observation of a new resonance phenomenon between
the forcing period and the time required to nucleate a new wavelength of the pattern. The
presence of this resonance is responsible for the complex structure of the parameter space,
which breaks up into regions labeled by a pair of integers (m, q) denoting the number of
wavelengths lost (m) per cycle and the number gained (q). When n ≡ q − m = 0 the
resulting state is periodic in time, and corresponds to a state that on average neither expands
nor shrinks. We have described the resulting structure of the parameter space in terms of
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(a)

(b)

Figure 4.28: Space-time plot of amplitude canard trajectories of the periodically forced
SHE23 with parameters ρ = −0.1, r0 = −0.276228387, T = 1100, and Γ = 640π. Owing to
the large extent of the domain, the pattern is not fully represented, only its local maxima are
plotted against time. (a) A nearly domain-filling localized state used as an initial condition
produces dynamics similar to the shrinking canard seen in Fig. 4.27. Here, new fronts are
generated in the interior in addition to the breathing dynamics at the edges. (b) A simulation
using ρ = 0.1, r0 = −0.276228387, T = 1100, and Γ = 640π is initialized with a multipulse
state comprised of copies of the interior of the state shown at 2.5T for the simulation in
panel (a).

sweet spots favoring the existence of such “pinned” states and pinched regions where the
resonance was destructive and periodic localized structures absent. We found that these
properties could be understood on the basis of appropriate asymptotics, valid either when
the forcing cycle did not penetrate far into the depinning regions, or for low frequency forcing.
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In both cases we showed that the number of nucleation/annihilation events can be computed
by adapting existing theory of the depinning process, and used these results to partition the
parameter space. A similar approach was successful in obtaining the accumulation point of
the decay regions beyond which all initial conditions collapse to the trivial state within one
forcing cycle. Our calculations suggest that this accumulation is exponential and involves
regions of frequency locking corresponding to all rational numbers.

We found that asymptotic theory provided an excellent qualitative description of the
resonance phenomenon, and moreover that quantitative agreement could often be obtained
by augmenting the leading order nucleation theory with numerical fits to the nucleation times
adopted from the time-independent case, thereby greatly extending the range of validity of
the theory.

In view of the success of the Swift–Hohenberg equation in modeling localization in a
great variety of systems with bistability between a homogeneous and a patterned state we
expect that the model studied here, Eq. (4.1), captures faithfully the phenomenology arising
from a resonance between the forcing period and the nucleation time in systems undergoing
temporary depinning as a result of the forcing. As such we envisage numerous applications of
the theory presented here to temporally forced systems such as models of vegetation growth
in arid regions subject to seasonal forcing [33, 138].

In future work it will be of interest to extend the present analysis to systems with time-
periodic forcing that is not purely sinusoidal and in particular to periodic forcing with asym-
metry between the rise and fall phases. In addition, many experimental systems exhibiting
spatially localized states, including binary fluid convection [139] and plane Couette flow [69],
possess an additional midplane reflection symmetry whose effects are well modeled by the
Swift–Hohenberg equation with a cubic-quintic nonlinearity [140, 141]. This motivates in-
vestigation of the properties of temporally-forced cubic-quintic Swift–Hohenberg equation
with a view to elucidating the behavior expected when such systems are forced periodically.
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Chapter 5

Localized stripes in two dimensions

with time-periodic forcing

We now consider localized patterns in two spatial dimensions subject to time-periodic forcing.
The dynamics here are complicated by the fact that the system can exhibit various kinds
of patterns such as stripes of different orientation and hexagons or squares. Moreover,
localized structures such as targets, spots, hexagonal or square arrays, and stripes of different
orientations can all co-exist stably in certain parameter regimes. Figure 5.1 shows a numerical
example of coexisting localized structures in the quadratic-cubic Swift–Hohenberg equation
(SHE23) along with regions of existence of different types of localized states as a function
of the forcing strength r and the magnitude of the quadratic nonlinearity coefficient b taken
from [142]. Stationary target patterns in SHE23 have been studied in further detail in
Ref. [143] by making use of radial symmetry to reduce the spatial dynamics of the stationary
states to a one-dimensional nonautonomous problem.

In this chapter, we study time-periodic forcing of the cubic-quintic Swift–Hohenberg
equation (SHE35) that exhibits squares and fully localized stripes as opposed to hexagonal
patterns which are favored by the quadratic nonlinearity of SHE23. We write SHE35 as

ut = ru− (1 +∇2)2u+ bu3 − u5, (5.1)

and study the dynamics under an imposed sinusoidally varying forcing parameter of the form

r = r0 + ρ sin 2πt/T. (5.2)

This forcing function, familiar from Chs. 3 and 4, is characterized by the average forcing
strength r0, the amplitude of modulation ρ and the period T . We consider localized stripes
that are a two-dimensional extension of the one-dimensional states of Ch. 4 and whose
stability properties have been discussed in Ref. [42]. We also study interfaces of stripes with
different orientation and fully localized stripe patterns [59]. In analogy to the dynamics
seen in Ch. 4, we find that the localized states begin to breathe when time-periodic forcing
is introduced. We again use PO to refer to the region of existence in parameter space of
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Figure 5.1: Coexisting localized target, hexagon, and spot patterns for SHE23 with constant
forcing found by time simulation of an initial condition consisting of three different finite
amplitude perturbations. Parameters: b = 2.2 and r = −0.5. (b) A summary of the region
of existence for various localized patterns in SHE23 in the parameter space (r, b2). Both
panels are adapted from Ref. [142].

periodic orbits consisting of breathing states that remain stationary on average. We also
find states that grow or decay on average but, because we do not explore forcing parameters
that take the system outside of the region of bistability, do not see amplitude collapse.

The first section (5.1) reviews what is already known about stationary localized stripes
and squares in SHE35 with constant forcing. Section 5.2 discusses the dynamics of various
stripe patterns that are localized along one dimension when time-periodic forcing is intro-
duced. We then turn to the effect of time-periodic forcing on the dynamics of fully localized
stripe patterns in Sec. 5.3 before summarizing current progress and discussing future work
in Sec. 5.4.

We take a numerical approach in this chapter, relying solely on time-simulations to
study the dynamics of the planar patterns in SHE35 with time-periodic forcing. As with
the one-dimensional SHE23 in Ch. 4, we integrate the equation forward in time using a
fourth order exponential time differencing scheme [136] on an equidistributed mesh. Our
calculations are performed in Fourier space and are fully dealiased. We use a periodic domain
(−Lx, Lx)× (−Ly, Ly) with typical values Lx = 20π, Ly = 10π and a grid with 1024 × 512
points. When we require a different domain size, we keep the same density of grid points.
Because of the quintic nonlinearity of SHE35, we can only keep 1/3 of the modes along each
spatial direction instead of 1/2 the modes for SHE23 in order to be fully dealiased. See
App. A for more details about the numerical methods used. This chapter represents ongoing
work and future plans involve a combination of numerical continuation, asymptotic analysis
and time simulations to develop a more complete understanding of the dynamics of localized
states in two dimensions with both constant and time-periodic forcing.
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5.1 Stationary patterns with constant forcing

Early numerical studies of localized structures in the two-dimensional SHE relied on time-
simulation [144, 40, 41]. More recent work, such as Refs. [42, 142, 143, 59], that employs
numerical continuation to follow the stationary solutions as a function of the parameters
has allowed for significant progress towards the development of a theoretical framework
for understanding the solution structure of these states via spatial dynamics. This section
summarizes parts of the work described in Refs. [42, 59] pertaining to stripe patterns that
are localized along one or both directions in space.

Longitudinally invariant stripes

One-dimensional periodic patterns describe longitudinally invariant stripes in two dimen-
sions. Likewise, localized states in one dimension describe longitudinally invariant stripes
that are localized along the direction transverse to the stripes. In addition to the longitudi-
nally invariant dynamics described by the one-dimensional SHE, these localized stripes can
undergo instabilities along the length of the stripes in two dimensions. Figure 5.2 shows a
bifurcation diagram of the snakes-and-ladders structure of SHE35 for b = 2 in one dimension
in panel (a) and a zoom-in of the pinning region for two-dimensional localized stripes in
panel (b). The region of bistability between the trivial state u = 0 and the periodic state P
extends from rSN < r < 0 where rSN = −0.8990 and the Maxwell point of these two states is
at rM ≈ −0.6752. The left (E−) and right (E+) edges of the one-dimensional pinning region
occur at r− ≈ −0.7126 and r+ ≈ −0.6267, respectively, while the two-dimensional localized
stripes are stable within approximately −0.70 < r < −0.65.

In Fig. 5.2(b), dotted lines indicate where the state is unstable in one dimension while
bold lines indicate stability in two dimensions. The solid unbolded lines represent the sections
of solution branches that are unstable along the direction of the stripes. Such longitudinal
instabilities can be localized to the fronts at the edges of the states (wall modes) or can
develop within the interior of the pattern (body modes). Figure 5.3 shows the time dynamics
of a localized stripe state undergoing instabilities through a wall mode (panel (a)) and
through a body mode (panel (b)). The parameters are within the pinning region of the one-
dimensional SHE35 in both cases, and the dynamics depicted occur on longer time scales
than the characteristic depinning time outside of the pinning region. The wall mode, for
the parameters in the simulation (r = −0.7105, b = 2), generates periodically structured
fronts on a relatively slow timescale that remain stationary. The wavelength of the structure
is of the same magnitude as the wavelength of the stripe pattern. The body mode (shown
for r = −0.9183, b = 2.5) causes a long wavelength zigzag on the stripes and creates local
curvature at the fronts causing them to depin and propagate outward on an even slower
timescale. Figure 5.4 summarizes the stability of the localized stripes to different wavelengths
along the longitudinal direction ky as a function of the forcing parameter r for b = 2 and
b = 2.5. We see that the body mode (B) becomes more important for the larger value of b
and is first unstable for ky = 0.
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Figure 5.2: (a) A bifurcation diagram of the snakes-and-ladders structure SHE35 in one
dimension with constant forcing and b = 2. The periodic solution P is shown in red, the
spatially localized solutions are shown in blue, and the trivial solution u = 0 is shown in
black. Dotted lines indicate unstable stationary solutions while solid lines indicate stable
ones. The pinning region where the spatially localized states exist is shaded in gray and
found approximately for −0.7126 < r < −0.6267. The Maxwell point between the periodic
state and trivial state is at rM ≈ −0.6752. (b) A bifurcation diagram showing a portion of
the pinning region for longitudinally invariant stripes of SHE35 in two dimensions. The bold
blue lines indicate spatially localized stripes that are stable in two dimensions, while the
dotted lines indicate solutions that are unstable in the one-dimensional case. The unbolded
lines indicate where the state is unstable to longitudinal perturbations along the stripes.
Both panels are taken from Ref. [44] and the corresponding results were first published in
Ref. [42].

Stripes of different orientation

Though the stability properties and resulting dynamics are different, stationary localized
solutions comprised of longitudinally invariant stripes exhibit the same snakes-and-ladders
structure as the one-dimensional localized states owing to front pinning. Localized solutions
with fronts that are transverse to the stripes can also be constructed, and these states exhibit
collapsed snaking. The fronts transverse to the stripes are not pinned and thus the localized
state is only stationary at the Maxwell point once fully formed (cf. lower part of branch in
Fig. 5.5(b)). We will refer to these patterns as unpinned stripes. Collapsed snaking is also
seen in one spatial dimension when a heteroclinic connection between the trivial state and
a nonzero uniform state forms [24]. Figure 5.5 compares bifurcation diagrams of the two
orientations of stripes localized along one direction and provides sample solutions for each.

In addition to having localized patterns with fronts along the stripes or transverse to
them, stationary states comprised of a mix of the two orientations exist for SHE35 in two
dimensions. Longitudinally invariant stripes can connect to unpinned stripes via fronts
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(a)

(b)

Figure 5.3: Frames from a time simulation of longitudinally invariant, spatially localized
stripes in SHE35 with constant forcing undergoing (a) a wall instability (W−) with r =
−0.7105 and b = 2 and (b) a body instability (B) with r = −0.9183 and b = 2.5. Both
panels are taken from Ref. [42].

Figure 5.4: A summary of the stability of longitudinally invariant, spatially localized stripes
of SHE35 as a function of the longitudinal wavenumber ky along the stripe and the constant
forcing parameter r for (a) b = 2 and (b) b = 2.5. At the specified value of r within the
shaded region the stripes are stable to all perturbations with wavenumber ky. The dashed
lines represent onset of transverse instability due to wall modes (W±) or body modes (B).
The pink dashed-dotted line marks the Maxwell point between the periodic stripe state and
trivial state. Both panels are taken from Ref. [44] and the corresponding results were first
published in Ref. [42].

made of squares similar to what is produced by the wall instability seen in Fig. 5.3(a).
Figure 5.6 shows a single branch of stationary solutions that exhibits both snaking and
collapsed snaking. The single longitudinally invariant stripe surrounded by squares shown in
panel (1) can, by varying the forcing parameter, grow via the generation of unpinned stripes
from the outer squares (panel (2)) or grow by forming additional longitudinally invariant
stripes from the inner squares (panel (3)).

We conclude this subsection by mentioning localized square patterns because of the role
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(a) (b)

Figure 5.5: Bifurcation diagrams of SHE35 with constant forcing and b = 2 showing (a)
longitudinally invariant, spatially localized stripes and (b) localized stripes with fronts per-
pendicular to the direction along the stripes. Sample solutions are shown in each case.
The longitudinally invariant stripes exhibit snaking while the stripes with a transverse front
exhibit collapsed snaking. Adapted from Ref. [59].

Figure 5.6: A single solution branch of SHE35 with constant forcing and b = 2 that exhibits
collapsed snaking by developing perpendicular stripes from the outer squares along the longi-
tudinally invariant stripe and exhibits snaking by generating longitudinally invariant stripes
from the inner squares of the front. A bifurcation diagram highlighting the appropriate
section is given along with a sample solution at the location marked by a red dot. Adapted
from Ref. [59].

squares appear to play in the fronts between longitudinally invariant stripes and unpinned
stripes. The Maxwell point between homogeneous squares and the trivial state occurs at
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Figure 5.7: Localized square patterns in SHE35 with constant forcing and b = 2. The left
panel shows a bifurcation diagram of an isola drawn in blue containing square patterns that
are localized along one spatial direction. The state is stable where the line is solid and
unstable where it is dashed. The gray snaking diagram shows the part of the bifurcation
diagram in panel (3) of Fig. 5.6 for reference. Solutions at each of the folds of the isola
are given in the central panel and two additional isolas with localized squares of longer and
shorter spatial extent are shown in green in the right panel. Adapted from Ref. [59].

rs ≈ −0.609 and the localized square patterns shown in Fig. 5.7 are found on isolas that are
contained mostly within the pinning region of longitudinally invariant stripes.

Fully localized stripes

Thus far we have described states that are localized along one spatial dimension, but station-
ary stripe patterns that are fully localized also have been found in SHE35 [41, 59]. Figure 5.8
shows a bifurcation diagram of these so-called “worm” states along with a few sample solu-
tions at different points along the snaking branch. As expected for SHE35, a half-wavelength
(e.g. a positive or negative stripe) is added to the structure for each back-and-forth excursion
of the solution branch. In addition, the longitudinal length of the stripes on the structure
increases as the forcing increases for a state with a given number of wavelengths. The pin-
ning mechanism that allows these states to remain stationary over a finite parameter interval
is not yet fully understood, though we do note a striking similarity between the “tips” of
the fully localized stripes and the structures that form along the fronts when longitudinally
invariant stripes undergo a body mode instability (t = 3645 in Fig. 5.3(b)).
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Figure 5.8: Fully localized stripe patterns in SHE35 with constant forcing and b = 2. A
bifurcation diagram is shown in the left panel and sample solutions along the branch are
shown in the right panel. The Maxwell point between the one-dimensional periodic state
and the trivial state occurs at rM = −0.6753 and is shown as a vertical dashed line. Adapted
from Ref. [59].

5.2 Dynamics of partially localized stripes under

time-periodic forcing

in the absence of longitudinal instabilities, longitudinally invariant stripes reproduce the
dynamics observed for the one-dimensional patterns of Ch. 4 when time-periodic forcing
is introduced. In this section we consider such perturbations to these patterns as well as
patterns composed of stripes with different orientations. We restrict our attention to the
periodically forced SHE35 (Eqs. (5.1)-(5.2)) with cubic nonlinearity coefficient b = 2, forcing
period T = 100 and modulation amplitude ρ = 0.12. We report the dynamics that result
from various initial conditions and scans over the average forcing r0.

Wavy stripes

As seen in Fig. 5.3(b), longitudinally invariant stripes can undergo a long wavelength zigzag
instability that results in wavy stripes. We therefore initialize a simulation using the state
shown in Fig. 5.9(a), and find that periodic orbits are possible with Fig. 5.9(b) and (c)
showing the pattern at the start and halfway point of the final forcing period of a simulation
with r0 = −0.655. The computation is done on a periodic domain with Lx = 20π, Ly = 10π
and with a grid of 1024× 512 points. The pattern in Fig. 5.9 consists of fully-formed wavy
stripes on the interior with curved partially formed stripes that arrange into a series of
structures along the front. “Tips” appear where the pattern extends farthest along the ±x
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(a) (b) (c)

Figure 5.9: Wavy stripe patterns in the periodically forced SHE35 with parameters r0 =
−0.655, ρ = 0.12, T = 100 and b = 2. (a) Initial condition used to find a periodic orbit of
wavy stripes. Solutions during (b) the initial phase of the final forcing cycle at t = 2400 and
(c) the middle of the last forcing cycle at t = 2450 are also shown. The solutions in (b) and
(c) correspond to times along the forcing cycle when r(t) = r0.

direction and grow from concave regions along the front of the initial state. The partially
formed stripes lengthen moving inward from the tips until they intersect at “valleys” that
form the innermost parts of the front. Not surprisingly given the initial condition, the state
along the periodic orbit is not symmetric under x → −x: the tips on the +x front (right
side) appear at the same y value as the valleys on the −x front (left side). During each
forcing cycle one stripe (a half-wavelength) is added to and subtracted from each side of the
pattern at both the tips and valleys of the front. The structures of partially formed stripes
along the fronts bulge and narrow in a smooth way as the forcing increases and decreases.

The periodic orbit is found by time-simulation for 25 cycles of the forcing and Fig. 5.10(a)
shows that the L2 norm of the difference of the solution at the start of successive cycles
decreases exponentially, reaching ||u(2500)− u(2400)|| ≈ 10−6 by the end of the simulation.
As in the one-dimensional case (Eq. (4.3)), we can describe the dynamics in terms of the
location of the fronts defining the edge of the localized state. In this case, however, we will
employ several front variables in an attempt to characterize the longitudinally varying front.
We define the location of the right (+x) front at y = 0 to be

fx(t) = 2

∫ Lx

0
xu(x, 0, t)2dx

∫ Lx

0
u(x, 0, t)2dx

. (5.3)

In addition, we define the location of the tip f+
x and valley f−

x of the front to be

f±
x (t) = 2

∫ Lx

0
xu(x, y±, t)2dx

∫ Lx

0
u(x, y±, t)2dx

, (5.4)

where y+ = 5π is the location of a tip and y− = −5π is the location of a valley on the
right (+x) front. Figure 5.10(b) shows the front positions defined by Eqs. (5.3)-(5.4) as
a function of time for the final three forcing cycles of the simulation. The tip and valley
locations f±

x both vary by approximately π, consistent with the addition and subtraction
of a half-wavelength on each side, and fast jumps in the value indicate when the number



CHAPTER 5. LOCALIZED STRIPES IN TWO DIMENSIONS WITH

TIME-PERIODIC FORCING 121

(a) (b)

0 500 1000150020002500
t

10-6

10-5

10-4

10-3

10-2

10-1

100

||u
(t
+
T
)−

u
(t
)||

2200 2300 2400 2500
t

20

25

30

35

40

45

f x

Figure 5.10: The periodic orbit consisting of wavy stripe patterns shown in Fig. 5.9 for the
periodically forced SHE35. (a) Convergence to a periodic orbit as measured by the L2 norm
of the difference of the solution at the start of successive periods. (b) The x-front position
of the solution along y = 5π (green), y = 0 (blue) and y = −5π (red) as a function of
time for the final three forcing cycles of the simulation. The y locations at which the front
is computed correspond to the “tip” of the front, the center value, and the “valley” of the
front, respectively. Parameters: r0 = −0.655, ρ = 0.12, T = 100 and b = 2.

of wavelengths changes. The front fx along y = 0 varies smoothly with a larger amplitude
owing to the bulging and narrowing dynamics of the structures along the fronts.

A plot of the average change 〈∆fx〉 in front location fx as a function of the average forcing
r0 reveals a finite region of parameter space, PO, where periodic orbits exist (Fig. 5.11). The
width of PO, ∆r0 ≈ 0.08, is about 1/10 the size of the pinning region for one-dimensional
localized states under constant forcing and lies within the portion that is stable to body
mode instabilities. Periodic forcing with amplitude ρ = 0.12, however, takes the system
through regions unstable to body modes and outside of the one-dimensional pinning region on
either side. Interestingly, periodic orbits exist for values of r0 completely within the pinning
region for fully localized stripes comprised of between approximately 4 and 10 wavelengths
(Fig. 5.8). This may be more than a coincidence given that the structures along the fronts
in Fig. 5.9 appear to be portions of fully localized stripe states.
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Figure 5.11: The average change 〈∆fx〉 in location of the front fx along y = 0 as a function
of the average forcing parameter r0 for wavy stripe initial conditions in periodically forced
SHE35 with b = 2, T = 100 and ρ = 0.12.

Stripe-stripe interfaces

We now look at interfaces between longitudinally invariant stripes and unpinned stripes (cf.
Fig. 5.6). Squares tend to form at these grain boundaries between the sections of stripes
with different orientation. We take a (spatially periodic) domain-filling initial condition
of alternating patches of longitudinally invariant stripes and unpinned stripes in order to
examine the response of the interface to time-periodic forcing. Throughout this subsection,
as with the last, we consider the periodically forced SHE35 (Eqs. (5.1)-(5.2)) with cubic
nonlinearity coefficient b = 2, forcing period T = 100 and modulation amplitude ρ = 0.12.
The computation is done on a periodic domain with Lx = 20π, Ly = 10π and with a grid of
1024×512 points. Figure 5.12 shows the result of three simulations with this initial condition
using r0 = −0.691, −0.693 and −0.695. To provide some context, we note that these values
are less than the Maxwell point rM for the stripe solutions (Fig. 5.5(b)), within the pinning
region of longitudinally invariant stripes with squares at the fronts (Fig. 5.6(c)), and less
than the values of r where localized squares exist (Fig. 5.7).

For r0 = −0.691, the system quickly approaches a periodic orbit in which a row of squares
is first added to and then subtracted from each interface (Fig. 5.12(a)). For r0 = −0.693, the
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(a) (b) (c)

Figure 5.12: Each column is a simulation of the periodically forced SHE35 using a domain-
filling initial condition consisting of patches of stripes with perpendicular orientation and
(a) r0 = −0.691, (b) r0 = −0.695, (c) r0 = −0.695. The rows, from top to bottom, show the
state at t = 100, t = 150, t = 200, t = 250 and t = 300. Solutions in columns (a) and (b)
approach periodic orbits while (c) approaches the trivial state. Parameters: b = 2, T = 100
and ρ = 0.12.

system approaches a periodic orbit in which each interface breaks and reforms during the
course of the forcing cycle (Fig. 5.12(b)). The squares remain attached to the longitudinally
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invariant stripes and generate a localized structure similar to what the wall instability creates
(Figs. 5.3(a) and 5.6(c)). Figure 5.13 shows the convergence to a periodic orbit in the case
shown in Fig. 5.12(b) with r0 = −0.693. While the simulation has not yet converged in
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Figure 5.13: Convergence to a periodic orbit consisting of patches of stripes with perpendic-
ular orientation in the simulation of the periodically forced SHE35 depicted in Fig. 5.12(b).
The simulation is terminated at t = 2000. Parameters: b = 2, T = 100, ρ = 0.12 and
r0 = −0.693.

Fig. 5.12(b), the last two states shown at times t = 250 and t = 300 are visually similar to
the corresponding frames along the periodic orbit at times t = 2450 and t = 2500.

During the first forcing cycle (not shown in Fig. 5.12(c)) for the case of r0 = −0.695,
the stripes detach and reconnect in a similar way as is seen in Fig. 5.12(b). During the
second forcing cycle the stripes detach but fail to reconnect as is shown in the middle row of
Fig. 5.12(c). After this failure to reconnect, the once domain-filling state is now comprised
of alternating localized patches of unpinned stripes and longitudinally invariant stripes with
squares at the edges. The newly created localized patterns exhibit similar front speeds to
the r0 = −0.693 case during the growth phase of the forcing cycle but significantly faster
front motion during the decay phase. The localized patches thus decay on average and the
system approaches the trivial state. The longitudinally invariant stripes disappear first (at
around t = 400) and the unpinned stripes only persist for about two forcing cycles longer
(approximately to t = 600).

We can also construct spatially localized initial conditions that consist of stripes with
different orientation embedded in a trivial background. One example is shown in the first
panel of Fig. 5.14 and the subsequent panels show results from the first forcing cycle of a
simulation with r0 = −0.665. The computation is done on a periodic domain with Lx = 5π,
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Figure 5.14: The first forcing cycle of a simulation of the periodically forced SHE35 with
parameters b = 2, T = 100, ρ = 0.12 and r0 = −0.665. The panels show, from left to right,
the state at t = 0, 10, 20, 30, 70, 80, 90 and 100. The first four panels are from the growth
phase of the forcing cycle while the last four are from the decay phase. This state begins to
grow on average after the transition depicted in Fig. 5.15.

Ly = 40π and with a grid of 256 × 2048 points. The average forcing r0 for this simulation
is slightly greater than the Maxwell point between the stripes and trivial state but within
the region of stability for longitudinally invariant localized stripes (Fig. 5.2(b)). With this
initial condition, the state can begin to breathe when time-periodic forcing is introduced.
The outer longitudinally invariant stripes act as anchors, preventing the inner unpinned
stripes from growing or decaying in spatial extent on average. A row of squares alternatingly
forms and disappears at the grain boundaries on the interior of the state in a similar way
to what is seen in Fig. 5.12(a). The outer fronts that define the edge of the localized state
breathe as longitudinally invariant stripes are first added and then subtracted, although for
the parameters used there is a net loss of these stripes. Figure 5.14 shows the growth and
decay of the state over the first forcing cycle with r0 = −0.665. The longitudinally invariant
stripe at the outer front remains intact during the growing phase and only develops into
squares through a wall instability (cf. Fig. 5.3(a)) during the decay phase. The squares at
the outer edges of the state persist until the longitudinally invariant stripes that experience
average decay disappear near t = 800. After this transition, shown in Fig. 5.15, only the
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Figure 5.15: Transition in which outer longitudinally invariant stripes disappear in a sim-
ulation of the periodically forced SHE35 with parameters b = 2, T = 100, ρ = 0.12 and
r0 = −0.665. The initial condition is shown in first panel of Fig. 5.14 and the panels here
show, from left to right, the state at t = 770, 780, 790, 800, 810, 820, 830 and 840. The first
forcing cycle of this simulation is depicted in Fig. 5.14.

central unpinned stripes remain and they begin to breathe via smooth front motion as the
state begins to now grow on average. We define the front location y = fy at x = 0 using

fy(t) = 2

∫ Ly

0
yu(0, y, t)2dy

∫ Ly

0
u(0, y, t)2dy

. (5.5)

While Eq. (5.5) only provides an accurate value of the front location for states composed of
one type of pattern (e.g. only longitudinally invariant stripes or only unpinned stripes and
not both), it does give a numerical measure for the spatial extent of states of the type shown
in Fig. 5.14. Figure 5.16 shows fy for the y-front location as a function of time for the entire
simulation. Both the initial average decay of the state by loss of longitudinally invariant
stripes and the average growth by lengthening of unpinned stripes are clearly visible with a
sharp transition near t = 800.
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Figure 5.16: The location fy(t) of the front along x = 0 as computed from Eq. (5.5) for the
simulation of periodically forced SHE35 shown in Figs. 5.14 and 5.15. While fy(t) does not
accurately represent the location of the front when t < 800, it does provide a useful proxy
for the dynamics throughout the entire simulation. Parameters: b = 2, T = 100, ρ = 0.12
and r0 = −0.665.

5.3 Dynamics of fully localized stripes under

time-periodic forcing

We now describe progress towards a systematic study of the effect of time-periodic forcing
on fully localized stripes. We note that stability and depinning dynamics of these states
for constant forcing has not been characterized and that even the mechanism for pinning of
these states is poorly understood. Therefore any truly systematic study would need to begin
with a thorough analysis of the constant forcing case. This section describes preliminary
results for the dynamics with time-periodic forcing and details the beginnings of a numer-
ical characterization of the depinning dynamics that will be used to develop a theoretical
framework for the observed behavior. We choose the coefficient of nonlinearity to be b = 2,
fix the period of the forcing cycle to T = 100 and examine the dynamics in the (r0, ρ) plane.
The average forcing r0 is typically taken to be within the pinning region of the longitudi-
nally invariant localized stripes, and we consider values of the forcing amplitude ρ ≤ 0.18.
The system therefore never leaves the region of bistability between the trivial state and the
periodic state.

As with localized states in one dimension, periodic forcing can lead to breathing states
that remain stationary, or grow or decay on average. We begin this section with a discussion
of periodic orbits whose fronts remain stationary on average before turning to states that
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exhibit average growth. We consider states that are symmetric about the x and y spatial
axes and characterize the state in terms of the location of its fronts fx along y = 0 (Eq. (5.3))
and fy along x = 0 (Eq. (5.5)).

Periodic Orbits

Periodic orbits are found by allowing an initial condition consisting of an approximate fully
localized stripe pattern with 11.5 wavelengths (23 stripes) to evolve in time towards the
orbit. We show the details of three sample orbits found in this way on a spatial domain with
Lx = 20π, Ly = 10π, a grid of 1024 × 512 points and simulation time of 25 forcing cycles
with T = 100. The samples are taken with different choices of ρ and r0 and are classified as
−0O−0

0 , −1/2O
−1/2
0 , and −1O−1

0 since there are 0, 1/2, and 1 wavelengths added and subtracted
from each side over the course of the forcing cycle. Figure 5.17 shows snapshots of the state
at times 0, T/4, T/2, and 3T/4 of the last forcing cycle of the simulation. The pattern
has its minimum number of wavelengths along the orbit at t = 0 and is the same for the
three examples shown. The maximum number of wavelengths appears at T/2 and varies
for the three different cases. Figure 5.18 shows the exponential convergence of the state
toward a periodic orbit, though we do not run the simulation to machine precision as we
did for the one-dimensional case (Fig. 4.8). The location of the fronts along y = 0 and
x = 0 given by fx(t) and fy(t) are shown in Fig. 5.19 for the final three forcing cycles of
the simulations. The front position fx follows a slow-fast behavior similar to what has been
observed for the one-dimensional localized states (Ch. 4) while the front position fy varies
smoothly in time. We also show the orbit as a trajectory in the (fx, fy) plane, anticipating
that such a representation will play a role analogous to the front-amplitude picture of the
one-dimensional case (Fig. 4.6, for example). Figure 5.21 shows a summary in the (r0, ρ)
plane of the different periodic orbits computed with T = 100, b = 2 and an initial condition
with 11.5 wavelengths. Each orbit has a minimum number of 11.5 wavelengths as shown
in the first row of Fig. 5.17 and the overall structure is similar to what is seen in Fig. 4.20
for the one-dimensional localized states. There exist periodic orbits with ρ > 0 for values
of r0 where a stationary state does not exist for ρ = 0. The region PO of existence of
periodic orbits therefore stretches outside of the pinning region for fully localized stripes
with constant forcing.

The bifurcation diagram for the constant forcing case in Fig. 5.8 shows that the edges of
the pinning region associated with fully localized stripe patterns depend on the width of the
state. There is a slant in the snaking diagram such that the pinning region shifts to lower
values of r for states with more stripes. The PO region is likewise shifted to lower values
of r0 when computed using a broader initial condition. Figure 5.22 compares the periodic
orbits shown in Fig. 5.21 to those computed using an initial condition with 17.5 wavelengths
instead of 11.5. A domain with Lx = 40π, Ly = 20π and a grid that is 2048× 1024 is used
for the simulations with the broader initial condition. The PO region for the broader initial
condition appears to be roughly the same shape and carries a similar slant for the parameters
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(a) (b) (c)

Figure 5.17: Plots showing time evolution of fully localized stripe patterns over the course
of a period T = 100 of the forcing cycle in the periodically forced SHE35 with b = 2. Each
column depicts a periodic orbit: (a) ρ = 0.07, r0 = −0.653, (b) ρ = 0.10, r0 = −0.648
and (c) ρ = 0.14, r0 = −0.636. The rows, going from top to bottom, show the solutions at
t = 2400, 2425, 2450 and 2475.

shown in Fig. 5.22, but more work needs to be done to characterize the dependence of PO
on the spatial extent of the pattern.

Average growth

The fact that the edges of the pinning region for fully localized stripes depend on the spatial
extent of the pattern means that the time it takes for the pattern to nucleate wavelengths
also depends on number of wavelengths the pattern has. This complicates the picture for
states that grow on average, as the state can be in a resonance region for particular sizes
but may fall out as the size increases over time. We begin the study of growing states by
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Figure 5.18: Convergence towards a periodic orbit consisting of a fully localized stripe pattern
in the periodically forced SHE35 as a function of time for the periodic orbits depicted in
Fig. 5.17 with (a) ρ = 0.07, r0 = −0.653, (b) ρ = 0.10, r0 = −0.648 and (c) ρ = 0.14,
r0 = −0.636. Parameters: b = 2 and T = 100.
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Figure 5.19: The locations of the front along x = 0 (fy in green) and y = 0 (fx in blue)
during three forcing cycles of the periodically forced SHE35 for the periodic orbits of fully
localized stripe patterns depicted in Fig. 5.17 with (a) ρ = 0.07, r0 = −0.653, (b) ρ = 0.10,
r0 = −0.648 and (c) ρ = 0.14, r0 = −0.636. Parameters: b = 2 and T = 100.

considering constant forcing (ρ = 0, r = r0) and mapping out the time to nucleate half of a
wavelength on each side as a function of both the constant forcing parameter r and the front
position fx. The calculations used a spatial domain with Lx = 40π, Ly = 20π and a grid of
2048× 1024 points. This depinning time Tdpn can vary significantly for a particular value of
r: at r = −0.649, for example, Tdpn ≈ 521 for a state with 12.5 wavelengths (fx ≈ 39.2) and
Tdpn ≈ 106 for a state with 31.5 wavelengths (fx ≈ 98.6). Figure 5.23 shows a contour plot
where the depinning time at Tdpn(r, fx) is computed by numerically finding the time between
two subsequent peaks in front velocity ḟx corresponding to adding half-wavelengths to each
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Figure 5.20: Trajectories in the (fx, fy) plane for the periodic orbits of the periodically
forced SHE35 consisting of fully localized stripes depicted in Fig. 5.17 with (a) ρ = 0.07,
r0 = −0.653, (b) ρ = 0.10, r0 = −0.648 and (c) ρ = 0.14, r0 = −0.636. Parameters: b = 2
and T = 100.

side. This depinning time is associated with the front position at a time halfway between
the two peaks. The left panel is colored by Tdpn while the right is colored by T−2

dpn. Each
vertical column of data comes from a single simulation and the dots indicate the data points
where the calculation has been done while the colors represent an interpolation of the data.
The plot of T−2

dpn shows bands that are roughly evenly spaced and follow a slant similar to
what is seen for the right edge of the pinning region for fully localized stripes (Fig. 5.8).

The dynamics are complicated further by a body instability that begins to appear with
constant forcing (ρ = 0) near r ≈ −0.62. Figure 5.24 shows the solutions from a simulation
with r0 = −0.59 and ρ = 0. A zigzag that is symmetric about x = 0 starts to be noticeable
on the stripes of the state at around t = 500 and results in a drastic change in the depinning
dynamics by t = 800. We note that there is no evidence of this body instability appearing
in any of the simulations conducted with time-periodic forcing for the parameters presented
here (0.07 ≤ ρ ≤ 0.17 and T = 100). While the system reaches values of forcing r > −0.62
for all of the simulations depicted in Fig. 5.21, we conjecture that not enough time is spent in
this regime for the mode to develop. However, a more detailed study along with simulations
using different forcing periods and conducted over longer times is needed to understand
better when this mode becomes important.

Even with the complications that arise from a size-dependent pinning region and ad-
ditional instabilities, fully-localized stripe patterns still exhibit evidence of resonances in
their average growth. We take an initial condition with 14.5 wavelengths and compute the
average change 〈∆fx〉 in the front position fx per forcing cycle as a function of r0 when
ρ = 0.12 (Fig. 5.25(a)). The resonance associated with periodic orbits appears clearly near
−0.649 < r0 < −0.648, but there is also a secondary region where the curve appears to
flatten out near −0.647 < r0 < −0.646 with a value 〈∆fx〉 ≈ π. A plot of fx as a function
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Figure 5.21: Periodic orbits of periodically forced SHE35 in the (r0, ρ) plane computed using
an initial condition that approximates the first row of solutions in Fig. 5.17 containing 11.5
wavelengths. The initial condition is found to be stable under constant forcing (ρ = 0) for
values of r0 shaded in gray. The data points are colored by the number of wavelengths added
and subtracted from each side of the pattern over the course of one forcing cycle: ±0 (dark
blue), ±1/2 (light blue), ±1 (yellow) and ±3/2 (red). Parameters: b = 2 and T = 100.

of time in Fig. 5.25(b) shows that the state falls into a 1 : 2 resonance in which half of a
wavelength is added to each side every other cycle of the forcing after about t = 500. The
trajectory in the (fx, fy) plane shown in Fig. 5.25(c) indicates, however, that the shape of
the orbit changes as the state grows. Thus it appears that the system would fall out of the
resonance after enough time if the simulation were continued on a larger domain. This is
presumably due to the size dependence of the depinning time, but it could also be that the
state is only in a transition zone near the resonance to begin with.
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Figure 5.22: Periodic orbits of periodically forced SHE35 in the (r0, ρ) plane computed
with fully localized stripes of 11.5 wavelengths (black) and 17.5 wavelengths (red) as initial
conditions. Parameters: b = 2 and T = 100.

5.4 Discussion

This chapter describes work in progress towards understanding the effects of time-periodic
forcing on two-dimensional patterns. In particular, we have studied various configurations
of stripe patterns that are localized along one and two spatial directions. Results from nu-
merical simulations show breathing dynamics similar to what has been described for the
one-dimensional SHE23 in Ch. 4 and provide evidence that the resonance mechanism under-
lying Fig. 4.10 and Fig. 3.15 exists for localized states in two dimensions as well. A more
detailed understanding of dynamics in the two-dimensional SHE35 with constant forcing will
be required to extend the theory from one dimension to two.

Much of the theory developed for understanding localized states with time-periodic forc-
ing in the context of the one-dimensional Swift–Hohenberg equation relies on depinning
dynamics under constant forcing. The adiabatic theory described in Sec. 4.4, for example,
requires a full characterization of the front speed in order to be applied. While the linear
stability of longitudinally invariant stripes has been worked out [42], this is the closest to
which time-dependence has been studied for localized states in two dimensions. In addition
to stability analysis for the other types of patterns, an analysis of the depinning dynamics via
asymptotics is necessary for these two-dimensional localized states. The calculation would
follow what is done in Ref. [24] and described in Sec. 4.1 for SHE23 in one dimension. This
calculation could then be extended to include time-dependent forcing for certain limits such
as the small amplitude case described in Sec. 4.3 for one-dimensional localized states.
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Figure 5.23: Depinning time for growing fully localized stripe patterns in SHE35 as a function
of the front location fx and the constant forcing r with b = 2. The dots indicate data from
the simulations while the lines are contours from interpolation of the data for (a) Tdpn and
(b) T−2

dpn.

Figure 5.24: Growth of a body instability in a simulation of a fully localized stripe pattern in
SHE35 with constant forcing and parameters b = 2, r = −0.59. The panels in the top row,
from left to right, show the state at t = 400, 500 and 600 as the body instability develops.
The panels in the bottom row show the state at t = 700, 800 and 900 and exhibit drastically
different depinning dynamics once the instability has developed.

There is also the more basic question that remains unanswered for the fully localized stripe
patterns: what is the pinning mechanism? The curvature of the front transverse to the stripes
presumably plays a role, but it is unclear exactly how this can pin the front. Curvature-driven



CHAPTER 5. LOCALIZED STRIPES IN TWO DIMENSIONS WITH

TIME-PERIODIC FORCING 135

(a)

−0.655 −0.650 −0.645
r0

0

1

2

〈 ∆f x
〉

(b) (c)

0 500 1000 1500
t

90

100

110

120

f x

85 90 95 100 105 110 115 120
fx

36

38

40

42

44

46

48

50

52

f y

Figure 5.25: (a) The average change 〈∆fx〉 in location fx of the front along y = 0 as a function
of the average forcing parameter r0 for fully localized stripe patterns in the periodically forced
SHE35 with b = 2, T = 100 and ρ = 0.12. For the simulation at r0 = −0.647 indicated by a
star (b) shows the position of the front fx as a function of time and (c) shows the trajectory
in the (fx, fy) plane.

front propagation has been studied extensively [145] and may provide useful tools for this
situation. Figure 5.9 shows results from a simulation in which structures consisting of pieces
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of fully localized stripe patterns grow from a concave curvature at the front of a wavy stripe
pattern and this may lead to additional insight. Further investigation into, for example,
how the number of partially formed stripes in these structures depends on the curvature
of the wavy stripe pattern might prove to be relevant. A more complete understanding of
the possible instabilities that can lead to the break up of fully localized stripe patterns (e.g.
Fig. 5.25) may also provide some hints.

Figure 5.26: Collapse of a wavy stripe pattern in periodically forced SHE35 with parameters
b = 2, ρ = 0.12, T = 100 and r0 = −0.675. The panels show the state at (top, from left to
right) t = 520, t = 550, t = 580, (bottom, left to right) t = 610, t = 640 and t = 670. The
pattern has nearly collapsed to the trivial state by t = 670, and is thus only barely visible
in the final frame.

As a final note, canard trajectories that appear near transitions of resonance regions for
both the periodically modulated Adler equation (Sec. 3.2) and the one-dimensional Swift–
Hohenberg equation with periodic forcing (Sec. 4.5) have not yet been examined in two
dimensions. We have seen peculiar canard dynamics that result from fine tuning the forcing
parameters near the edge of collapse of the localized state (Fig. 4.28), and analogous but
more complex behaviors are likely to exist in the two-dimensional case. Figure 5.26 is from
a simulation of the periodically forced SHE35 with an initial condition of wavy stripes and
parameters b = 2, ρ = 0.12, T = 100 and r0 = −0.675. The state decays on average and
the pattern is shown at several times just before collapse. We see the state transition from
a wavy vertical stripe pattern to a wavy row of horizontal stripes at t = 610. The horizontal
stripes then bulge as if the state is composed of a series of fully localized stripe patterns
connected end to end at t = 640 before decaying to the trivial state at t = 670. While
the cause of these dynamics is unclear, it could provide some guidance on where to look for
possible canard behavior.
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Chapter 6

Conclusion

This dissertation describes a resonance mechanism that appears in periodically modulated
systems such as the Adler equation with time-periodic frequency parameter and the Swift–
Hohenberg equation (SHE) with time-periodic forcing. We consider an external time-periodic
modulation that causes the system to sample parameters in which certain dynamics occur
in a “forward” direction at some times and a “backward” direction during others. The mod-
ulation results in resonances between the period of modulation and the characteristic time
on which the dynamics of the unmodulated system occur. The dynamics of the periodically
modulated system organizes around the resonances to create a partitioning of the parameter
space into regions with distinct behaviors. In particular, a sweet-spot and pinching structure
is generated as resonance bands associated with forward and backward dynamics cross. The
behavior in each region can, in this case, be characterized by the two resonance numbers of
the bands that overlap there. Canard trajectories that track unstable equilibria for some
time before quickly jumping to stable ones appear near the edges of these resonance regions.
Between the resonance regions are transition zones where dynamics are not locked to the
period of the modulation, but are either locked to a multiple of the modulation period or
are quasiperiodic. The transition zones narrow and canards become more pronounced as the
modulation period increases.

This chapter gives an outlook for future work to extend our understanding of the res-
onance mechanism described above, explore other applications where it may appear and
follow new research directions it motivates. We first summarize the main results in Sec. 6.1,
before discussing physical systems where periodic modulation appears or could be introduced
(Sec. 6.2) and finally provide directions for future work on localized states in model systems
with time-periodic forcing (Sec. 6.3).

6.1 Summary

Chapter 3 introduces the resonance mechanism at the heart of this dissertation in the context
of coupled oscillators by studying the periodically modulated Adler equation. In this case the
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modulation appears in the frequency parameter, and the forward and backward dynamics of
interest are positive and negative phase slips, respectively. The parameter space defined by
the average value of the frequency parameter and its modulation period is partitioned into
regions that remain phase-locked on average or drift via an imbalance of positive and nega-
tive phase slips. Resonance regions where a fixed number of positive and negative phase slips
occur in each modulation cycle are separated by transition zones with non-integer winding
numbers. The resonance regions as well as the canard trajectories near the edges are com-
puted via numerical continuation. Asymptotic analysis provides a detailed understanding
of the dynamics in several limits and an adiabatic theory based on WKB analysis provides
excellent agreement with the numerical results even beyond the low-frequency limit where
it is valid.

In addition to providing valuable insight into the resonance mechanism that is the main
subject of this thesis in a very simple and general context, the work of Ch. 3 opens up several
interesting applications to phase-coupled oscillator systems. A more complete analysis of the
system described by the Hamiltonian (3.68) would help make a direct link from the results of
Ch. 3 to globally coupled systems of active rotators. It would also be interesting to consider
systems in which multiple populations of coupled oscillators interact, a situation that could be
described in terms of coupled Adler equations. Finally, we note that chimera states [146, 147]
that consist of a localized patch of synchronized oscillators in an asynchronous background
have been observed for oscillators that are nonlocally (but not globally) coupled and it
would be interesting to examine the dynamics of such partially synchronized states when
time-periodic modulation is introduced into the system.

Chapter 4 employs the one-dimensional quadratic-cubic Swift–Hohenberg equation (SHE23)
with time-periodic forcing as a second example of the resonance mechanism. The fronts that
define the edges of spatially localized states can, upon exiting the pinning region, move
outwards (forward dynamics) or inwards (backward dynamics) via episodic nucleation or
annihilation of wavelengths of the pattern. The sweet-spot and pinching structure, mapped
out in this case by time-simulations, consists of regions defined by the number of wavelengths
gained and lost over a period of the forcing cycle. There is also an additional region of the
parameter space in which the localized state collapses via amplitude decay. This region of
collapse, not present for the periodically modulated Adler equation, is linked to the ampli-
tude dynamics that overtake the front dynamics outside of the region of bistability between
the trivial state and homogeneous patterned state.

The same asymptotic limits considered for the periodically modulated Adler equation
are considered for SHE23 with time-periodic forcing, and Tab. 6.1 provides a summary.
While the corresponding results for the two examples are similar in most cases, one notable
difference appears in the high frequency, large amplitude limit. This limit predicts a collapse
of the region PO where breathing states that remain localized on average for SHE23 while
the analogous region in the Adler equation persists in this limit, a difference caused by
amplitude dynamics in SHE23.

Chapter 5 explores the dynamics of stripe patterns localized along one and two dimensions
in the two-dimensional cubic-quintic Swift–Hohenberg equation (SHE35) with time-periodic
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Table 6.1: Summary of the various asymptotic limits of SHE23 with time-periodic forcing
(Ch. 4) in terms of the frequency ω = 2π/T , amplitude ρ, and average value r0 of the forcing.
r± define the edges of the pinning region, rc = (r++r−)/2 is the center of the pinning region,
and p = (r+ − r−)/2 is its half-width. We assume that 0 < ǫ≪ 1 is a small quantity and all
others are ∼ O(1).

Limit Frequency Amplitude Avg.
Value

Predictions

High-Freq. (HF) ω/ǫ ρ r0 PO narrows ∼ ǫ2(ρ/ω)2

HF, Large-Amp. ω/ǫ ρ/ǫ r0 PO collapses for ρ/ω ∼ O(1)

Small-Amp. ǫω ǫ2ρ r± + ǫ2δ resonance bands and transition
zones

Asymptotic
sweet spots

ǫ2ω p+ ǫ2ρ rc + ǫ2δ resonance bands cross to form ∼
O(ǫ2) sweet spots and pinching

forcing. While this is work in progress, the numerical results provide evidence that the same
resonance mechanism is at play for the localized states in two dimensions. Longitudinally
invariant stripe patterns localized along one direction can undergo instabilities along the
stripe and one such instability leads to wavy stripes. Structures composed of partially
formed stripes also appear along the fronts at the edges of the state. These states undergo
breathing dynamics analogous to what is seen in the one-dimensional case and the PO region
has been identified through numerical simulation. Analysis of the other resonance regions
is not yet complete, but it appears that the transition zones for wavy stripe patterns of the
two-dimensional SHE35 take up a larger fraction of the parameter space than the analogous
transition zones for one-dimensional localized states in SHE23. The PO region and evidence
of a 1 : 2 resonance region has also been mapped out for fully localized stripe patterns.
The region of existence of the resonance regions in this case depends on the spatial extent
of the localized state, an effect that can be traced back to a slant in the snaking diagram
for the states under constant forcing. As noted in Sec. 5.4, the pinning mechanisms and
depinning dynamics for the fully localized stripe patterns under constant forcing are not yet
well understood.

It will be interesting to consider other types of patterns and parameter regimes where the
various patterns interact more strongly. All of the results of Ch. 5 are taken with cubic non-
linearity coefficient b = 2 but, with larger values of b, the Maxwell point associated with the
stripes and the Maxwell point associated with the squares are closer together. A larger value
of b can also produce more complex behavior when considering only longitudinally invariant
stripe patterns. The body mode can lead to the growth of a labyrinth pattern in the wake
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of the outward propagating front instead of the wavy stripes generated in Fig. 5.3(b) [42].
Finally, we note that preliminary numerical simulations indicate that time-periodic forcing
can induce drift of defects in two-dimensions that would otherwise be frozen into the pattern
under constant forcing. Fronts opens up around the defect during the decaying phase of the
forcing cycle and move before closing during the growing phase. This allows for an annealing
process to take place in which the defects drift towards a lower energy configuration for the
system.

6.2 Applications to systems with time-periodic

modulation

As discussed in Sec. 1.3, the SHE provides a qualitative description for spatially localized
states in a number of different physical systems. However it is useful to consider more
realistic models in order to develop a better understanding of the essential features in the
system. This can motivate extensions of SHE or other model systems that better capture the
mechanisms at play in specific systems and thus provide a more complete understanding of
the effects of time-periodic forcing. We also note that understanding the effects of stochastic
noise on the resonances generated by time-periodic forcing will be necessary for applying the
results of this dissertation to physical systems where random fluctuations play an important
role. This section is divided into two subsections, one focusing on vegetation patterns in
semi-arid regions and the other focusing on localized states in a table-top nonlinear optics
experiment.

Vegetation patterns in semi-arid regions

We discuss three models of vegetation patterns in order of increasing complexity. Each
successive model incorporates more realistic details of the system in order to better capture
the physical mechanisms involved in the pattern formation process.

The first model proposed by Lefever and Lejeune [148, 149] describes the dynamics of
the vegetation density ρ in terms of a nonlocal PDE. Using Gaussian weighting functions,
a Taylor expansion of the biomass, and appropriate nondimensionalization, this integro-
differential equation has been approximated to fourth order as

∂tρ = (1− µ)ρ+ (Λ− 1)ρ2 − ρ3 +
1

2
(L2 − ρ)∇2ρ− 1

8
ρ∇4ρ, (6.1)

where µ is the ratio of mortality to growth, Λ is the degree of facilitation relative to com-
petition in the local interactions between plants, and L is the ratio of the length scales for
facilitation to competition. The local approximation given by Eq. (6.1) is very similar to
SHE (1.6) except with more complicated nonlinearities, most notably the ρ∇4ρ term. While
the additional nonlinearities complicate the bifurcation analysis, initial work on the model
indicates the emergence of localized states in a previously unstudied manner and has led
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to the discovery of new localized states in SHE. In particular, weakly nonlinear analysis
points to the emergence of a spatially modulated solution from the transcritical bifurcation
at µ = 1 in Eq. (6.1) and at r = 1 in SHE. Future work will be to develop a theoretical un-
derstanding of these new states and continue to analyze the Lefever–Lejeune equation (6.1)
to better characterize what is gained in terms of modeling by including more complicated
nonlinearities.

The Klausmeier model [150] and its extensions describe the dynamics of the water and
biomass in a pair of reaction-diffusion-advection equations. A generalized version [151] re-
duces to the Gray–Scott system [152, 153, 154] in a particular limit, which has found broad
application in chemistry and biology. The second model that we consider is a non-standard
form of the Gray–Scott model,

Wt = d∇2W −WB2 −W + a (6.2)

Bt = ∇2B +WB2 −mB, (6.3)

that has been motivated by the Klausmeier model. The system (6.2)-(6.3) models the inter-
action between water concentrationW and biomass concentration B. Precipitation increases
the concentration of water spatially uniformly at a constant rate a and water can be converted
to biomass at a rate WB2 or lost by evaporation at a rate normalized to W . In addition
to being created with water, the biomass dies at a rate mB. Finally, both the biomass and
water diffuse in space with the water diffusing d times faster. The original Klausmeier model,
which was developed for vegetation on a hill, has d = 0 and an advective term proportional
to Wx to model the flow of water downhill. Recently patterns in an “extended Klausmeier
model” have been considered [138, 155] with the inclusion of both diffusive and advective
terms in the water dynamics. This model employs a generalization the diffusive term in the
water equation (6.2) of the form d∇2W γ, but the inclusion of nonlinear diffusion does not
qualitatively change the dynamics for physically relevant values of γ [151]. The Gray–Scott
model has been studied extensively in the limit of large d [156]. Intermediate values of d have
been mostly overlooked in the literature but homoclinic snaking has been identified in this
regime [157]. More analysis will provide insight into the existence and dynamics of localized
states in this intermediate parameter regime 2 < dm < 20 as well as the non-standard way
at which the homoclinic snaking structure breaks apart at dm ≈ 3.67.

Rietkerk et al. proposed the third model considered here in which the dynamics of water
is split into a groundwater component and a surface water component to produce a system of
three coupled equations for water and biomass [158]. A more realistic variant distinguishes
the biomass field as describing above-ground biomass by explicitly modeling feedback asso-
ciated with the nonlocal root systems of the plants [159]. The large-scale redistribution of
water in semi-arid environments through surface flow may be the essential feature of these
types of models that is not captured by SHE. Fast diffusion and slow infiltration into the soil
makes the surface water behave approximately like a conserved quantity. Surface water flow
allows the existence of a localized patch of vegetation to globally alter the water level of the
background bare soil state, and this in turn alters the effective forcing felt by the vegetation
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patch. Simple models of pattern formation in the presence of a conserved quantity [160, 161]
may provide a good starting point for understanding the effects of large-scale redistribution
of a limited resource in ecological systems such as vegetation in semi-arid regions.

Nonlinear optics

Nonlinear optical media provide a setting in which spatially localized structures can be
experimentally created and manipulated in a highly controlled fashion. Moreover, the ex-
periments are usually set up on a single optical table and the resulting localized structures
can often be imaged in real time with just a ccd camera. A liquid crystal light valve (LCLV)
setup with optical feedback has experimentally demonstrated pinning and depinning of fronts
connecting a spatially periodic pattern to a uniform background state [162, 163, 164]. The
experiment has generated one-dimensional localized structures consisting of any number of
wavelengths of the pattern that exist stably within a pinning region. Outside of the pinning
region, the fronts that define the edges of the state depin and the front propagation speed has
been measured as function of the control parameter. The dynamics of these localized states
qualitatively follow SHE with constant forcing and can provide an experimental realization
of the resonance mechanism that occurs when time-periodic forcing is introduced.

The setup consists of a thin nematic liquid crystal layer, a photoconductive wall and
transparent electrodes that allow for an applied external voltage. A collimated laser beam
passes through the liquid crystal layer and is reflected back though the layer by a dielectric
mirror deposited on the back. The light experiences a phase shift within the liquid crystal
that depends on the voltage across the layer. A polarizing beam splitter and mirrors direct
the component of the reflected light with a particular polarization into a light valve that uses
a bundle of fiber optic cables to transport the light onto the photoconductive wall at the
back of the liquid crystal layer. This optical feedback is designed to be local in the sense that
the reflected light illuminates a spatial location on the photoconductive wall corresponding
to where it passed through the liquid crystal layer. Therefore, in addition to the uniformly
applied external voltage, the layer experiences local fluctuations in the effective voltage from
feedback generated by the light at each particular location in the layer. The effective voltage
reorients the liquid crystals and thus controls the index of refraction experienced by the light.

The net effect of the LCLV setup with optical feedback is that the liquid crystal layer
behaves like a Kerr medium in which the local index of refraction depends on the local
intensity of the light. The system exhibits bistability between two spatially homogeneous
states which can be distinguished by the light intensity of the reflected laser beam. When a
spatial light modulator is used to impose a spatially periodic intensity profile on the input
laser beam, one of the homogeneous states develops a spatially periodic profile and fronts
between the states can now be pinned by the structure of the periodic state. The spatially
periodic forcing generates stationary localized states in the system that exhibit characteristics
of homoclinic snaking [165]. A time-periodic forcing can be introduced into the system via
the spatial light modulator which uses a computer to control the light intensity profile of
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the incident laser beam. The computer can be programmed to generate a spatially uniform
time-periodic modulation of the light intensity on top of the spatial modulation.

6.3 Localized states in model systems with

time-periodic forcing

The work in Ch. 4 provides a foundation for understanding the dynamics that result from
introducing time-periodic forcing to spatially localized structures and a number of additional
effects can be explored via variations of SHE or other model systems. Unlike the results in
Ch. 3 that were obtained by numerical continuation, much of the numerical results on SHE23
in Ch. 4 rely on time-simulations. Numerical continuation has been used to study periodic
orbits in a Ginzburg–Landau type equation with time-periodic forcing [128], though a very
coarse time-discretization was employed (four spectral modes were used). Techniques for the
computation of highly accurate periodic orbits of PDEs in one spatial dimension through
numerical continuation have been developed in the context of water waves [166] and mode-
locked lasers [167], and such techniques could prove very useful if adopted for the future
studies described below.

Additional symmetries and broken symmetries

Because it is the simplest choice that allows for localized states, Ch. 4 adopts SHE23 to
study periodically forced patterns in one dimension. In two dimensions, however, quadratic
nonlinearities favor hexagonal patterns and Ch. 5 thus uses SHE35 in order to study localized
stripe patterns subject to time-periodic forcing. While the behavior of localized states is not
fundamentally changed in going from quadratic-cubic to cubic-quintic nonlinearity, there are
several consequences of the additional “up-down” symmetry u→ −u that are worth explor-
ing in systems with time-periodic forcing. As mentioned in Sec. 1.3, the depinning dynamics
of SHE35 involves nucleation and annihilation of half-wavelengths of the pattern at a time
instead of full wavelengths. The additional symmetry also means that the spatial dynamics
are reversible under the two involutions (x, u) → (−x,±u) and thus both symmetric and
antisymmetric states can be stationary.

It may also be interesting to consider systems with broken symmetries instead of ad-
ditional ones. A breaking of the spatial reflection symmetry, for example, will generically
cause localized states to drift [134] though it is possible to break the reflection symmetry and
maintain stationary localized states by protecting the spatial Hamiltonian structure [168].
A time-periodic modulation of a symmetry-breaking term in SHE could lead to resonances
that maintain the dynamic consequences of the symmetry on average over a finite parameter
range. The addition of the dispersion term γ(t)∂3xu to SHE where γ(t) = γ0 + ρ sin(2πt/T ))
will cause the localized states to drift, but it may be possible for the state to maintain zero
average velocity over a finite range of γ0. Moreover, the introduction of an asymmetry be-
tween the increasing and decreasing phases of γ(t) could allow for ratcheting behavior in
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which the state drifts on average even though 〈γ(t)〉 = 0 when averaged over a modulation
period. Finally, we note that this dispersion term induces a phase velocity of the periodic
pattern within its localized envelope with a constant parameter γ and this may also have
interesting consequences when the system is periodically modulated.

Collapsed snaking

This dissertation focuses on localized states with pinned fronts that exist on snaking solution
branches that are stable over a finite range of parameters. The pinning in the cases discussed
here results from the spatial periodicity of the homogeneous patterned state that is bistable
with the trivial state. We have, however, encountered unpinned fronts when considering
localized stripe patterns with fronts transverse to the direction along the stripes (Fig. 5.5(b)).
Unpinned fronts can also appear in one-dimensional systems through a bistability between
two spatially uniform states. A spatially uniform state bifurcates from the trivial state of
SHE at r = 1 and localized states can result from bistability of this uniform state with the
trivial one [24]. Localized states on the so-called collapsed snaking branch can take on a
continuous range of spatial lengths and remain stationary only at the Maxwell point.

Pinning is not necessary for the creation of the resonance regions, as can be seen in
the limit of small amplitude forcing modulation (Fig. 4.14) by the fact that the resonance
tongues persist beyond δ/ρ = 1 to where the system no longer enters the pinning region.
The resonance tongues continue to exist because the parameter dependence of the depinning
time couples the time-periodic forcing to the front motion. The introduction of time-periodic
forcing is thus expected to create resonance regions where the localized states can remain
stationary on average for a finite range of parameters on a collapsed snaking branch. These
resonance regions are likely be much smaller than what has been seen for pinned fronts, and
may be difficult to locate numerically. Asymptotics in the limit of small amplitude forcing
modulation should, however, provide some theoretical understanding as well as a starting
point for numerical studies.

Slanted snaking

The conserved Swift–Hohenberg equation has been studied in connection with front propaga-
tion in phase transitions of supercooled liquids [169] and the coupling of SHE to a large-scale
conserved mode has appeared in connection to descriptions of vertically vibrated granular
material [161]. In both models, the snaking branch of spatially localized states exhibits a
slant such that the location of the pinning region in parameter space depends on the spatial
extent of the state. This slant is linked to the existence of a conserved quantity that makes
the presence of the localized state alter the background state (see Ref. [170] for an excellent
review). In addition to appearing in a number of applications, these systems provide a one-
dimensional realization of a complication that arises in the study of fully localized stripes
in two dimensions. It will thus be useful to understand the effect of slanted snaking on the
resonance structure induced by time-periodic forcing in one spatial dimension. Depending
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on the application in mind, time-periodic modulation could be introduced into the systems
in ways other than through the forcing. For example it might be interesting to indirectly
force the localized state by periodically modulating the large-scale mode. This might have
relevance to a photo-sensitive chemical reaction where catalyst production is modulated by
time-periodic illumination [171]. Such a system may also provide a simple model that cap-
tures the essential dynamics associated with the large-scale redistribution of limited resources
in ecological systems such as vegetation patterns in semi-arid regions (Sec. 6.2).

Oscillatory systems

The gradient structure of SHE does not permit oscillatory dynamics and the system thus
has limited applicability to situations with inherent periodic dynamics. The forced complex
Ginzburg-Landau equation

∂tA = (µ+ iν)A− (1 + iβ)|A|2A+ (1 + iα)∇2A+ γĀn−1 (6.4)

describes the long-time and large-scale evolution of the envelope of patterns in parametrically
driven systems near a n : 1 temporal resonance. Here, µ represents dissipation (µ < 0) or
a constant drive (µ > 0) in the system, ν is the detuning from the unforced frequency, α is
the dispersion, β characterizes the nonlinear frequency dependence, and γ is the amplitude
of the periodic forcing. Both self-oscillatory and damped dynamics are possible for this
system. The n = 2 case appears frequently in applications and an exhaustive classification
of localized states for this case has been carried out in Ref. [133]. In addition to standard
snaking exemplified by SHE, Eq. (6.4) exhibits defect-mediated snaking in which the localized
state grows by nucleating wavelengths of the pattern from a central defect [172]. Moreover,
a wealth of unexpected dynamics has been uncovered for two-dimensional patterns in this
system [173]. Coupling such an equation to a conserved mode has provided a description
for oscillons in granular material [174] and proven successful as phenomenological model for
recently discovered localized Faraday patterns [175].

The steady state solutions and dynamics of Eq. (6.4) have been well studied and it has
proven a useful description in a number of applications, so it would be an ideal starting
point for exploring the role time-periodic modulation in oscillatory systems. The equation
describes the slow dynamics of an envelope of a pattern that is oscillating in resonance with a
parametric forcing, and so explicit time dependence in parameters of Eq. (6.4) correspond to
modulation on a long timescale. This could be achieved, for example, via a slow modulation
of the parametric forcing. We also note that a special case of multi-frequency forcing leads
to a generalization of Eq. (6.4) with time-independent parameters [176] but one expects the
description to generically include explicit periodic time dependence.
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Appendix A

Numerical methods

The two main methods used to obtain the numerical results that appear throughout this
dissertation are numerical continuation and time integration. The dynamics of a system
are computed through time integration. It is thus useful for exploring the evolution of a
system from some initial condition and for studying transient behavior or complicated time-
dependent states. Numerical integration in time can also provide a straightforward way to
compute the parameter dependence of an attractor by allowing simulations using different
parameter values to converge to the attractor of interest. Numerical continuation, on the
other hand, has the advantage of being able to compute the parameter dependence of both
stable and unstable solutions. Moreover, the publicly available package AUTO [115] provides
an accessible way to perform continuation on ordinary differential equations (ODEs) and
time-independent solutions of partial differential equations (PDEs) in one spatial dimension.
There are also a number of other publicly available packages, including pde2path which has
the capability to continue time-independent solutions of PDEs in two dimensions [177, 178,
179]. Techniques for numerical continuation of periodic orbits in PDEs have been developed
in other contexts [166, 167] and would prove useful if adopted for periodically forced systems
of the type studied in this dissertation.

A.1 Numerical continuation

In this section we describe some basic methods of numerical continuation following Refs. [180,
181] with a particular emphasis on the implementation in AUTO. Numerical continuation
provides an approach for computing solutions to the dynamical system

u′ = f(u, µ) (A.1)

for u ∈ R
n as a function of a parameter of the system µ ∈ R. The prime here denotes

derivative with respect to x. Given some u0(x) that solves the system (A.1) for µ = µ0

along with boundary conditions or integral constraints, we would like to find other solutions
and associated parameters (u, µ) that also satisfy Eq. (A.1). A solution branch is a set of
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continuously varying solutions and parameter values (u(x; s), µ(s)) where s denotes some
parametrization. We are often interested in the case that u(x; s) is a fixed point, but it
can also be a periodic orbit or have more general x dependence. The bifurcation diagrams
depicting these solution branches use a scalar measure of the state and the parameter value
in order to create a representation in the plane.

The implicit function theorem provides a foundation for the basic theory of continuation.
Assume G : Rn+m → Rm is a continuously differentiable function such that G(v0,w0) = 0
for v0 ∈ Rn and w0 ∈ Rm. If Gw is invertible where [Gw]ij = ∂Gi/∂wj then there exists a
unique continuously differentiable function g : Rn → R

m in a neighborhood around (v0,w0)
such that G(v, g(v)) = 0. If we consider a dynamical system ẇ = G(v,w) and take v to
be a set of parameters, then the interpretation becomes: if the Jacobian Gw is invertible
then the fixed point w0 persists for parameter values near v0. Moreover the solution branch
(g(v),v) passing through the point (w0,v0) is unique.

The basic procedure for numerically computing solution branches involves approximating
the problem as a set of algebraic equations, producing an initial guess (u

(0)
1 , µ

(0)
1 ) for a

new point on the branch based on the currently known point (u0, µ0), and then finding an
actual point (u1, µ1) on the branch near the initial guess. The approach taken by AUTO

for iteratively approaching the point (u1, µ1) from a guess (u
(ν)
1 , µ

(ν)
1 ) relies on Newton’s

method. This technique generates a sequence of successively better approximations to zeros
of a function and we demonstrate the method for a real-valued function g. If we are looking
for solutions to g(x) = 0 and have an initial guess x(0), we can use a linear approximation of
the function

g(y) = g(x(0)) + g′(x(0))(y − x(0)) +O((y − x(0))2), (A.2)

to provide a new point x(1). Solving the approximation for g(x(1)) = 0 gives x(1) = x(0) −
g(x(0))/g′(x(0)). The point x(1) is the intersection of the line tangent to g at x(0) with the
x-axis. Iterating on this process ν more times gives

x(ν+1) = x(ν) − g(x(ν))

g′(x(ν))
. (A.3)

If g(z) = 0 and g′(z) 6= 0, then the sequence x(ν) → z as long as x(0) is sufficiently close to
the zero z. Moreover, the convergence is quadratic and “sufficiently close” can be defined in
terms of where the linear approximation (Eq. (A.2)) is valid.

Discretization by method of collocation

A discretization scheme is necessary to approximate Eq. (A.1) as an algebraic system. The
method of orthogonal collocation is employed by AUTO because of its nice convergence
properties [182]. The domain is scaled to [0, 1] and divided into a mesh of N elements by
the points 0 = x0 < x1 < ... < xN = 1.

These elements are not necessarily uniform in size and the code periodically adapts
the mesh in order to equidistribute the local discretization error as the continuation pro-
ceeds [183]. Each element [xj−1, xj ] is further divided into 2 ≤ m ≤ 7 sections by uniformly
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+ + + + + + + +

x0 x1 x6/4x2/4 x2

z1,2 z1,3 z2,2 z2,3

Figure A.1: A sample discretization with two elements (N = 2) and four collocation points
(m = 4). The edges of the elements are marked with large black circles and the jth element is
subdivided by the equally spaced small blue circles corresponding to the points xj−k/m. The
calculations are done at the collocation points zj,k marked by red crosses and interpolated
to the points xj−k/m.

spaced points xj−k/m = xj − k∆xj/m where ∆xj = xj − xj−1 and 0 ≤ k ≤ m. The notation
used here involving fractional subindices is meant to emphasize that there are N elements
each subdivided into m pieces. The actual calculation is done at m collocation points zj,k
that correspond to zeros of the mth degree Legendre polynomial Pm relative to the jth
element, and the zeros thus satisfy Pm(2(zj,k − xj−1)/∆xj − 1) = 0. Lagrange polynomials

ℓj,k(x) =
m∏

i=0
i 6=k

x− xj−i/m
xj−i/m − xj−k/m

, (A.4)

are used to interpolate from the collocation points zj,k to the uniformly space points xj−k/m.
Them Lagrange polynomials ℓj,k(x) are constructed so that ℓj,k(xj−k/m) = 1 and ℓj,k(xj−i/m) =
0 for i 6= k. Figure A.1 provides an illustration of the discretization scheme.

The solution on each element [xj−1, xj ] is approximated in terms of the Lagrange poly-
nomials as

pj(x) =

m∑

k=0

uj−k/mℓj,k(x), (A.5)

where the m+1 unknown coefficients uj−k/m approximate the values of the field u(xj−k/m).
Adjacent elements share the coefficient associated with the common edge and so there are
a total of mN + 1 points on the grid. Substituting into Eq. (A.1) and evaluating at the
collocation points zj,k provides mN equations of the form

p′
j(zj,k)− f(pj(zj,k), µ) = 0. (A.6)

The derivative term p′
j(zj,k) can be explicitly computed since it is just a sum of polynomials

and, because the coefficients uj−k/m each have n components, this is in fact a system of nmN
algebraic equations for n(mN + 1) + 1 unknown components of the coefficients uj−k/m and
the parameter µ.

A standard situation is that an additional n equations come from boundary conditions
and a final equation for the system comes from the continuation procedure for choosing the
next point on the branch. In this case the next point on the branch is uniquely determined
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as long as the matrix corresponding to the algebraic system has full rank. Because we
are often looking for symmetric or antisymmetric solutions in a reversible system, we may
take advantage of symmetry to perform the computation on only half of the domain of
interest. For symmetric states, Neumann boundary conditions on half of the domain can be
used to obtain the state on the full domain with periodic boundary conditions. Similarly,
antisymmetric states on a periodic domain can be computed on a half-domain using Dirichlet
boundary conditions.

Pseudo-arclength continuation

Let us now assume that we have a system of algebraic equations that approximate Eq. (A.1)
in the form

F (u, µ) = 0, (A.7)

where u, F (u, µ) ∈ R
nt , and µ ∈ R. In the case that we are continuing a branch of fixed points

in one parameter and use the discretization by method of collocation as described above,
we have nt = n(mN + 1). For periodic orbits or multi-parameter continuation the algebraic
system (A.7) that approximates Eq. (A.1) will generally need to be augmented so that nt >
n(mN+1), but the general continuation procedure still applies. AUTO employs the method
of pseudo-arclength continuation, an approximation to arclength continuation, to step along
the solution branch of the algebraic system. This approach, while more complicated to
implement than natural continuation, has the advantage of being able to negotiate folds of
a solution branch. Other packages, such as pde2path, employ natural continuation until
approach to a potential fold is detected and then switch to pseudo-arclength continuation.
Figure A.2 graphically depicts the continuation step for natural continuation, arclength
continuation, and pseudo-arclength continuation.

(u0 , μ0)
(u1 , μ1)

(u1(0), μ1)

(u0 , μ0) (u0 , μ0)

(u1 , μ1)

(u1 , μ1)

(u1(0), μ1(0)) (u1(0), μ1(0))

∆s ∆s
∆s

Figure A.2: A step along the solution branch starting from the point (u0, µ0) via (a) natural
continuation, (b) arclength continuation (c) pseudo-arclength continuation. The initial guess
is taken a distance ∆s along the direction tangent to the solution branch in all three cases.
Newton’s method is used to approach the point (u1, µ1) along the dotted line.
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We first discuss natural continuation (Fig. A.2(a)) which is the most straightforward way
to numerically follow a solution branch in order to provide some intuition for the process.
Given (u0, µ0) on a solution branch, a naive way to guess a new point (u1, µ1) on the
branch might be to parametrize the branch by the parameter µ so that the next point is at
µ1 = µ0 + ∆µ. An initial guess for the solution u1 at µ1 is given by the linearization in µ
about µ0,

u
(0)
1 = u0 +∆µ

du0

dµ
. (A.8)

The guess u
(0)
1 then becomes the starting point for a recursively defined sequence u

(ν)
1 that

approaches a point on the solution branch corresponding to µ = µ1 as ν → ∞. The
convergence is achieved via Newton’s method by iteratively solving

Fu(u
(ν)
1 , µ1) ·∆u

(ν)
1 = −F (u(ν)

1 , µ1) (A.9)

u
(ν+1)
1 = u

(ν)
1 +∆u

(ν)
1 , (A.10)

where [Fu]ij = ∂Fi/∂uj , [Fµ]i = ∂Fi/∂µ and the dot product represents the standard vector
dot product on R

nt. This approach, known as natural continuation, fails at folds where the
solution branch does not persist beyond a particular value of µ.

Arclength continuation (Fig. A.2(b)), a conceptually useful but difficult to implement ap-
proach, instead takes a step of fixed length in (u, µ) space. This procedure can be formulated
as

F (u(x; s), µ(s)) = 0,

∥∥∥∥
du

ds

∥∥∥∥
2

+

(
dµ

ds

)2

= 1. (A.11)

Because we are interpreting the vector u ∈ Rnt as a discretization of a continuous function
u(x) on Rn, we can choose the norm in Eq. (A.11) to approximate the norm ‖u‖2 =

∫
u(x) ·

u(x)dx, where the dot represents the standard vector dot product on Rn. Newton’s method
can use an initial guess that is along the direction tangent to the solution branch at (u0, µ0)
to generate successively closer approximations to a point on the solution branch at (u1, µ1)
by varying the direction and fixing ∆s. In practice, it is easier to implement pseudo-arclength
continuation (Fig. A.2(c)) in which the arclength formulation (Eq. (A.11)) is approximated
by

F (u1, µ1) = 0,

〈
(u1 − u0),

du0

ds

〉
+ (µ1 − µ0)

dµ0

ds
−∆s = 0, (A.12)

where the inner product 〈u,v〉 on Rnt should approximate the inner product 〈u, v〉 =
∫
u(x) ·

v(x)dx of functions on Rn. AUTO approximates the integral by quadrature to give

〈u, v〉 =
∑

j,k

ωj,kuj−k/m · vj−k/m, ωj,k =

∫ xj

xj−1

ℓj,k(x)dx, (A.13)

where the quadrature coefficients ωj,k are independent of j apart from an overall scaling,
uj−k/m,vj−k/m ∈ Rn correspond to values of the functions evaluated at the grid point xj−k/m,
and the dot in the expressions again represents the standard vector dot product on Rn.
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Geometrically, the interpretation is that a step is taken along the hyperplane perpendicu-
lar to the direction (du0/ds, dµ0/ds) tangent to the solution branch at (u0, µ0) and a distance
∆s away. The additional constraint comes from the condition defining the hyperplane that
the projection of the step from (u0, µ0) onto the tangent direction (du0/ds, dµ0/ds) must be
∆s. The initial guess, which is still taken to be along the direction tangent to the solution
branch, is given by

u
(0)
1 = u0 +∆s

du0

ds
(A.14)

µ
(0)
1 = µ0 +∆s

dµ0

ds
, (A.15)

with (du0/ds, dµ0/ds) known from the previous step.
The Newton method AUTO uses for convergence to a point on the branch is given by

(
Fu(u

(ν)
1 , λ

(ν)
1 ) Fµ(u

(ν)
1 , λ

(ν)
1 )

du0

ds
dµ0
ds

)(
∆u

(ν)
1

∆µ
(ν)
1

)

= −




F (u
(ν)
1 , λ

(ν)
1 )

〈
(u

(ν)
1 − u0),

du0

ds

〉
+ (µ

(ν)
1 − µ0)

dµ0
ds

−∆s


 (A.16)

Because inverting the (nt + 1)× (nt + 1) matrix on the left-hand side of Eq. (A.16) at each
iteration is costly, the code employs a Newton–Chord method where the inverse is updated for
only a user-specified number of Newton iterations before being frozen and Chord iterations
are used.

The direction tangent to the solution branch at (u1, µ1) can be computed from differen-
tiation of Eq. (A.12) to get

(
Fu(u1, λ1) Fµ(u1, λ1)

du0

ds
dµ0
ds

)(
du1
ds

dµ1
ds

)
=

(
0

1

)
, (A.17)

which is solved using the same matrix inversion that appears in the Newton iteration. The
pseudo-arclength continuation procedure can then be repeated to trace out a particular so-
lution branch. AUTO adapts the size of each step in ∆s based on how fast the Newton
method converges. If ∆s falls below a user-specified minimum value or if the Newton al-
gorithm doesn’t converge within a user-specified number of iterations then the procedure is
terminated. The tolerance that defines convergence is also specified by the user.

Bifurcation detection and branch switching

A regular solution u = u0 to Eq. (A.7) at µ = µ0 is defined by the property that Fu(u0, µ0)
has rank nt. The implicit function theorem ensures that a unique solution branch (u(x; s), µ(s))



APPENDIX A. NUMERICAL METHODS 152

passes through a regular solution at the point (u0, µ0). The implicit function theorem also
ensures a unique solution branch passes through a point (u, µ) with rank (Fu(u, µ)) = nt−1
as long as the augmented matrix [Fu|Fµ] has rank nt. The point (u, µ) is known as a simple
fold in the latter case and the saddle-node bifurcation provides an example where such a
point occurs.

Regular points and folds have a unique solution branch passing through, but additional
branches can emerge at singular points with rank (Fu(u, µ)) < nt. Additional solutions
can also be created though a Hopf bifurcation at points where an eigenvalue has zero real
part even if rank (Fu(u, µ)) = nt. The detection of these Hopf bifurcation points must
be handled separately and will not be discussed here. We focus on new solution branches
created at local steady state bifurcations which occur at singular points owing to least one
zero eigenvalue. A simple singular point occurs where rank ([Fu|Fµ]) = nt−1 which happens
when either rank (Fu) = nt − 1, or rank (Fu) = nt − 2 and Fµ is not in the span of the
columns of Fu. We expect that one additional solution branch can emerge from a simple
singular point. In order to detect potential steady state bifurcations AUTO tracks the value
of q(s) = det ([Fu(s)|Fµ(s)]) as a function of the parametrization along the solution branch.
When a sign change is detected, a secant method is used to approximate the location of the
zero. Essentially a finite difference approximation to Newton’s method, the secant method
finds the zero by iterating the recursive formula

sν+1 = sν − sν − sν−1

q(sν)− q(sν−1)
q(sν). (A.18)

This method fails to detect codimension-two bifurcations where two eigenvalues pass through
zero and thus q(s) has a zero without changing sign. While the determinant q(s) does not
cross zero at a simple fold, the solution branch changes direction in µ at folds. A fold point
is therefore a zero of dµ/ds along the branch and can be found using secant method where a
change in sign of dµ/ds is detected. Because AUTO must already compute dµ/ds (Eq. A.17)
in order to determine the direction tangent to the branch, this provides an efficient method
for determining potential folds.

At steady state bifurcation points where a second solution emerges, AUTO can attempt
to continue along the current solution branch or try to switch onto the new branch. As
discussed, the initial guess for continuing along the current branch is obtained by stepping
along the direction (du/ds, dµ/ds) tangent to the branch. The tangent direction is in the
nullspace of [Fu|Fµ], and the second branch also emerges along a direction within this two-
dimensional nullspace. Computing the actual direction that the second branch emerges
requires the evaluation of second order derivatives of F [184]. AUTO instead uses the
direction orthogonal to (du/ds, dµ/ds) in the nullpace as an initial guess for the pseudo-
arclength continuation procedure in order to attempt to switch branches, and this has been
found to be successful in most applications.
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Multiple continuation parameters and periodic orbits

The previous discussion has considered only a single bifurcation parameter, but it is often
useful to follow a particular solution as a function of two or more parameters. The approach
outlined above can be generalized to consider any number of bifurcation parameters by
noting that the continuation procedure makes no real distinction between the discretized field
variables and the continuation parameter. There just needs to be an additional boundary
condition, integral constraint or other imposed constraint on the system for each additional
bifurcation parameter considered. For example we may want to track the location of the
Maxwell point between the periodic state and trivial state in SHE as a function of two
parameters. This can be accomplished by including an integral constraint that specifies that
the value of the free energy for the periodic state is fixed at zero. Another example might be
to follow a fold point in two parameters. AUTO can handle this situation by automatically
extending the system to include the zero eigenvector and the additional constraint enforcing
that Fu has a one-dimensional zero eigenspace.

Following periodic orbits involves two-parameter continuation since the period of the orbit
can change along the solution branch in addition to the bifurcation parameter. Because the
domain is scaled to the unit interval in AUTO, the period of the orbit appears as an additional
parameter of the system. AUTO can thus automatically extend a given system to be able
to perform the required two-parameter continuation for periodic orbits. Periodic boundary
conditions are necessary to make the orbit periodic but this is not enough to uniquely specify
the solution since x translations of a solution also solve the system. AUTO implements the
following additional integral constraint that fixes the phase of the orbit when performing
continuation on periodic orbits:

〈u′
1,u1 − u0〉 = 0, (A.19)

where u′
1 is the discretization of the derivative of the function u1(x) on Rn with respect

to x and the inner product is computed by the method used for Eq. (A.12). This phase
condition minimizes the distance in function space between the solution being computed
and the solution at the previously computed point on the branch. The advantage of this
method is that it prevents sharp fronts or peaks from drifting along the domain as successive
solutions are computed along the branch.

A.2 Time integration

PDEs are often solved numerically by reducing the system to a set ofN ODEs and integrating
them forward in time. This can be accomplished by approximating the solution on a discrete
spatial grid where the ODEs describe the time-dynamics at a set of points xj and finite
difference methods to approximate the coupling between the points due to spatial derivative
terms. A better approximation to the derivative terms can be achieved in Fourier space
and this approach is straightforward to implement when the system is subject to periodic
boundary conditions and the grid points are uniformly distributed. The code we have written
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to numerically integrate SHE in one and two dimensions thus performs the calculations in
Fourier space.

In Fourier space, SHE can be written as

dûj
dt

=
(
r0 − (1− k2j )

2
)
ûj + N̂Lj, (A.20)

where the hat denotes a Fourier transform, the jth Fourier mode has wavenumber kj , r0 is
the time-independent component of the forcing, and NL contains the nonlinear terms from
N23 or N35 and explicitly time-dependent terms such as ρ sin(2πt/T )u. At each time step û
is transformed to real space via inverse Fourier transform, NL is computed on the spatial
grid as a function of u and t, and then NL is transformed back to Fourier space to get
N̂Lj. In one spatial dimension, the simulation is set up on a grid of Nx equidistant points
on a spatial domain with −Lx < x ≤ Lx and subject to periodic boundary conditions. In
Fourier space, the modes are given by kn = nπ/2Lx for −N/2 < n ≤ N/2. Because u is a
real-valued function, û−j is the complex conjugate of ûj and it is only necessary to compute
half of the modes. In two spatial dimensions, the grid becomes Nx×Ny points on a domain
with −Lx < x ≤ Lx, −Ly < y ≤ Ly and subject to periodic boundary conditions in both
directions. It is only necessary to compute half the modes for the two-dimensional case again
owing to the fact that u is real-valued.

Nonlinear terms in the system generate large wavenumbers that are subject to aliasing
when computing in Fourier space. A nonlinear term up produces a response with wavenum-
ber as large as pk from a mode with wavenumber k. One must take care that these short
wavelength (large wavenumber) responses do not alias onto long wavelength modes of the
discretized system. This aliasing occurs when the discrete spatial sampling cannot distin-
guish the high frequency spatial oscillation from a low frequency one (Fig. A.3). The short
wavelength response thus spuriously contributes to the amplitude of a long wavelength mode
resulting in numerical inaccuracies.

In order to prevent large wavenumber contamination due to aliasing, we filter out modes
from our computation by manually setting their amplitudes to zero. The general rule for
filtering in a system with highest order nonlinearity up is that the top (p − 1)/(p + 1)
fraction of modes must be set to zero in order to prevent aliasing. This condition can be
understood by considering N equally spaced points on a one-dimensional spatial domain
with periodic boundary conditions. In Fourier space the modes range from −N/2 to N/2
and the highest mode generated by the nonlinear term from a particular mode n is pn. When
N/2 < pn < 3N/2, the mode pn is aliased onto pn − N . In order to determine the largest
mode that does not contaminate any modes lower than it, we must find the mode that just
aliases onto itself. The condition for this to happen is −n = pn − N , implying that the
modes −N/(p + 1) < n < N/(p + 1) is be safe from contamination if we filter the modes
|n| ≥ N/(p + 1). In two dimensions, the same argument holds for each spatial direction
independently and the fraction of modes kept after filtering is 4/(p+1)2. Therefore only 1/9
of the modes remain after filtering in the two-dimensional SHE with a quintic nonlinearity.
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Figure A.3: Aliasing of sin 9x onto sin x using a grid with N = 8.

Exponential time differencing

Special care must be taken with the time integration of Fourier modes of a system like SHE
because it contains a fourth order spatial derivative. The modes with short wavelength
evolve on fast time scales because of the k4 term in Eq. (A.20). The ratio of the slowest
to the fastest time scale in the system scales exponentially with the order of highest spatial
derivative. When this ratio is large, the system is considered stiff. Such systems are nu-
merically challenging to integrate in time because they require a time step small enough to
capture the fastest time scales and must be integrated long enough to capture the slowest
time scales. If the time step is too large the numerical scheme may be unstable and if it is
too short the computation time will be unnecessarily long.

It is often the case that the stiffness of a system stems from the linear terms as they
typically contain the high order spatial derivatives. The method of exponential time dif-
ferencing [136] provides an efficient way of dealing with stiffness in these cases by exactly
solving the linear autonomous part of the problem and employing a numerical scheme to
approximate the nonlinear and explicitly time-dependent contributions.

Consider an ODE of the form
v̇ = cv + F (v, t) (A.21)

where c is a constant and F (v, t) represents nonlinear and explicitly time-dependent terms.
There are N equations of this form to integrate forward in time for SHE where v = ûj,

c = r0 − (1 − k2j )
2 and F (v, t) = N̂Lj . The term F (v, t) is computed from v in practice

by taking an inverse Fourier transform of v, evaluating the nonlinear and explicitly time-
dependent terms in real space, and the transforming back to Fourier space. We would like
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an approximation of v(tn+1) given v(tn). The first step is to solve the linear part of the
equation exactly. Thus we multiply Eq. (A.21) by the integrating factor e−ct and integrate
the equation from t = tn to t = tn+1 = tn + h to get

ve−ct
∣∣∣∣
tn+h

tn

=

∫ tn+h

tn

e−cτF (v(τ), τ) dτ. (A.22)

Equation (A.22), which is still exact, simplifies to

v(tn+1) = v(tn)e
ch + ech

∫ h

0

e−cτF (v(tn + τ), tn + τ)dτ. (A.23)

The numerical approximation in this scheme appears in computing the contribution from
the integral involving nonlinear and explicitly time-dependent terms on the right-hand side
of Eq. (A.23). We use a fourth order approximation based on the Runge–Kutta method.
The solution vn+1 at time tn+1 is computed from vn through four intermediate steps, and
the full procedure is

an =vne
ch/2 + α0hF (vn, tn) (A.24)

bn =vne
ch/2 + α0hF (an, tn + h/2) (A.25)

cn =ane
ch/2 + α0h (2F (bn, tn + h/2)− F (vn, tn)) (A.26)

vn+1 =vne
ch + α1hF (vn, tn) + α2h (F (an, tn + h/2) + F (bn, tn + h/2))

+ α3hF (cn, tn + h). (A.27)

In order to calculate the contribution from F at each intermediate step, we perform an inverse
Fourier transform of an intermediate field, compute the nonlinear terms in real space, and
a transform back to Fourier space. This process must be repeated four times at every time
step. The coefficients αj , which only need to be computed once as long as the time step is
fixed, are given by

α0 =
(
ech/2 − 1

)
/ch (A.28)

α1 =
(
−4 − ch+ ech(4− 3ch + c2h2)

)
/c3h3 (A.29)

α2 = 2
(
2 + ch + ech(−2 + ch)

)
/c3h3 (A.30)

α3 =
(
−4 − 3ch− c2h2 + ech(4− ch)

)
/c3h3. (A.31)

These coefficients suffer from numerical inaccuracies due to cancellation errors when ch≪ 1.
One approach is to compute these terms from a Taylor expansion when the value is below a
certain threshold. A more robust approach, which we employ, is to compute the coefficients
from a contour integral [185]. Taking the coefficients to be functions of ch, we can make use
of the residue theorem to write

αj(ch) =
1

2πi

∫

Γ

αj(z)

z − ch
dz, (A.32)
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where Γ is a contour sufficiently large to enclose ch. This method has the advantage over the
Taylor expansion approach of being accurate for both large and small values of ch. Moreover
it is generalizable to higher-dimensional systems where c becomes a linear operator that is
not necessarily diagonalizable. In practice, we only employ Eq. (A.32) when ch < 0.1 and we
use a Riemann sum to numerically compute the integral along a unit circle centered about
the origin.

Parameter scans

The most straightforward way to characterize the dependence of an attractor on parameters
of the system using time integration is to numerically evolve an initial state within the basin
of attraction to the attractor at a set of grid points that cover the parameter space. Some
knowledge of the structure of the dynamics in the parameter space can allow for intelligent
choices for the grid points in order to minimize the number of simulations necessary to map
out the parameter space. Moreover, knowledge of how to distinguish between attractors of
interest can allow for reduction in length of each simulation.

For initial parameter explorations of SHE23 with time-periodic forcing (cf. Fig. 4.10),
we use an evenly spaced grid and scanned horizontally (∆r0 = −10−4) before making each
vertical step (∆T = 1) thus going from the bottom right to the top left of the parameter
space. We begin each horizontal scan at the right-hand side of the parameter space r0 =
r+ and, anticipating average growth (yellow and orange regions), take a relatively narrow
initial condition that consists of five wavelengths of the periodic pattern. Once PO (dark
region) is detected during a horizontal scan, the initial condition switches to a state that
fills approximately 3/4 of the domain in preparation for average decay (light and dark blue
regions). We stop each simulation after the state reaches the domain edge, collapses to u = 0
or after a maximum time (typically tmax = 2000 or 4000). We stop each horizontal scan
and step up vertically when a simulation first indicates amplitude collapse (white region).
At T = 200, the domain size of the simulation is doubled in order to capture the larger
fluctuations in front position allowed by the longer forcing period. Specifically, we go from
computation with Lx = 40π and Nx = 1024 to Lx = 80π and Nx = 2048.

This initial parameter provides a picture of the parameter space as being composed of
relatively large regions with constant values of 〈∆f〉 approximately 2π apart. These regions
are separated by relatively narrow transition bands between where 〈∆f〉 changes rapidly.
Subsequent parameter scans (cf. Figs. 4.18, 4.19 and 4.23) make use of this information
to intelligently select grid points such that they are more dense near the transition zones.
A coarse and evenly spaced mesh is first used to cover the parameter space that does not
experience amplitude collapse. The mesh is then iteratively refined in the following way.
Each grid point computed during the first iteration is taken to be the lower right corner of a
rectangular element of the parameter space whose other corners are adjacent grid points. If
the value of 〈∆f〉 differs by some threshold value (typically π/10) on any of the four corners
of the element, we assume the element contains a transition zone. We refine the element by
performing simulations at the midpoints of the all the edges and at the center. This divides
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Figure A.4: Refinement of mesh in parameter space near a transition zone depicted by the
bold curve.

the element into four sub-elements that are each 1/4 the size of the original. The procedure
is then repeated for all of the sub-elements created during the previous iteration. In this
way, the grid points where simulations are performed accumulate on the transition zones
and the procedure is terminated once the desired resolution in parameter space is reached.
Three iterations of the process are depicted in Fig. A.4.
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