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Abstract

In this report, we analyse the behaviour of Rayleigh–Bénard convection and doubly-
diffusive convection in infinite horizontal layers of fluid.

We begin by formulating the equations governing Rayleigh–Bénard convection and doubly-
diffusive convection from physical laws that describe the motion of fluids. We therefore saw
that the dynamics of Rayleigh–Bénard convection is controlled by non-dimensional paramet-
ers Pr and Ra. Similarly, the dynamics of doubly-diffusive convection is controlled by the
non-dimensional parameters Pr, Le and N .

We then perform linear stability calculations to find the critical values in terms of these
parameters at which instability arises in the Rayleigh–Bénard and the doubly-diffusive prob-
lems. This involved subjecting the base state of the fluid to small infinitesimal perturbations,
and then neglecting the nonlinear perturbations since these are even smaller than the linear
perturbations.

We then perform a weakly nonlinear analysis by expanding the solutions in terms of a
small parameter ε, and then successively finding solutions using the solvability condition for
increasingly smaller terms. This then allows us to write Landau equations, which we then use
to find the form of the primary bifurcations of each problem and for what parameter values
they are subcritical or supercritical. We supplement this knowledge with bifurcation diagrams
generated using the continuation and bifurcation package for MATLAB called pde2path.
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Chapter 1

Introduction

1.1 Motivation

In fluid dynamics, convection is broadly described as the motion of fluids. It is the sum
of fluid motion by bulk, large-scale movement, called advection, and individual molecular
movement, called diffusion. It may occur via many different mechanisms such as forced
convection, which is a flow driven by an external source, or natural convection, which is a
flow induced by density differences that generate buoyancy forces.

Many physical phenomena can be described by convective flows. Thermal convection, the
transfer of heat due to convection, can be observed for example, when heating a glass container
of fluid with a Bunsen burner. This will result in temperature changes in the container due
to the circulation of the fluid from warmer to cooler areas. Similarly, solutal convection, the
transfer of a solute in a fluid caused by convection, can be observed when mixing soluble ions
in a container of water by stirring. More complex geophysical and astrophysical systems can
also be explained by convective flows such as ocean circulations (Stommel and Arons, 1959a,b;
Rahmstorf, 2003), plate tectonics (Wilson, 1963; Oxburgh and Turcotte, 1970; Weertman,
1978) and dynamo theory (Parker, 1955; Ovchinnikov and Enßlin, 2016).

In this report, we will be concerned with two natural convection problems: Rayleigh–
Bénard convection and doubly-diffusive convection. Rayleigh–Bénard convection is the simplest
convective problem we can study because of its straightforward geometry and thermodynamic
properties. The mathematical analysis we perform will provide the groundwork for study-
ing doubly-diffusive convection, a natural extension of the Rayleigh–Bénard problem, and
potentially other more complicated flows.

1.2 Rayleigh–Bénard Convection

Consider a horizontal layer of fluid of depth d that is heated from below. We can then
define the temperature at the bottom and the top of the fluid to be T0 and T1 respectively.
The fluid particles at the bottom of the layer have more kinetic energy due to the applied
heat. Therefore, they vibrate and move more, and maintain a greater average distance
between themselves. Due to this thermal expansion, the fluid at the top of the layer will be
denser than the fluid at the bottom. As this is a potentially unstable arrangement, the fluid
will want to redistribute itself to a more stable arrangement. However, this is inhibited by
the viscosity of the fluid. Therefore, in order for the instability to manifest, we expect the
unfavourable temperature gradient that is maintained to exceed a certain critical value.

The first experiments that demonstrated the onset of this thermal instability in fluids

1



Figure 1.1: Schematic diagram of convection cells occuring in Rayleigh–Bénard convection.
Red and blue represent higher and lower temperatures respectively.

were carried out by Bénard (1900). He found that when the unfavourable temperature
gradient surpassed the critical value, the fluid settled into a regular hexagonal pattern of
cells. In subsequent years, others (Schmidt and Milverton, 1935; Schmidt and Saunders,
1938; Bénard and Avsec, 1938; Saunders et al., 1935) have replicated the results using a
variety of experimental methods, details of which are summarised in Chandrasekhar (1961,
Chapter II, Section 18) and Koschmieder (1993, Part 1, Chapter 1).

Lord Rayleigh (1916) analysed the problem Bénard studied and showed that the stability
of the fluid is determined by the value of what we now call the Rayleigh number, Ra. This is
defined as

Ra =
gαβ

κν
d3, (1.2.1)

where g is the acceleration due to gravity, d is the depth of the layer as defined above, β = dT
dz

is the uniform temperature gradient that is maintained, α is coefficient of volume expansion,
κ is the thermometric conductivity coefficient and ν is the kinematic viscosity coefficient.
How these coefficients arise will become apparent in Chapter 2. Instability occurs at the
primary bifurcation, when Ra exceeds a critical value Rac. We will determine the value of
Rac in Chapter 3.

1.3 Doubly-Diffusive Convection

Doubly-diffusive convection, as we have already said, is a natural extension of the classical
Rayleigh–Bénard thermal convection problem. Motivated by the fact that many processes in
engineering, biology, meteorology and other branches of science involve the transfer of mass
through a concentration gradient, Veronis (1965, 1968) and Sani (1965) studied the convective
instability that arises in a fluid layer that undergoes thermal and solutal convection. If we
consider a fluid layer much like the one in the Rayleigh–Bénard problem, that is subjected
to a higher temperature and concentration at the bottom of the layer, then we may observe
oscillatory motions. The instability arises because if a fluid particle from the warmer and
more concentrated region is raised in the layer, it finds itself in colder and less concentrated
surroundings. As the rate of thermal diffusion is usually greater than the rate of solutal
diffusion, heat will equilibrate faster than molecular concentration. This now leaves the
particle heavier than its surroudings, which causes it to sink. However, the particle returns
to its original position heavier than it began because the temperature field of the particle
causes lag in the displacement field. Therefore it sinks further, leading to greater oscillations
as time progresses. A schematic diagram of this is depicted in Figure 1.2.
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Figure 1.2: Schematic diagram adapted from Garaud (2018) of convection arising through
an oscillatory instability that arises in doubly-diffusive convection. Red and blue represent a
higher or lower temperature respectively. Fluid particles are depicted by white circles.

Motivated by an oceanographical phenomenon observed by Stommel et al. (1956), Melvin
Stern (Stern, 1960) discovered the phenomena that is now known as the salt finger instability.
This type of convection occurs in a fluid layer that is subjected to a higher temperature and
concentration at the top of the layer. A schematic diagram of this phenomenon can be seen
in Figure 1.3.

Figure 1.3: Schematic diagram adapted from Garaud (2018) of convection arising through
the salt finger instability that arises in doubly-diffusive convection. Red and blue represent
a higher or lower temperature respectively. Fluid particles are depicted by white circles.

This instability occurs because if a fluid particle from the warmer and more concentrated
area is displaced down, its temperature equilibrates very quickly with its surrounds through
diffusion, but its concentration does not. This decrease in temperature causes the density
within the parcel to increase, which in turn causes it to sink further.

We will determine the critical values at which these instabilities occur in Chapter 3 and
then use these to determine the types of primary bifurcations that occur in Chapter 4.

1.4 Report Outline

In order to study the behaviours of fluids in Rayleigh–Bénard convection and doubly-
diffusive convection, we will first need to derive the governing equations. We do this from
physical concepts and laws in Chapter 2.

In deriving the governing equations, we will subject the fluid to perturbations before we
begin with our linear and weakly nonlinear analyses in Chapter 3 and Chapter 4 respectively.
The idea behind these perturbation equations is to obtain approximate analytical solutions to
a problem so that we may understand it better. To illustrate this concept we will consider the
following example adapted from Francis (2011). Suppose we have a rigid rod pendulum. This
has two equilibrium points (or positions where the pendulum will remain stationary): one
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where the pendulum points directly downwards and one where the pendulum points upwards
(similar to balancing a pencil on its end).

Now the question is how do we know whether the equilibria are stable or unstable? If
we nudge, or perturb, the pendulum slightly from the downward-facing equilibrium point,
we find that it will oscillate but then settle back towards the same equilibrium point. This
indicates that trajectories that start near this equilibrium will tend towards it, implying a
stable equilibrium. However, if we perturb the pendulum slightly from the upward-facing
equilibrium, it will evetually settle at the downward-facing equilibrium. This indicates that
trajectories that start near this equilibrium will tend away from it, implying an unstable
equilibrium. Thus, by introducing a perturbation, we can determine local dynamics of the
pendulum and therefore understand the system better.

Figure 1.4: Diagram of a rigid rod pendulum and its equilibria.

Once we have subjected our equations to (small) perturbations, we will only consider terms
up to a certain order. For example, in linear stability analysis, we subject the equations to
infinitesimally small perturbations and then disregard the nonlinear terms. To illustrate this
concept consider the following scenario adapted from Plait (2009). Suppose we are standing
on a ship deck and are looking into the distance. How far away is the horizon?

If we assume that the Earth is a uniform sphere with a radius r, of 6, 400km and our
eyes are at height h = 10m above sea level, then by Pythagoras’ theorem, we find that the
distance to the horizon d, is given by

d2 = 2rh+ h2. (1.4.1)

Suppose now we define the non-dimensional parameter δ to be δ ≡ h
r and rewrite the

above equation as (
d

r

)2

= 2δ + δ2. (1.4.2)

For our particular values of h and r, we find that δ ≈ 1.56 × 10−6, so it is reasonable to
neglect the δ2 term since it is much smaller than the already small δ term.

Consequently, we may prefer to say the horizon can be approximated by

d2 ≈ 2rh, (1.4.3)

which gives us d ≈ 11.3km for the values we have assumed.
Why might we prefer this approximation to the exact answer? Suppose we got off the

boat and now the height of our eyes above sea level has changed. In this example, calculating
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Figure 1.5: Schematic diagram showing the geometrical distance to the horizon.

the exact answer is not difficult, but for more complicated problems, it might much be easier
to only have to deal with the leading order terms. We should also note that the Earth is not
actually a perfect sphere, so the radius of the earth is not actually going to be uniform like
we have assumed. The ocean is also not flat and may be perturbed by currents and gravity.
Additionally, our vision may be obstructed by other things in the horizon such as clouds and
haze. Considering all of these, the small δ2 that we have neglected is likely not as important
as the other complications of the formulation of the problem.

Using these concepts, we will now begin our study of Rayleigh–Bénard convection and
doubly-diffusive convection.
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Chapter 2

The Governing Equations

2.1 The Fundamental Hydrodynamic Equations

2.1.1 The Continuity Equation

The principle of mass conservation states that for a closed system, the mass of the system
remains constant over time. Now, consider a fixed volume V with surface S and outward
normal n̂. The total mass in V is given by

ˆ
V
ρdV, (2.1.1)

where ρ ≡ ρ(x, t) is the density in terms of the position x = (x, y, z) and time t and dV =
dxdydz is a volume element. Due to the conservation of mass, expression (2.1.1) can only
change if fluid is transferred in or out of V . The rate of this change of mass in time is then
given by

d

dt

ˆ
V
ρ dV = −

ˆ
S
ρu · n̂ dS, (2.1.2)

where u ≡ u(x, t) is the fluid velocity, dS is a surface element of S with outward normal n̂.
Since V is fixed in space for all time t, we may write,

ˆ
V

∂ρ

∂t
dV = −

ˆ
S
ρu · n̂ dS. (2.1.3)

Using the divergence theorem (see equation A.1.1), and rearranging we obtain

ˆ
V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0. (2.1.4)

Since V is arbitrary, we have, for any volume V

∂ρ

∂t
+∇ · (ρu) = 0, (2.1.5)

which is the general expression for the continuity equation.

2.1.2 The Momentum Equation

Consider again a fixed volume V of fluid, with surface S and outward normal n̂. Newton’s
second law of motion states that the rate at which the momentum of a body changes is
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proportional to the force applied. This change occurs in the direction of the applied force.
If we let ρ ≡ ρ(x, t) be the density and u ≡ u(x, t) be the fluid velocity as defined in
Section 2.1.1, then the rate of change of momentum in V is given by

d

dt

(ˆ
V
ρu dV

)
=

ˆ
V

∂

∂t
(ρu) dV, (2.1.6)

since V is fixed in space for all time t.
By Newton’s second law, this is equal to the net flow of momentum through the boundary

S added to the net force acting on V . So we can write,ˆ
V

∂

∂t
(ρu) dV = −

ˆ
S
ρuu · n̂ dS +

ˆ
V
F dV +

ˆ
S
f dS, (2.1.7)

where the first integral on the right hand side is the net flow of momentum in V (since
we have taken n̂ to be the outward normal), the second integral represents the macroscopic
body forces acting on the fluid, with force density F, and the third integral represents the
microscopic stress interactions between fluid molecules either side of S, with stress density f .

Using the divergence theorem (A.1.1), we can rewrite the previous equation asˆ
V

[
∂

∂t
(ρu) +∇ · (ρuu)− F−∇ · τ

]
dV = 0, (2.1.8)

where we have chosen to define the stress tensor τ such that f ≡ τ · n̂. Since V is arbitrary,
we can write

∂

∂t
(ρu) +∇ · (ρuu)− F−∇ · τ = 0. (2.1.9)

This can also be written as

u
∂ρ

∂t
+ ρ

∂u

∂t
+ u(∇ · (ρu)) + ρ(u · ∇)u− F−∇ · τ = 0. (2.1.10)

But since we have
∂ρ

∂t
+∇ · (ρu) = 0,

from equation (2.1.5), we can reduce equation (2.1.10) to

ρ
∂u

∂t
+ ρ(u · ∇)u = F +∇ · τ, (2.1.11)

the general expression of the momentum equation.
For a Newtonian fluid, the viscous stress is equal to rate of strain of the fluid. In tensor

notation, this is written as

τij = −Pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂uk

δij

)
, (2.1.12)

where P is the isotropic pressure at position x when there is no strain and µ is the dynamic
viscosity.

In the absence of any macroscopic forces other than gravity, we can write F as

F = ρg, (2.1.13)

where g is the acceleration due to gravity. Substituting equations (2.1.12) and (2.1.13) into
(2.1.11), we have the momentum equation in tensor notation,

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρgi −
∂P

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

]
, (2.1.14)

or the momentum equation in vector notation,

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + ρg + µ

(
∇2u +

1

3
∇(∇ · u)

)
. (2.1.15)
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2.1.3 The Heat Transfer Equation

The principle of energy conservation states that for a closed system, the energy of the
system remains constant over time. If we consider a fixed volume V with surface S and
outward normal n̂, then the rate of change in energy of the fluid in V per unit time t is

d

dt

(ˆ
V
ρE dV

)
=

ˆ
V

∂

∂t
(ρE) dV, (2.1.16)

where ρ is the density as defined before and E ≡ 1
2 ‖u‖

2 + cV T is the energy per unit mass of
the fluid, with temperature T , specific heat capacity at constant volume cV and the velocity
of the fluid u, as defined before.

Since energy must be conserved, equation (2.1.16) is equal to the sum of the net flux of
energy in the form of heat across S and the rate of work done on the fluid by body and
surface forces. Therefore, we can write,ˆ

V

∂

∂t
(ρE) dV = −

ˆ
S
ρEu · n̂ dS︸ ︷︷ ︸

I

+

ˆ
S
k∇T dS︸ ︷︷ ︸

II

+

ˆ
V
u · F dV︸ ︷︷ ︸
III

+

ˆ
S
u · f dS︸ ︷︷ ︸
IV

, (2.1.17)

where I is the rate of energy convection across S by the mass motions in the form of heat, II
is the rate of energy conduction across S, with heat conduction coefficient k, III represents
the rate of work done on the fluid by macroscopic body forces, with force density F, and IV
represents the rate of work done on the boundary S by microscopic stress interactions, with
stress density f .

We can simplify equation (2.1.17) by rewriting I and II using the divergence theorem
(A.1.1). I can be written as

−
ˆ
S
ρEu · n̂ dS = −

ˆ
S
ρ

(
1

2
‖u‖2 + cV T

)
u · n̂ dS

= −1

2

ˆ
S
ρ ‖u‖2 u · n̂ dS −

ˆ
V
∇ · (ρcV Tu) dV,

(2.1.18)

while II can be written as ˆ
S
k∇T dS =

ˆ
V
∇ · (k∇T ) dV. (2.1.19)

As in Section 2.1.2, if the only macroscopic force we consider is gravity, then we write F = ρg
where g is the acceleration due to gravity. Then III becomesˆ

V
u · F dV =

ˆ
V
u · ρg dV. (2.1.20)

We can rewrite IV by manipulating the general form of the momentum equation (2.1.11).
Multiplying this equation by u and integrating by volume V , we have

1

2

ˆ
V
ρ
∂

∂t
‖u‖2 dV +

1

2

ˆ
V
ρ(u · ∇) ‖u‖2 dV =

ˆ
V
u · F dV +

ˆ
V
u · (∇ · τ) dV. (2.1.21)

Integrating the second integral on both the left and right hand side of equation (2.1.21) by
parts, we obtain

1

2

ˆ
V

[
ρ
∂

∂t
‖u‖2 − ‖u‖2 (∇ · (ρu))

]
dV +

1

2

ˆ
S
ρ ‖u‖2 u · n̂ dS

=

ˆ
V
u · F dV +

ˆ
S
u · τ · n̂ dS −

ˆ
V
τ · (∇ · u) dV.

(2.1.22)
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By using equation (2.1.5), the general expression of the continuity equation, we can write the
first integral on the left hand side of the previous equation as

1

2

ˆ
V

[
ρ
∂

∂t
‖u‖2 + ‖u‖2 ∂

∂t
ρ

]
dV =

1

2

ˆ
V

∂

∂t

(
ρ ‖u‖2

)
dV

=
1

2

d

dt

ˆ
V
ρ ‖u‖2 dV,

(2.1.23)

so that we have,

1

2

d

dt

ˆ
V
ρ ‖u‖2 dV +

1

2

ˆ
S
ρ ‖u‖2 u·n̂ dS =

ˆ
V
u·F dV +

ˆ
S
u·τ ·n̂ dS−

ˆ
V
τ ·(∇·u) dV. (2.1.24)

Therefore, we can now rewrite IV as

ˆ
S
u · f dS =

ˆ
S
u · τ · n̂ dS

=
1

2

d

dt

ˆ
V
ρ ‖u‖2 dV +

1

2

ˆ
S
ρ ‖u‖2 u · n̂ dS

−
ˆ
V
u · F dV +

ˆ
V
τ · (∇ · u) dV,

(2.1.25)

where we have defined f = τ · n̂ as in Section 2.1.2.
For a Newtonian fluid, τ is as defined in equation (2.1.12). Using this, IV becomes

ˆ
S
u · f dS =

1

2

d

dt

ˆ
V
ρ ‖u‖2 dV +

1

2

ˆ
S
ρ ‖u‖2 u · n̂ dS

−
ˆ
V
u · F dV −

ˆ
V
P (∇ · u) dV +

ˆ
V

Φ dV,

(2.1.26)

where P is the isotropic pressure at position x when there is no strain and Φ is defined as

Φ =
µ

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

− 2

3
µ

(
∂uk
∂xk

)2

, (2.1.27)

where µ is dynamic viscosity.
Combining equations (2.1.18),(2.1.19),(2.1.20) and (2.1.26), and making use of the fact

that E is defined as E = 1
2 ‖u‖

2 + cV T , we obtain the following integral.

ˆ
V

[
∂

∂t
ρcV T +∇ · (ρcV Tu)−∇ · (k∇T ) + P (∇ · u)− Φ

]
dV = 0. (2.1.28)

Since V is arbitrary, we can write

∂

∂t
(ρcV T ) +∇ · (ρcV Tu) = ∇ · (k∇T )− P (∇ · u) + Φ. (2.1.29)

Using the chain rule to expand the terms on the left hand side and using equation (2.1.5),
we finally obtain the heat transfer equation

ρ
∂

∂t
(cV T ) + ρu · ∇(cV T ) = ∇ · (k∇T )− P (∇ · u) + Φ. (2.1.30)
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2.1.4 The Mass Transfer Equation

If a fluid is composed of more than one component whose concentrations vary at different
points, then there is a natural tendency for mass to be transferred in order to minimise the
concentration difference throughout the system. This mass transfer is governed by Fick’s first
law, which states that the diffusive flux from higher to lower concentrations is proportional to
the concentration gradient of the substance in question. This is represented mathematically
as

j = −D∇C, (2.1.31)

where C ≡ C(x, t) is the concentration of a substance in the fluid, D is the diffusivity
coefficient, and j is the diffusive flux that represents the amount of the substance that will
flow through a unit area per unit time t.

Let us now consider a non-homogeneous fluid with a fixed volume V with surface S and
outward normal n̂. The rate of change in concentration of a substance in the fluid in V per
unit time t is then

d

dt

(ˆ
V
C dV

)
= −

ˆ
S
j · n̂ dS. (2.1.32)

By Reynold’s transport theorem (Reynolds et al., 1903), we can rewrite equation (2.1.32) as

d

dt

ˆ
V
C dV =

ˆ
V

∂C

∂t
dV +

ˆ
S
Cu · n̂ dS = −

ˆ
S
j · n̂ dS, (2.1.33)

where u is the fluid velocity as defined before.
Using the divergence theorem (A.1.1) we obtain

ˆ
V

[
∂C

∂t
+∇ · (Cu)

]
dV = −

ˆ
V
∇ · j dV. (2.1.34)

Since V was arbitrary, we may write equation (2.1.34) as

∂C

∂t
+∇ · (Cu) = −∇ · j, (2.1.35)

which when expanded using the chain rule and noting Fick’s first law (2.1.31), becomes

∂C

∂t
+ C(∇ · u) + (u · ∇)C = D∇2C. (2.1.36)

Expanding the continuity equation (2.1.5) by the chain rule and rearranging, we may
rewrite equation (2.1.36) as

∂C

∂t
− C

ρ

(
∂ρ

∂t
+ (u · ∇)ρ

)
+ (u · ∇)C = D∇2C, (2.1.37)

where ρ is the density as defined before. This is known as the mass transfer equation.

2.2 The Boussinesq Approximation

The governing hydrodynamic equations that we derived in Section 2.1 can be simpli-
fied further by an important result called the Boussinesq approximation, first detailed by
Boussinesq in 1903. (See also Chandrasekhar, 1961; Spiegel and Veronis, 1960 for further
details.)
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The basis of this approximation is to assume that we have a flow with small temperature
variations. Then, the density ρ, that we defined in the previous section also varies by a small
amount.

Let us consider a horizontal layer of fluid of depth d that is heated from below as in
the Rayleigh-Bénard problem described in Section 1.2. We then let ρ0 be the density at the
bottom of the fluid at temperature T0. For a small temperature difference between the top
and the bottom of the fluid, we define the density to be

ρ = ρ0[1− α(T − T0)], (2.2.1)

where α is the coefficient of volume expansion, which is approximately 10−4 − 10−3K−1 for
a liquid. We call equation (2.2.1) the equation of state. For a temperature variation of a
moderate amount, we can write

|ρ− ρ0|
ρ0

= α|T − T0| � 1. (2.2.2)

The variations of the coefficients k, µ and cV must be of the same order, due to the small
amounts of variation of density, and so can be ignored. However, we cannot neglect the vari-
ability of the density in the ρg term in the momentum equation (2.1.15) since the acceleration
from this term can be quite large.

We now take the fundamental hydrodynamic equations, substitute ρ with the expression
in equation (2.2.1) and simplify them based on these remarks.

The continuity equation (2.1.5) is reduced to

∇ · u = 0, (2.2.3)

as for an incompressible fluid.
With this condition on u, we consider the momentum and the heat transfer equations.

For an incompressible fluid, equation (2.1.15) reduces to

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇P + ρg + µ∇2u (2.2.4)

which is also known as the Navier–Stokes equation. Treating µ as a constant with the above
approximations, this becomes

ρ0

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + ρ0(1− α(T − T0))g + ρ0ν∇2u, (2.2.5)

where ν ≡ µ
ρ0

is the kinematic viscosity.
We now consider the heat transfer equation (2.1.30). Due to equation (2.2.3), we can

neglect the −P (∇ · u) term. For an incompressible fluid, Φ is reduced to

Φ =
µ

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

, (2.2.6)

however, we can also neglect the term Φ since it is of the order 10−8−10−7 (see Chandrasekhar,
1961, Chapter II, Section 8). Treating cV and k as constants, the heat transfer equation then
reduces to

∂T

∂t
+ (u · ∇)T = κ∇2T, (2.2.7)

where κ ≡ k
ρ0cV

is the coefficient of thermal diffusion.
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Note that in the Rayleigh–Bénard problem, the fluid is assumed to be homogeneous, so
we need not consider the mass transfer equation.

Let us now consider a binary fluid that occupies the space of length d between two planes
as described in Section 1.3. We let ρ0 be the density at the bottom (right) of the fluid in the
horizontal (vertical) problem at temperature T0 and concentration C0. For small temperature
and concentration differences between the two planes, we define the density to be

ρ = ρ0[1− αT (T − T0) + αC(C − C0)], (2.2.8)

where αT is coefficient of thermal expansion and αC is the coefficient of solutal contraction.
For temperature and concentration variations of a moderate amount, we can write

|ρ− ρ0|
ρ0

= αT |T − T0|+ αC |C − C0| � 1. (2.2.9)

Following similar reasoning, the Boussinesq equations of motion for doubly-diffusive con-
vection are given by

∇ · u = 0, (2.2.10)

ρ0

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + ρ0(1− αT (T − T0) + αC(C − C0))g + ρ0ν∇2u, (2.2.11)

∂T

∂t
+ (u · ∇)T = κT∇2T, (2.2.12)

∂C

∂t
+ (u · ∇)C = κC∇2C, (2.2.13)

where κT is the coefficient of thermal diffusion and κC is the coefficient of solutal diffusion.

2.3 Mathematical Formulation of the Rayleigh–Bénard
Problem

Now that we have derived the governing Boussinesq equations of motion we can formulate
the systems we will study in the rest of the report, beginning with the Rayleigh–Bénard
problem. Let us consider an infinite horizontal layer of fluid of depth d that is heated from
below. The temperature gradient β is the driving force of the convection. We define the
position to be x = (x, y, z) and let our variables to be functions of x and time, t. We also
take gravity to be g = −gez, that is gravity acts in the negative z–direction.

2.3.1 Boundary Conditions

When we solve the governing hydrodynamic equations, we will seek solutions that satisfy
certain boundary conditions, which we will determine in this section.

The fluid is found between two planes z = 0 and z = d. At these planes, the temperature
satisfies the following boundary conditions

T = T0 at z = 0,

T = T1 = T0 − βd at z = d,
(2.3.1)

where β = |dTdz | is the temperature gradient.
We will consider two types of surfaces between which the fluid is confined: two no-slip

surfaces and two free-slip surfaces. The boundary conditions imposed on the fluid velocity
u(x, t) ≡ (u, v, w) depend on which type of surface we are considering. However, in both
cases, at the horizontal surfaces z = 0 and z = d, with outward normal n̂, the impermeability
of the surfaces gives

u · n̂ = w = 0 at z = 0 = d. (2.3.2)
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No-Slip

The no-slip boundary condition requires the fluid to not be able to pass along the bound-
ary. Therefore, all the components of the fluid velocity u must vanish, so we have

u = v = 0 at z = 0 = d. (2.3.3)

Since this must be satisfied for all x and y on the surface, it follows from the continuity
equation (2.2.3) that

∂w

∂z
= 0 at z = 0 = d. (2.3.4)

Free-Slip

The free-slip boundary condition, in contrast, allows the fluid to be able to pass freely
along the boundary as no tangential stresses act along the surfaces. This implies that the
tangential components of the stress tensor τij defined in equation (2.1.12) are equal to zero.
This gives us

τxz = µ

(
∂u

∂z
+
∂w

∂x

)
= 0,

τyz = µ

(
∂v

∂z
+
∂w

∂y

)
= 0.

(2.3.5)

Since we already have w = 0 for all x and y, from the impermeability condition, it follows
that

∂u

∂z
=
∂v

∂z
= 0 at z = 0 = d. (2.3.6)

Since this must be satisfied for all x and y, if we differentiate the continuity equation (2.2.3)
with respect to z, we obtain

∂2w

∂z2
= 0. (2.3.7)

Although the free-slip surfaces are physically unrealistic, we will consider these conditions in
later calculations as it is the easiest to solve analytically. The same method can be applied
in principle to solve the problem for two no slip surfaces. 1

2.3.2 Base State

The base state is a solution that we construct to satisfy the governing equations we have
derived. We will perturb this state in Section 2.3.3 and study the stability of the resulting
equations in Chapter 3 and Chapter 4.

By convention, we assume that the base state is a steady state (that is, a state that is
not time-dependent) with zero fluid velocity u. We will further assume that the temperature
T , only varies in the vertical z–direction, so T is a function of only z.

Since u = 0, we write
uB = 0, (2.3.8)

which trivially satisfies the continuity equation (2.2.3).
Following this, we find that the temperature distribution is given by a reduction of the

heat transfer equation (2.2.7),
d2T

dz2
= 0, (2.3.9)

1See Chandrasekhar, 1961 for an in-depth solution for two no slip surfaces, and for one free slip surface
and one no slip surface.
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which has solution
TB = T0 − βz. (2.3.10)

The corresponding density ρ, which was defined in equation (2.2.1), is then given by

ρB = ρ0(1 + αβz). (2.3.11)

Therefore, along with all the above assumptions, the momentum equation (2.2.5) can be
written as

dPB
dz

= −gρ0(1 + αβz), (2.3.12)

which has solution

PB = P0 − ρ0z
(

1 +
1

2
αβz

)
gez, (2.3.13)

where P0 is the isotropic pressure at z = 0.

2.3.3 Perturbation Equations

We now subject the base state defined by equations (2.3.8), (2.3.10) and (2.3.13) to
perturbations. (See ?? for a justification of why we do this.) This is given by the following
equations,

u = uB + ũ,

T = TB + T̃ ,

P = PB + P̃ ,

(2.3.14)

where is the perturbations are denoted by the variables with tildes.
Since we defined uB = 0, ũ automatically satisfies the boundary conditions outlined in

Section 2.3.1. However, since TB already satisfies the boundary conditions, we must have
that

T̃ = 0 at z = 0, d. (2.3.15)

Substituting equations (2.3.14) into the governing equations subject to Boussinesq’s ap-
proximation (2.2.3), (2.2.5) and (2.2.7), we obtain the following perturbed equations

∇ · ũ = 0,

∂ũ

∂t
+ (ũ · ∇)ũ = −

(
1

ρ0

)
∇P̃ + gαT̃ez + ν∇2ũ,

∂T̃

∂t
+ ũ · ∇T̃ = βw̃ + κ∇2T̃ ,

(2.3.16)

where we have dropped the δ’s and w̃ is the fluid velocity in the z–direction.

2.3.4 Non-dimensionality

It will be convenient to express the results we obtain with non-dimensional quantities
that are combinations of the various parameters that we have introduced so far; by doing so
we may easily compare our results with others even if different parameter values are used.

In order to non-dimensionalise the governing equations of the Rayleigh–Bénard problem,
we rescale position by length scale d, the distance between the two boundaries of the fluid,
time with unit time d2

κ , the amount of time taken for heat to diffuse over distance d, and
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temperature with unit temperature β, the temperature gradient between the two boundaries.
Thus our non-dimensional variables, denoted with hats, are defined as

x̃ = dx̂, t̃ =
d2

κ
t̂, ũ =

κ

d
û, T̃ = βt̂, and P̃ =

ρ0κ
2

d2
P̂ . (2.3.17)

It should also be noted that ∇ = 1
d∇̂, and the boundaries are now at ẑ = 0 and ẑ = 1.

Substituting these non-dimensional variables into equations (2.3.16), and dropping the hats,
we have the non-dimensional perturbed governing equations

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −∇P +RaPrTez + Pr∇2u,

∂T

∂t
+ u · ∇T = w +∇2T.

(2.3.18)

where Ra = gαβ
κν d

3 is the Rayleigh number, and Pr = ν
κ is the Prandtl number.

Note that since the value of Pr is known for different fluids, the parameter Ra will be
the bifurcation parameter in subsequent chapters.

2.3.5 Vorticity-Streamfunction Formulation

It will be convenient in Chapter 4 to express the non-dimensionalised hydrodynamic
equations (2.3.18) in terms of the streamfunction, ψ and the vorticity, ω. Therefore, we
derive this here.

Although so far, we have kept our equations general enough to be expressed in 3D, we can
greatly simplify the Rayleigh–Bénard problem by adopting a 2D model. If we assume that
the fluid does not move in the y–direction, we can now define our variables to be functions
of x, z and time t.

The streamfunction ψ for a 2D flow, as in our simplified problem, is defined such that

u = ∇× ψ (2.3.19)

where ψ = (0, ψ, 0) if u = (u, 0, w). This is equivalent to defining

u = −∂ψ
∂z

and w =
∂ψ

∂x
. (2.3.20)

The voriticity ω of a flow is defined as

ω = ∇× u. (2.3.21)

Using these definitions, we now rewrite the governing equations in terms of the vorticity
and the streamfunction. The continuity equation does not change, and is still

∇ · u = 0, (2.3.22)

as it is trivially satisfied by the way we have defined the streamfunction.
Using the definition for the vorticity, we can rewrite the momentum equation as

∂u

∂t
+∇

(
1

2
‖u‖2

)
+ ω × u = −∇P +RaPrTez + Pr∇2u, (2.3.23)
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where we have used the vector identity (A.2.16). Taking the curl of equation (2.3.23) gives
us

∇× ∂u

∂t
+∇× (ω × u) = ∇×RaPrTez +∇× Pr∇2u, (2.3.24)

since ∇×∇f = 0 for any twice differentiable scalar field f . This simplifies to

∂ω

∂t
+∇× (ω × u) = −RaPr∂T

∂x
ey + Pr∇2ω. (2.3.25)

Note that, by equation (A.2.23) we have

∇× (ω × u) = ω(∇ · u)− u(∇ · ω) + (u · ∇)ω − (ω · ∇)u

= (u · ∇)ω − (ω · ∇)u,
(2.3.26)

where we have used the fact that ∇ · u = 0 by the continuity equation, and that ∇ · ω =
∇ · (∇× u) = 0 for any vector field u.

Taking the y–component of equation (2.3.26) we obtain

∂ωy
∂t

+ (u · ∇)ωy = −RaPr∂T
∂x

+ Pr∇2ωy, (2.3.27)

where ωy is the y–component of the vorticity ω. Since we have defined our flow to only
depend on x and z, then we can introduce a streamfunction ψ that satisfies equation (2.3.20).
Therefore, equation (2.3.27) becomes

∂ωy
∂t

+ (u · ∇)ωy =
∂ωy
∂t

+

((
−∂ψ
∂z
, 0 ,

∂ψ

∂x

)
· ∇
)
ωy

=
∂ωy
∂t

+
∂ψ

∂x

∂ωy
∂z
− ∂ψ

∂z

∂ωy
∂x

= −RaPr∂T
∂x

+ Pr∇2ωy.

(2.3.28)

Letting J define the Jacobian, the momentum equation in terms of the vorticity and the
streamfunction is

∂ω

∂t
+ J(ψ, ω) = −RaPr∂T

∂x
+ Pr∇2ω, (2.3.29)

where we have relabelled ωy as ω, and where J(ψ, ω) = ∂ψ
∂x

∂ω
∂z −

∂ψ
∂z

∂ω
∂x .

Similarly, the heat transfer equation in terms of the vorticity and the streamfunction is

∂T

∂t
+ J(ψ, T ) =

∂ψ

∂x
+∇2T, (2.3.30)

where J(ψ, T ) = ∂ψ
∂x

∂T
∂z −

∂ψ
∂z

∂T
∂x .

We now rewrite the boundary conditions in terms of the vorticity and streamfunction.
From the impermeability of the surfaces, we have

w = 0 at z = 0 and z = 1. (2.3.31)

From the way we defined the streamfunction, we also have

w =
∂ψ

∂x
= 0, (2.3.32)

which is equivalent to ψ being a constant. By the principle of mass conservation, we write

ˆ 1

0
u dz = −

ˆ 1

0

∂ψ

∂z
= 0, (2.3.33)
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which implies that the constant value of ψ must be the same at both z = 0 and z = 1.
Without loss of generality, we may set

ψ = 0, at z = 0 and z = 1. (2.3.34)

Recall that from subjecting the equations to perturbations we also have

T = 0 at z = 0 and z = 1. (2.3.35)

For no slip surfaces, we require that u = 0 at both z = 0 and z = 1. Thus we also have the
boundary condition,

∂ψ

∂z
= 0 at z = 0 and z = 1. (2.3.36)

For free slip surfaces, we require that ∂u
∂z = 0 at both z = 0 and z = 1. Thus we also have

the following boundary condition,

ω = 0 at z = 0 and z = 1. (2.3.37)

2.4 Mathematical Formulation of the Doubly-Diffusive
Problem

Figure 2.1: Schematic diagram of the different configurations of doubly-diffusive convection
adapted from Thorpe et al. (1969).

Let us consider an infinite layer of fluid of depth d, inclined at an angle γ to the horizontal
(see figure 2.1). We will consider two configurations of this problem: the fluid in a horizontal
layer with a higher temperature and concentration at the lower plane (such that γ = 0),
and the fluid in a horizontal layer with a higher temperature and concentration at the upper
plane (γ = π).The temperature gradient βT and the concentration gradient βC are the driving
forces of the convection. We again define the position to be x = (x, y, z) and let our variables
to be functions of x and time, t.

2.4.1 Boundary Conditions

The fluid is found between two parallel planes z cot(γ) = 0 and z cot(γ) = d
sin(γ) . At these

planes, we find that the temperature and the concentration satisfies the following boundary
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conditions
T = T0 at z cot(γ) = 0,

T = T1 = T0 − βTd at z cot(γ) =
d

sin(γ)
,

(2.4.1)

C = C0 at z cot(γ) = 0,

C = C1 = C0 − βCd at z cot(γ) =
d

sin(γ)
,

(2.4.2)

where βT = |dTdz | is the temperature gradient and βC = |dCdz | is the concentration gradient.
We also take gravity to be g = −gez, that is gravity acts in the negative z–direction.

For the case when the fluid is inclined at angle γ = 0, the boundary conditions become

T = T0 at z = 0,

T = T1 = T0 − βTd at z = d,
(2.4.3)

C = C0 at z = 0,

C = C1 = C0 − βCd at z = d.
(2.4.4)

Figure 2.2: Diagram of doubly-diffusive convection in a horizontal layer of fluid subjected to
a higher temperature and concentration at the bottom layer.

For the case when the fluid in inclined at γ = π, for the sake of consistency with the
previous case, the boundary conditions become

T = T0 at z = 0,

T = T1 = T0 + βTd at z = d,
(2.4.5)

C = C0 at z = 0,

C = C1 = C0 + βCd at z = d.
(2.4.6)

Figure 2.3: Diagram of doubly-diffusive convection in a horizontal layer of fluid subjected to
a higher temperature and concentration at the top layer.
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In both cases, we still assume that the planes bounding the fluid are impermeable surfaces.
Therefore the following equation still holds

u · n̂ = w = 0 at z = 0 = d. (2.4.7)

No-Slip

If the planes bounding the fluid are no-slip surfaces, then all the components of the fluid
velocity u must vanish, so we have

u = v = 0 at z = 0 = d. (2.4.8)

Since this must be satisfied for all x and y on each surface, it follows from the continuity
equation (2.2.10)

∂w

∂z
= 0 at z = 0 = d. (2.4.9)

Free-Slip

If the planes bounding the fluid are free-slip surfaces, then the tangential components of
the stress tensor τij defined in equation (2.1.12) are equal to zero. Since w = 0 for all x and
y by the impermeability of the surfaces, it follows that

∂u

∂z
=
∂v

∂z
= 0 at z = 0 = d. (2.4.10)

Since this must be satisfied for all x and y, if we differentiate the continuity equation (2.2.10)
with respect to z, we obtain

∂2w

∂z2
= 0. (2.4.11)

It should be noted that whilst free-slip surfaces are physically unrealistic, we wish to consider
these conditions since they are easier to solve analytically. 2

2.4.2 Base State

We follow the same assumptions as in Section 2.3.2 and assume that the base state is
a steady state with zero fluid velocity u and that the temperature T only varies in the z–
direction (the direction perpendicular to the bounding surfaces). We will also assume that
the concentration C also only varies in the z–direction.

Since u = 0 we write
uB = 0, (2.4.12)

which trivially satisfies the continuity equation (2.2.10).
The temperature distribution is then given by a reduction of the heat transfer equation

(2.2.12),
d2T

dz2
= 0, (2.4.13)

which has solution
TB = T0 ∓ βT z, (2.4.14)

2The reader may wish to see the recent paper (Yang et al., 2016) that compares the effect of no-slip and
free-slip boundary conditions in a horizontal layer of fluid.
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if we are considering a fluid layer inclined at angles γ = 0 or if we are considering a fluid
layer inclined at γ = π respectively, recalling the way we have chosen to define the problem
such that βT = |dTdz |.

Similarly, the concentration distribution is given by a reduction of the mass transfer
equation (2.2.13)

d2C

dz2
= 0, (2.4.15)

which has solution
CB = C0 ∓ βCz, (2.4.16)

if we are considering a fluid layer inclined at γ = 0 or if we are considering a fluid layer
inclined at γ = π respectively, recalling that βC = |dCdz |.

The corresponding density ρ, which was defined in equation (2.2.8), is then given by

ρB = ρ0(1± αTβT z ∓ αCβCz), (2.4.17)

if we are considering a fluid layer inclined at γ = 0 or if we are considering a fluid layer
inclined at γ = π respectively. Along with the all of the above assumptions, the momentum
equation (2.2.11) can be written as

∇P = ρ0(1± αTβT z ∓ αCβCz)g. (2.4.18)

This has solution

PB = P0 − ρ0z
(

1 +
1

2
αTβT z −

1

2
αCβCz

)
gez, (2.4.19)

if the fluid layer is inclined at γ = 0, or solution

PB = P0 − ρ0z
(

1− 1

2
αTβT z +

1

2
αCβCz

)
gez, (2.4.20)

if the fluid layer is inclined at γ = π, where P0 is the isotropic pressure at the plane z = 0 in
both configurations.

2.4.3 Perturbation Equations

We now subject the base state defined by equations (2.4.12), (2.4.14), (2.4.16), (2.4.19),
and (2.4.20) to perturbations. This is given by the following equations,

u = uB + ũ,

T = TB + T̃ ,

C = CB + C̃,

P = PB + P̃ ,

(2.4.21)

where is the perturbations are denoted by the variables with tildes.
Note that since we defined uB = 0, ũ automatically satisfies the boundary conditions

outlined in Section 2.3.1. However, since TB and CB already satisfy the boundary conditions,
we must have that

T̃ = 0 at z = 0, d, (2.4.22)

C̃ = 0 at z = 0, d. (2.4.23)

20



Substituting equations (2.4.21) into the governing equations of motion subject to Boussinesq’s
approximation (2.2.10), (2.2.11), (2.2.12) and (2.2.13), we then obtain the following perturbed
equations

∇ · ũ = 0,

∂ũ

∂t
+ (ũ · ∇)ũ = −

(
1

ρ0

)
∇P̃ + (αT T̃ − αCC̃)gez + ν∇2ũ,

∂T̃

∂t
+ (ũ · ∇)T̃ = βT w̃ + κT∇2T̃ ,

∂C̃

∂t
+ (ũ · ∇)C̃ = βCw̃ + κC∇2C̃,

(2.4.24)

where the fluid is inclined at γ = 0,

∇ · ũ = 0,

∂ũ

∂t
+ (ũ · ∇)ũ = −

(
1

ρ0

)
∇P̃ + (αT T̃ − αCC̃)gez + ν∇2ũ,

∂T̃

∂t
+ (ũ · ∇)T̃ = −βT w̃ + κT∇2T̃ ,

∂C̃

∂t
+ (ũ · ∇)C̃ = −βCw̃ + κC∇2C̃,

(2.4.25)

and where the fluid is inclined at γ = π.

2.4.4 Non-dimensionality

Following the same procedure as in Section 2.3.4, we rescale position by length scale d,
the distance between the two boundaries of the fluid, time with unit time d2

κT
, the amount

of time taken for heat to diffuse over distance d, temperature with unit temperature βT , the
temperature gradient between the two boundaries, and concentration with unit concentra-
tion βC , the concentration gradient between the two boundaries. Thus our non-dimensional
variables, denoted with hats, are defined as

x̃ = dx̂, t̃ =
d2

κT
t̂, ũ =

κT
d
û, T̃ = βT T̂ , C̃ = βCĈ and P̃ =

ρ0κ
2
T

d2
P̂ , (2.4.26)

with rescaled boundaries at ẑ = 0 and ẑ = 1.
Substituting these non-dimensional variables into equations (2.4.24), and (2.4.25), and

dropping the hats we obtain the following non-dimensional perturbed equations,

∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −∇P +RaTPr(T −NC)ez + Pr∇2u,

∂T

∂t
+ (u · ∇)T = w +∇2T,

∂C

∂t
+ (u · ∇)C = w +

1

Le
∇2C,

(2.4.27)

for a fluid inclined at γ = 0,
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∇ · u = 0,

∂u

∂t
+ (u · ∇)u = −∇P +RaTPr(T −NC)ez + Pr∇2u,

∂T

∂t
+ (u · ∇)T = −w +∇2T,

∂C

∂t
+ (u · ∇)C = −w +

1

Le
∇2C,

(2.4.28)

for a fluid inclined at γ = π.
Here we have defined

RaT =
gαTβT
κT ν

d3, (2.4.29a)

RaC =
gαCβCd

3

κT ν
, (2.4.29b)

N =
αCβC
αTβT

, (2.4.29c)

Pr =
ν

κ
, (2.4.29d)

Le =
κT
κC

, (2.4.29e)

where RaT is the thermal Rayleigh number, RaC is the solutal Rayleigh number, N is the
density ratio such that RaC = RaTN , Pr is the Prandtl number and Le is the Lewis number.

Observe that the equations derived in this section suggest that the dynamics of doubly-
diffusive systems are dependent on the parameters Pr, 1

Le and N . The values of Pr and Le
are known for different fluids, but N is a measure of how the temperature and concentration
gradients affect the density stratification of the fluid. For instance, when N = 1, the gradi-
ents are neutrally stratifying which result in a uniform density. Small N implies that the
density stratification is controlled by the thermal component whilst large N implies that it
is controlled by the solutal component.

We should also note that the governing equations that we have derived for both of these
configurations are very similar. The only difference between equations (2.4.24) and (2.4.25)
are the signs of the w terms.

2.4.5 Vorticity-Streamfunction Formulation

Let us assume again that the fluid does not move in the y–direction so that we may define
our variables to be functions of only x, z and time t. Then, we can define the streamfunction
ψ and the vorticity ω as in equations (2.3.20) and (2.3.21).

Following similar steps, we may rewrite the governing equations of doubly-diffusive con-
vection in terms of the streamfunction and the vorticity.

For a fluid inclined at γ = 0 we write

∇ · u = 0,

∂ω

∂t
+ J(ψ, ω) = −RaTPr

∂

∂x
(T −NC) + Pr∇2ω,

∂T

∂t
+ J(ψ, T ) =

∂ψ

∂x
+∇2T,

∂C

∂t
+ J(ψ,C) =

∂ψ

∂x
+

1

Le
∇2C.

(2.4.30)
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For a fluid inclined at γ = π we write

∇ · u = 0,

∂ω

∂t
+ J(ψ, ω) = −RaTPr

∂

∂x
(T −NC) + Pr∇2ω,

∂T

∂t
+ J(ψ, T ) = −∂ψ

∂x
+∇2T,

∂C

∂t
+ J(ψ,C) = −∂ψ

∂x
+

1

Le
∇2C.

(2.4.31)

We now rewrite the boundary conditions in terms of the vorticity and streamfunction.
Recall that due to subjecting our equations to perturbations we have

T = C = 0 at z = 0 and z = 1. (2.4.32)

By the same reasoning as in Section 2.3.5, we also have

w = 0 at z = 0 and z = 1. (2.4.33)

ψ = 0 at z = 0 and z = 1. (2.4.34)

For no slip surfaces, since we require that u = 0 at both z = 0 and z = 1 we also have
the boundary condition,

∂ψ

∂z
= 0 at z = 0 and z = 1. (2.4.35)

For free slip surfaces, since we require that ∂u
∂z = 0 at both z = 0 and z = 1, we also have

the following boundary condition,

ω = 0 at z = 0 and z = 1. (2.4.36)
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Chapter 3

Linear Analysis

Beginning with an initial flow that represented the base state of the system, we subjected
the variables to perturbations and obtained the governing equations of the Rayleigh–Bénard
problem and the doubly-diffusive problem that we will now work with. Note that we pre-
viously did not make any assumptions about the magnitude of the perturbations in the
governing equations. In this chapter, we will now assume that these perturbations are in-
finitesimally small so that we may neglect the nonlinear terms. We will then perform a
linear stability analysis in terms of normal modes on these equations in order to calculate
the critical Rayleigh number and wavenumber at which convection occurs for the different
configurations.

3.1 Linearisation

Recall the perturbed governing equations of the Rayleigh–Bénard problem (2.3.16), and
of the three configurations of the doubly-diffusive problem (2.4.24), and (2.4.25), that we
derived in Chapter 2. Let us now assume that the perturbations are infinitesimally small so
that we may neglect the nonlinear terms. (See ?? for a justification of why we do this.)

The linearised equations for Rayleigh–Bénard convection are then given by

∇ · u = 0, (3.1.1a)

∂u

∂t
= −∇P +RaPrTez + Pr∇2u, (3.1.1b)

∂T

∂t
= w +∇2T. (3.1.1c)

The linearised equations for a fluid in a horizontal layer that has a higher temperature
and concentration at the bottom layer is given by

∇ · u = 0, (3.1.2a)

∂u

∂t
= −∇P +RaTPr(T −NC)ez + Pr∇2u, (3.1.2b)

∂T

∂t
= w +∇2T, (3.1.2c)

∂C

∂t
= w +

1

Le
∇2C. (3.1.2d)

The linearised equations for a fluid in a horizontal layer that has a higher temperature
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and concentration at the top layer is given by

∇ · u = 0, (3.1.3a)

∂u

∂t
= −∇P +RaTPr(T −NC)ez + Pr∇2u, (3.1.3b)

∂T

∂t
= −w +∇2T, (3.1.3c)

∂C

∂t
= −w +

1

Le
∇2C. (3.1.3d)

3.2 Rayleigh–Bénard Convection

3.2.1 Normal Mode Analysis

Before we begin with the normal mode analysis, we will simplify the equations (3.1.1a),
(3.1.1b) and (3.1.1c) by eliminating the pressure term. Note that if we take the divergence
of equation (3.1.1b), we have

∇ · ∂u
∂t

=
∂

∂t
(∇ · u)

= ∇ ·
(
−∇P +RaPrTez + Pr∇2u

)
= −∇2P +RaPr

∂T

∂z
+ Pr∇2(∇ · u).

(3.2.1)

By equation (3.1.1a), this reduces to

0 = −∇2P +RaPr
∂T

∂z
. (3.2.2)

Let us now consider the z–component of equation (3.1.1b) and multiply it by ∇2. We
have

∂

∂t
∇2w = − ∂

∂z
∇2P +∇2RaPrT + Pr∇2w, (3.2.3)

which by equation (3.2.2), we can write as

∂

∂t
∇2w = −RaPr∂

2T

∂z2
+RaPr∇2T + Pr∇4w

= RaPr

(
∂2

∂x2
+

∂2

∂y2

)
T + Pr∇4w.

(3.2.4)

As a further simplification, we assume that we are dealing with a 2D flow so the fluid does not
vary in the y–direction, however, we note that the following analysis could be easily modified
to consider a 3D flow. Thus, we now have to solve the following equations.

∂

∂t
∇2w = RaPr

∂2

∂x2
T + Pr∇4w, (3.2.5a)

∂T

∂t
= w +∇2T (3.2.5b)

We now postulate that these equations have separable normal mode solutions of the form

w(x, z, t) = f(x)w̄(z)eλt, (3.2.6a)

T (x, z, t) = f(x)T̄ (z)eλt, (3.2.6b)
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where λ is the complex eigenvalue whose real part determines the system’s stability.
Note that when Re(λ) < 0, the solutions of this form exponentially decay, implying that

the system is stable. Conversely, when Re(λ) > 0, the solutions exponentially grow, implying
that the system is unstable. Re(λ) = 0 is the point at which the system is marginally stable,
that is the point when the system is neither stable nor unstable. Thus we can consider λ to
be a bifurcation parameter of the system, with λ = 0 the corresponding local bifurcation.
We can distinguish between two types of marginal stability here: the instability that arises
when a purely real eigenvalue crosses the imaginary axis in the complex plane, often called
a stationary instability, and the instability that arises when a pair of complex conjugate
eigenvalues cross the imaginary axis, called overstability or an oscillatory instability. Note
that the latter type is also a Hopf bifurcation.

Substituting equations (3.2.6a) and (3.2.6b) into equation (3.2.5a), we obtain

∂

∂t
∇2(fw̄eλt) = λ

[
w̄
∂2f

∂x2
+ f

∂2w̄

∂z2

]
eλt

= RaPr
∂2

∂x2
(fT̄ eλt) + Pr∇4(fw̄eλt)

=

[
RaPr

∂2

∂x2
(fT̄ ) + Pr∇4(fw̄)

]
eλt.

(3.2.7)

Dividing the both sides of the equation by eλt we have

λ

[
w̄
∂2f

∂x2
+ f

∂2w̄

∂z2

]
= RaPr

∂2

∂x2
(fT̄ ) + Pr∇4(fw̄). (3.2.8)

Similarly, equation (3.2.5b) becomes

λfT̄ = fw̄ + T̄
∂2f

∂x2
+ f

∂2T̄

∂z2
. (3.2.9)

Dividing both sides of this equation now by f , we have

λT̄ = w̄ + T̄
1

f

∂2f

∂x2
+
∂2T̄

∂z2
(3.2.10)

Thus, we can only seek separable solutions when

1

f

∂2f

∂x2
= constant ≡ −a2, (3.2.11)

which leads us to suppose that f is of the form

f(x) = eiax, (3.2.12)

where we can think of a as the wavenumber of a particular normal mode.
Multiplying equation (3.2.8) by 1

f f , the left hand side becomes

λ

[
1

f

∂2f

∂x2
w̄ +

1

f
f
∂2w̄

∂z2

]
f = λ

[
d2

dz2
w̄ − a2w̄

]
f. (3.2.13)
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The right hand side of (3.2.8) becomes

RaPr
1

f

∂2f

∂x2
T̄ f +

1

f
Pr∇4fw̄f = −a2RaPrfT̄

+ Pr

[
1

f

((
∂2

∂x2

)2

+ 2

(
∂2

∂x2
∂2

∂z2

)
+

(
∂2

∂z2

)2
)
fw̄

]
f

= −a2RaPrfT̄ + Pr

[
(−a2)2 − 2a2

(
∂2

∂z2

)
+

(
∂2

∂z2

)2
]
w̄f

= −a2RaPrfT̄ + Pr

[(
d2

dz2
− a2

)2

w̄f

]
.

(3.2.14)
Dividing both sides by f and rearranging, this becomes(

D2 − a2
)(

D2 − a2 − λ

Pr

)
w̄ = a2RaT̄ , (3.2.15)

where we have let D = d
dz and D2 = d2

dz2
. Similarly, equation (3.2.10) becomes(

D2 − a2 − λ
)
T̄ = −w̄. (3.2.16)

Note that in this notation the free-slip boundary conditions become

w̄ = D2w̄ = T̄ = 0 at z = 0, 1. (3.2.17)

If we evaluate equation (3.2.15) at the boundary conditions (3.2.17), we find that we also
have that

D4w̄ = 0 at z = 0, 1, (3.2.18)

which in fact further implies that any even-powered derivative of w̄ is equal to zero at z = 0
and z = 1. Therefore, we expect solutions w̄ to be of the form w̄ = w̄0 sin(nπz) for n ∈ N.
Equation (3.2.16) suggests that solutions T̄ have the same parity as w̄ and so are of the form
T̄ ≈ sin(nπz) as well.

Now rearranging equation (3.2.16) we can obtain an expression for T̄ . Substituting this
into equation (3.2.15) we can eliminate T̄ and obtain one equation for w̄ which is given by(

D2 − a2 − λ
) (
D2 − a2

)(
D2 − a2 − λ

Pr

)
w̄ = −a2Raw̄. (3.2.19)

We want to solve this sixth order characteristic value problem for the boundary conditions
given in equations (3.2.17) and (3.2.18). Given these boundary conditions, there is a countably
infinite number of eigenvalues λn with associated eigenfunctions w̄n that we have already
deduced are of the form w̄n = w̄0 sin(nπz). For given values of a, Ra, and Pr, the complete
set of solutions w̄n are called the normal mode solutions.

The form of w̄n implies that D2w̄n = −n2π2w̄0 sin(nπz). Therefore, substituting this
expression for w̄ into equation (3.2.19) we have

(−n2π2 − a2 − λn)(−n2π2 − a2)
(
−n2π2 − a2 − λn

Pr

)
w̄0 sin(nπz) = −a2Raw̄0 sin(nπz).

(3.2.20)
Equation (3.2.19) is therefore only satisfied if the following equation is true:

(−n2π2 − a2 − λn)(−n2π2 − a2)
(
−n2π2 − a2 − λn

Pr

)
= −a2Ra. (3.2.21)

Equation (3.2.21) is the characteristic equation or dispersion relation that we solve to de-
termine the eigenvalues of the system.
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3.2.2 The Principle of the Exchange of Stabilities

We prove here in a similar manner to Drazin and Reid (2004) and Chandrasekhar (1961)
that the eigenvalues of the Rayleigh–Bénard problem are real and so the instability occurs at
λ = 0. This is equivalent to saying that the principle of the exchange of stabilities is valid.

First we multiply equation (3.2.15) by the complex conjugate of w̄, which we denote w̄∗,
and integrate over the layer of fluid, between z = 0 and z = 1. This gives us

ˆ 1

0
w̄∗(D2 − a2)

(
D2 − a2 − λ

Pr

)
w̄ dz = a2Ra

ˆ 1

0
w̄∗T̄ dz. (3.2.22)

Expanding the left-hand side of this equation, we can write this as

ˆ 1

0
w̄∗
[
D4w̄ −

(
2a2 +

λ

Pr

)
D2w̄ +

(
a4 +

a2λ

Pr

)
w̄

]
dz = a2Ra

ˆ 1

0
w̄∗T̄ dz. (3.2.23)

If we integrate the D4w̄ term by parts two times and the D2w̄ term one time, noting that
w̄∗ satisfies the same boundary conditions as w̄, we have

ˆ 1

0

[
|D2w̄|2 +

(
2a2 +

λ

Pr

)
|Dw̄|2 +

(
a4 +

a2λ

Pr

)
|w̄|2

]
dz = a2Ra

ˆ 1

0
w̄∗T̄ dz. (3.2.24)

Similarly, if we multiply equation (3.2.16) by T̄ ∗, the complex conjugate of T̄ , and integrate
with respect to z between z = 0 and z = 1 we obtain

ˆ 1

0
T̄ ∗
(
D2 − a2 − λ

)
T̄ dz = −

ˆ 1

0
T̄ ∗w̄ dz, (3.2.25)

which can be rewritten asˆ 1

0

[
T̄ ∗D2T̄ −

(
a2 + λ

)
|T̄ |2

]
dz = −

ˆ 1

0
T̄ ∗w̄ dz, (3.2.26)

since we note that T̄ and T̄ ∗ are functions of only z which allows us to treat (a2 + λ) as a
constant.

Using that T̄ ∗ satisfies the same boundary conditions as T̄ , we integrate the T̄ ∗D2T̄ term
by parts. Therefore, equation (3.2.26) becomes

ˆ 1

0

[
|DT̄ |2 + (a2 + λ)|T̄ |2

]
dz =

ˆ 1

0
T̄ ∗w̄ dz. (3.2.27)

Notice that the integrand of the right hand side of equation (3.2.24), w̄∗T̄ , is the complex
conjugate of the integrand of the right hand side of equation (3.2.27), T̄ ∗w̄. Therefore, we
can write ˆ 1

0

[
|D2w̄|2 +

(
2a2 +

λ

Pr

)
|Dw̄|2 +

(
a4 +

a2λ

Pr

)
|w̄|2

]
dz

= a2Ra

(ˆ 1

0

[
|DT̄ |2 + (a2 + λ)|T̄ |2

]
dz

)∗
,

(3.2.28)

which for brevity we rewrite as

I +
λ

Pr
J = a2Ra (K + λL)∗ , (3.2.29)

where we have defined I ≡
´ 1
0

[
|D2w̄|2 + 2a2|Dw̄|2 + a4|w̄|2

]
dz, J ≡

´ 1
0

[
|Dw̄|2 + a2|w̄|2

]
dz,

K ≡
´ 1
0

[
|Dw̄|2 + a2|w̄|2

]
dz, and L ≡

´ 1
0 |T̄ |

2 dz.
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Since the eigenvalues λ may be complex, let us write λ = Re(λ) + i Im(λ). Then equation
(3.2.29) is only true when we equate the real and imaginary parts of both sides, giving

I +
Re(λ)

Pr
J − a2Ra(K + Re(λ)L) = 0 (3.2.30a)

Im(λ)

Pr
J + Im(λ)L = 0. (3.2.30b)

Notice that a2, Ra, Pr and all the integrals I, J , K and L cannot be negative, so in order
for equation (3.2.30b) to be true, Im(λ) must be zero. This implies that λ is real and that
Rayleigh–Bénard convection cannot set in by a Hopf bifurcation. Furthermore, we know that
the onset of instability occurs at λ = 0.

3.2.3 The Growth Rates

We now solve the characteristic equation (3.2.21) for λn. Expanding and equating like
powers of λn we have

λ2n + (Pr + 1)(n2π2 + a2)λn +

((
n2π2 + a2

)2
Pr − a2RaPr

(n2π2 + a2)

)
= 0. (3.2.31)

Therefore, λn is given by

λn =

−(Pr + 1)(n2π2 + a2)±
√

(Pr + 1)2(n2π2 + a2)− 4
(
Pr(n2π2 + a2)2 − a2RaPr

(n2π2+a2)

)
2

.

(3.2.32)
From the previous section 3.2.2, we proved that the λn are real and the onset of stability
occurs at λ = 0. Substituting this into the above equation, we find that the value of Ra for
marginal stability of the nth mode is given by the following marginal curves

Ran(a) =
(n2π2 + a2)3

a2
. (3.2.33)

By the Routh–Hurwitz criterion (Gradshteyn and Ryzhik, 2000), we require all the coef-
ficients of the characteristic equation (3.2.31) to be positive for stability. (Pr+1)(n2π2 +a2),
the coefficient of the the λn term, is clearly positive, recalling that Pr is a positive constant.
For the coefficient of the constant term of the characteristic equation to be positive, we re-
quire that Ra is less than the marginal stability value given in equation (3.2.33). Therefore,
the critical Rayleigh number Rac at which the onset of convection occurs (not to be confused
with RaC the solutal Rayleigh number) is found by minimising equation (3.2.33) over n and
a.

Clearly, n = 1 minimises the equation over n which gives us

Ra1 =
π2 + a2

a2
. (3.2.34)

Differentiating this with respect to a and equating it to zero we find that the critical wavenum-
ber ac and Rac are given by

ac =
π√
2
≈ 2.221 (3.2.35a)

Rac = Ra(ac) =
27π4

4
≈ 657.511. (3.2.35b)
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Thus, by linear stability theory, if Ra < Rac we expect stability. If Ra > Rac, then we
expect instability. If Ra is slightly larger than Rac, we would expect the n = 1 mode to grow
exponentially, but none of the others to grow.

Figure 3.1: Graph showing the marginal curve R1(a) which gives the regions of growing and
decaying modes in the plane of the Rayleigh number Ra and the dimensionless wavenumber
in the x–direction, a. The critical wavenumber ac, and the critical Rayleigh number Rac are
found at the minimum of this curve.

Notice that the onset of convection did not depend on the Prandtl number Pr, but the
actual rates at which the solutions will grow or decay (given by equation (3.2.32)) do depend
on Pr.

It is worth reiterating that the way we have formulated the problem is very idealistic. In
reality, most fluids are bounded between surfaces with no-slip boundary conditions, but to
solve the Rayleigh–Bénard problem with such conditions is much more involved but has been
done ( see Chandrasekhar, 1961).

We also have not determined the shape of the convection rolls. To do this, we would need
to consider solutions to equation (3.2.11). In fact, to be more realistic, we would need to
consider the wavenumbers in both the x–direction and the y–direction, so would need to solve(
∂2

∂x2
+ ∂2

∂y2

)
f(x, y) + a2f(x, y)=0, where a would now be the wavenumber in the x, y–plane.

Since we have considered an infinite layer of fluid, we seek solutions to equation (3.2.11)
that are periodic. In the simplest case, we can see that f(x) = cos(ax) is a solution that
results in long convection rolls, independent of y–direction. This has a period of 2π

a in the
x–direction. Substituting this form for f into our postulated normal mode form solution
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(3.2.6a), and using the continuity equation (3.1.1a), we have

u = −1

a
sin(ax)

dw̄

dz
eλt and w = cos(ax)w̄eλt. (3.2.36)

From this we can deduce that u = 0 when x = kπ
a , for k ∈ Z, which does indeed characterise

2D convection rolls.
In reality however, fluids do not exist in unbounded infinite layers. We would be required

to consider sidewalls that bound the fluid in the x–direction and the y–direction, as well as
the already bounded z–direction. In Bénard’s initial experiments, he tried to simulate in
infinite layer of fluid by studying a fluid with an aspect ratio so large that the layer was
theoretically infinite. However, more recent work has been done (Kidachi, 1982; Hirschberg
and Knobloch, 1997) to study the effect of side walls in fluid layers. Note that in such cases,
the wavenumber a would be a discrete eigenvalue for a given Rayleigh number, rather than
a continuous parameter as we have taken here.

3.3 Doubly-Diffusive Convection: A Horizontal Layer
Heated and Salted from Below

3.3.1 Normal Mode Analysis

Using the same techniques that we used in the previous section (3.2), we now turn to the
doubly-diffusive problem. Let us first consider the configuration that most closely resembles
the Rayleigh–Bénard problem — a horizontal fluid layer that is heated and salted from below
— given by equations (3.1.2a), (3.1.2b), (3.1.2c) and (3.1.2d).

We again simplify the problem by eliminating the pressure term and assuming that the
flow does not vary in the y–direction. Therefore, we now have to solve the following three
equations.

∂

∂t
∇2w = RaTPr

∂2

∂x2
(T −NC) + Pr∇4w, (3.3.1a)

∂T

∂t
= w +∇2T, (3.3.1b)

∂C

∂t
= w +

1

Le
∇2C. (3.3.1c)

We postulate that the above equations have separable normal mode solutions of the form

w(x, z, t) = f(x)w̄(z)eλt, (3.3.2a)

T (x, z, t) = f(x)T̄ (z)eλt, (3.3.2b)

C(x, z, t) = f(x)C̄(z)eλt, (3.3.2c)

where λ is again the complex eigenvalue whose real part determines the system’s stability.
Substituting equations (3.3.2a) – (3.3.2c) into equations (3.3.1a) – (3.3.1c), we can again

show that we may only seek separable solutions when

1

f

∂2f

∂x2
= constant ≡ −a2, (3.3.3)
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where we can think of a as the horizontal wavenumber of a particular normal mode. Letting
D = d

dz and D2 = d2

dz2
, we now have

(
D2 − a2

)(
D2 − a2 − λ

Pr

)
w̄ = a2RaT (T −NC) , (3.3.4a)(

D2 − a2 − λ
)
T̄ = −w̄, (3.3.4b)(

D2 − a2 − Leλ
)
C̄ = −Lew̄, (3.3.4c)

with free-slip boundary conditions

w̄ = D2w̄ = T̄ = C̄ = 0 at z = 0, 1. (3.3.5)

Evaluating equation (3.3.4a) at the above boundary conditions, we find that

D4w̄ = 0 at z = 0, 1 =⇒ D(2m)w̄ = 0 at z = 0, 1, (3.3.6)

where m ∈ N. This further implies that the solutions w̄ are of the form w̄ = w̄0 sin(nπz) for
n ∈ N. Equations (3.3.4b) and (3.3.4c) suggest that solutions T̄ and C̄ have the same parity
as w̄ and are of the form sin(nπz) as well.

We now eliminate T̄ and C̄ to obtain one equation for w̄, which is given by((
D2 − a2 − λ

Pr

)
(D2 − a2)(D2 − a2 − λ)(D2 − a2 − Leλ)

)
w̄

= a2RaTLeN(D2 − a2 − λ)w̄ − a2RaT (D2 − a2 − Leλ)w̄.

(3.3.7)

Given the boundary conditions (3.3.5) and (3.3.6), solving the above equation gives us the
following characteristic equation(

−n2π2 − a2 λn
Pr

)
(−n2π2 − a2)(−n2π2 − a2 − λn)(−n2π2 − a2 − Leλn)

= a2RaT (LeN(−n2π2 − a2 − λn)− (−n2π2 − a2 − Leλn)),

(3.3.8)

where λn are the eigenvalues associated with the eigenfunctions w̄n = w̄0 sin(nπz). Note that
we have to assume in general that the eigenvalues here are complex as we cannot prove that
they are real like we did for Rayleigh–Bénard convection in Section 3.2.2.

3.3.2 The Growth Rates

We now solve the dispersion relation (3.3.8) for λn. Expanding and equating like powers
of λn we have

λ3n + p2λ
2
n + p1λn + p0 = 0, (3.3.9)

where

p2 = (n2π2 + a2)

(
1

Le
+ Pr + 1

)
, (3.3.10a)

p1 = (n2π2 + a2)2
(
Pr

Le
+

1

Le
+ Pr

)
− a2Pr

(n2π2 + a2)
RaT (1−N) , (3.3.10b)

p0 = (n2π2 + a2)3
Pr

Le
− a2Pr

Le
RaT (1− LeN). (3.3.10c)

Since p0, p1 and p2 are all real, we expect the cubic characteristic equation to have either
three real roots or one real root and and a pair of complex conjugate roots.
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By the Routh–Hurwitz criterion (Gradshteyn and Ryzhik, 2000), for stability we require
that p0 > 0, p1 > 0, p2 > 0 and p1p2 > p0 are satisfied. For oscillatory instability, or a Hopf
bifurcation, we require that p1p2 = p0, which is given by(

1

Le
+ Pr + 1

)[
µ3
(
Pr

Le
+

1

Le
+ Pr

)
− a2RaT (1−N)

]
= µ3

Pr

Le
− a2Pr

Le
RaT (1− LeN),

(3.3.11)
where we have defined µ ≡ (n2π2 + a2) for brevity. Solving this for RaT , we have

RaT =
µ3

a2
(Pr + 1)(Le+ 1)(LePr + 1)

LePr(Le(Pr + 1)−N(LePr + 1))

=
µ3

a2

(
1 +

1

Le

)(
1 +

1

LePr

)(
Le(Pr + 1)

Le(Pr + 1)−N(LePr + 1)

)
.

(3.3.12)

The critical point at which this occurs is given by minimising equation (3.3.12) over n and
a, since Pr, Le and N are given constants. Clearly, n = 1 minimises the equation over n
so substituting this into the equation and differentiating with respect to a, we find that the
critical wavenumber ac and the critical thermal Rayleigh number for oscillatory instability

Ra
(O)
T are given by

ac =
π√
2

(3.3.13a)

Ra
(O)
T =

27π4

4

(
1 +

1

Le

)(
1 +

1

LePr

)(
Le(Pr + 1)

Le(Pr + 1)−N(LePr + 1)

)
. (3.3.13b)

Stationary instability occurs when one of the roots is zero, that is λ = 0. Substituting
this into equation (3.3.9) and rearranging for RaT , this occurs when

RaT =
µ3

a2(1− LeN)
. (3.3.14)

Minimising this over n and a, we find that the critical wavenumber ac is again π√
2
, the critical

thermal Rayleigh number for stationary instability Ra
(S)
T is given by

Ra
(S)
T =

27π4

4(1− LeN)
. (3.3.15)

Note that in the limit N → 0, or equivalently when RaC � RaT , Ra
(S)
T tends to Rac =

24π4

4 , the critical Rayleigh number for Rayleigh–Bénard convection, as is expected.

In the plane of RaT and N , the linear stability boundary is a combination of both Ra
(O)
T

and Ra
(S)
T , which can be determined for fixed values of Pr and Le (see Figure 3.2). The

critical value of N at which Ra
(O)
T = Ra

(S)
T is given by

N (OS) =
Pr + 1

Le(LePr + 1)
. (3.3.16)

For N > N (OS), instability arises through an oscillatory instability by the mechanism de-

scribed in Section 1.3 as RaT exceeds Ra
(O)
T . For N < N (OS), the solutal contribution to the

fluid is not large enough to result in growing oscillations by the physical mechanism described
in Section 1.3, and instability arises through a stationary instability instead as RaT exceeds

Ra
(S)
T .
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Figure 3.2: Graph showing the regions of growing modes (above the solid line) and decaying
modes (below the solid line) of a fluid heated and salted from below in the plane of the
thermal Rayleigh number RaT and the density ratio N for Pr = 1 and Le = 2. The blue

curve shows the critical Rayleigh number for oscillatory instability Ra
(O)
T and the red curve

shows the critical Rayleigh number for stationary instability. The critical value N (OS) is the
point at which the two curves intersect shown by a black star.

3.4 Doubly-Diffusive Convection: A Horizontal Layer
Heated and Salted from Above

3.4.1 Normal Mode Analysis

Let us now consider the problem where the fluid is heated and salted from above, given
by equations (3.1.2a), (3.1.2b), (3.1.2c) and (3.1.2d).

We proceed in the same method that we have followed in the previous sections by elim-
inating the pressure term and assuming that the flow does not vary in the y–direction. We
solve the following three equations

∂

∂t
∇2w = RaTPr

∂2

∂x2
(T −NC) + Pr∇4w, (3.4.1a)

∂T

∂t
= −w +∇2T, (3.4.1b)

∂C

∂t
= −w +

1

Le
∇2C, (3.4.1c)
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and postulate that they have separable normal mode solutions of the form

w(x, z, t) = f(x)w̄(z)eλt, (3.4.2a)

T (x, z, t) = f(x)T̄ (z)eλt, (3.4.2b)

C(x, z, t) = f(x)C̄(z)eλt, (3.4.2c)

where λ is a complex eigenvalue. By similar reasoning, we let a be the horizontal wavenumber
of a particular normal mode, D = d

dz and D2 = d2

dz2
and write(

D2 − a2
)(

D2 − a2 − λ

Pr

)
w̄ = a2RaT (T −NC) , (3.4.3a)(

D2 − a2 − λ
)
T̄ = w̄, (3.4.3b)(

D2 − a2 − Leλ
)
C̄ = Lew̄, (3.4.3c)

with free-slip boundary conditions

w̄ = D2w̄ = T̄ = C̄ = 0 at z = 0, 1. (3.4.4)

Evaluating equation (3.4.3a) at the above boundary conditions, we find that

D4w̄ = 0 at z = 0, 1 =⇒ D(2m)w̄ = 0 at z = 0, 1, (3.4.5)

where m ∈ N. This further implies that the solutions w̄ are of the form w̄ = w̄0 sin(nπz) for
n ∈ N. Equations (3.4.3b) and (3.4.3c) suggest that solutions T̄ and C̄ have the same parity
as w̄ and are of the form sin(nπz) as well.

We now eliminate T̄ and C̄ again to obtain one equation for w̄, which is given by((
D2 − a2 − λ

Pr

)
(D2 − a2)(D2 − a2 − λ)(D2 − a2 − Leλ)

)
w̄

= a2RaT (D2 − a2 − Leλ)w̄ − a2RaTLeN(D2 − a2 − λ)w̄.

(3.4.6)

Given the boundary conditions (3.4.4) and (3.4.5), solving the above equation gives us the
following characteristic equation(

−n2π2 − a2 λn
Pr

)
(−n2π2 − a2)(−n2π2 − a2 − λn)(−n2π2 − a2 − Leλn)

= a2RaT ((−n2π2 − a2 − Leλn)− LeN(−n2π2 − a2 − λn)),

(3.4.7)

where λn are the eigenvalues associated with the eigenfunctions w̄n = w̄0 sin(nπz). Note that
this is identical to the dispersion relation given in equation (3.3.8) except for a sign change
on the right hand side of the equation.

3.4.2 The Growth Rates

We now solve the dispersion relation (3.4.7) for λn. Expanding and equating like powers
of λn we have

λ3n + p2λ
2
n + p1λn + p0 = 0, (3.4.8)

where

p2 = (n2π2 + a2)

(
1

Le
+ Pr + 1

)
, (3.4.9a)

p1 = (n2π2 + a2)2
(
Pr

Le
+

1

Le
+ Pr

)
+

a2Pr

(n2π2 + a2)
RaT (1−N) , (3.4.9b)

p0 = (n2π2 + a2)3
Pr

Le
+ a2

Pr

Le
RaT (1− LeN). (3.4.9c)
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Since p0, p1 and p2 are all real again, we expect the cubic characteristic equation to have
either three real roots or one real root and and a pair of complex conjugate roots. However,
it can be shown that the discriminant of the dispersion relation, given by

∆ = 18p2p1p0 − 4p32p0 + p22p
3
1 − 27p20 − 4, (3.4.10)

is greater than zero given that all of our variables Pr, Le, RaT and N are positive quantities.
This implies that the eigenvalus are all real, so instability in this system cannot arise through
a Hopf bifurcation. This is in agreement with the physical problem and the mechanism of
the salt-fingering instability that we described in Section 1.3.

Instead, instability in the system arises through a stationary instability. This occurs when
one of the roots is is zero, or when λ = 0. This is given by the equation

RaT =
µ3

a2(LeN − 1)
, (3.4.11)

where µ = n2π2 + a2. Minimising this over n and a, we find that the critical wavenumber ac
is again π√

2
, the critical thermal Rayleigh number for stationary instability Ra

(S)
T is given by

Ra
(S)
T =

27π4

4(LeN − 1)
, (3.4.12)

where N > 1
Le (see Figure 3.3). Note that Ra

(S)
T as a function of N is an asymptotic curve

of the form 1
N which has asymptote N = 1

Le , for which the solution is stable for any RaT .
For N < 1

Le , RaT has negative values, which cannot happen given that RaT has been defined
with positive physical constants.
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Figure 3.3: Graph showing the regions of growing modes and decaying modes of a fluid layer
heated and salted from above in the plane of the thermal Rayleigh number RaT and the
density ratio N for Pr = 1 and Le = 2. The red curve shows the critical Rayleigh number

for stationary instability, Ra
(S)
T .
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Chapter 4

Weakly Nonlinear Analysis

4.1 Foundations of Weakly Nonlinear Theory

In Chapter 3, we studied the linear stability of the Rayleigh–Bénard problem and the
doubly-diffusive problem, which told us when the systems were stable or unstable when
subjected to infinitesimally-small perturbations. When the flow is just unstable, it is usually a
good enough approximation to only consider the most unstable mode as we do in linear theory.
However, to fully characterise a flow, it is necessary to take into account the nonlinear terms.
The systems that we are studying here contain quadratic nonlinearities, so the amplitudes of
these terms will at first grow in time exponentially, but then will soon dominate the dynamics.

A weakly nonlinear system is one where the amplitude of the perturbations is just large
enough for the nonlinear terms to become relevant. In weakly nonlinear theory, we study the
dynamics of such a system close to the critical value of the control parameter, which is Ra, or
RaT for these problems, by creating a reduced set of equations that describes the nonlinear
interaction between these few unstable modes. This allows us to have a deeper understanding
of the system behaves, and allows us to determine the types of local bifurcations the system
undergoes.

4.1.1 Fredholm’s Alternative

An important result that is useful for us in weakly nonlinear analysis is Fredholm’s
alternative. (This result is adapted from Fredholm (1903) and Haberman (2004).)

Consider the following ordinary differential equation,

Lu(x) = F (x), (4.1.1)

on the interval [a, b], with boundary conditions,

u = 0 at x = a and x = b, (4.1.2)

where the operator L and the function F (x) are both non-singular.
Now also consider the homogenous problem,

L†uh(x) = 0, (4.1.3)

subject to the same boundary conditions, where L† is the adjoint of the operator L.
Fredholm’s alternative states that only one of the following statements are true:

1. Lu(x) = F (x) has a unique solution.
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2. L†uh(x) = 0 has a non-trivial solution.

A corollary of this result is that if the operator L is self-adjoint and if the homogeneous
problem, Luh(x) = 0, has a non-trivial solution, then the non-homogeneous problem,
Lu(x) = F (x), has a solution if and only if,

〈F, uh〉 = 0, (4.1.4)

where 〈·, ·〉 represents the inner product. Equation (4.1.4) is called the solvability condition.
Note that if an operator L is self-adjoint, then there exists a weight function, w(x) and a

corresponding inner product,

〈f, g〉 =

ˆ b

a
f(x)g(x)w(x)dx, (4.1.5)

such that,
〈f,Lg〉 = 〈Lf, g〉, (4.1.6)

for all functions f and g.

4.1.2 A Simple Example

To illustrate the concept and methods of weakly nonlinear theory, we will now investigate
a simple problem, which is a adapted from Matkowsky (1970) and Drazin and Reid (2004).
These methods will then be applied to the Rayleigh–Bénard problem and the doubly-diffusive
problem in the rest of this chapter.

Consider the following partial differential equation,

∂u

∂t
− sin(u) =

1

R

∂2u

∂z2
, (4.1.7)

where u is a function of z and time, t and R is a parameter, with boundary conditions,

u = 0 at z = 0 and z = π. (4.1.8)

This may be thought of as the flow of a fluid with velocity u(z, t) between two parallel planes,
z = 0 and z = π, with R imitating the role of a Reynolds number and a forcing term sin(u).

We see that equation (4.1.7) has null solution, u0 = 0. Therefore, we linearise the per-
turbations around this solution to obtain the linearised version of the problem, given below,

∂û

∂t
− û =

1

R

∂2û

∂z2
, (4.1.9)

by noting that sin(ũ) ≈ ũ for small ũ.
This linear problem may be solved by supposing the (non-trivial) solution may be written

as the product of two functions of a single variable. That is, the solution is of the form,

u(z, t) = u0 + ũ(z, t) = 0 + ζ(z)τ(t). (4.1.10)

By substituting equation (4.1.10) into equation (4.1.9), we have,

ζ
∂τ

∂t
− ζτ =

1

R

∂2ζ

∂z
τ. (4.1.11)
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Since we are assuming that u(z, t) is not identically zero, we may divide (4.1.11) by ζτ and
obtain,

1

τ

∂τ

∂t
=

1

Rζ

∂2ζ

∂z2
+ 1, (4.1.12)

for all z and t.
Since the left hand side of (4.1.12) is a function of only t and the right hand side is

function of only z, it follows that each side is equal to a real arbitrary constant, say λ. We
therefore have two ordinary differential equations,

dτ

dt
= λτ, (4.1.13)

d2ζ

dz2
= R(λ− 1)ζ. (4.1.14)

Since we are assuming that we have a separated solution, the boundary conditions (4.1.8)
imply that we have,

ζ = 0 at z = 0 and z = π. (4.1.15)

If we have R(λ − 1) = k2 > 0, where k ∈ R, we find that equation (4.1.14) has general
solution,

ζ(z) = c1e
kz + c2e

−kz, (4.1.16)

where c1 and c2 are constants. The boundary conditions (4.1.15) imply,

ζ(0) = c1 + c2 = 0, ζ(π) = c1e
kπ + c2e

−kπ = 0 =⇒ c1 = c2 = 0, (4.1.17)

since e2k = 1 has no real solutions for k ∈ R. Therefore, the only solution in this case is
u = 0.

If we have R(λ− 1) = 0, equation (4.1.14) has general solution,

ζ(z) = c1 + c2z, (4.1.18)

where c1 and c2 are constants. The boundary conditions (4.1.15) imply,

ζ(0) = c1 = 0, ζ(π) = c1 + c2π = 0 =⇒ c1 = c2 = 0. (4.1.19)

Therefore, again the only solution in this case is u = 0.
If we have R(λ− 1) = −k2 < 0, where k ∈ R, equation (4.1.14) has general solution,

ζ(z) = c1 cos(kz) + c2 sin(kz), (4.1.20)

where c1 and c2 are constants. The boundary conditions (4.1.15) imply,

ζ(0) = c1 = 0, ζ(π)c2 sin(kπ) = 0. (4.1.21)

To avoid the trivial solution again (that is to avoid having c1 = c2 = 0) we choose k to satisfy
sin(kπ) = 0, so we have k = n where n ∈ Z. Therefore equation (4.1.14) has non-trivial
solutions for an infinite sequence of values of λn that are given by,

λn = 1− n2

R
, and ζn(z) = sin(nz). (4.1.22)

Solving equation (4.1.13) for these values of λn, we have,

τn(t) = eλnt, (4.1.23)

40



and therefore, we have separated solutions un(z, t), given by,

ũn(z, t) = eλnt sin(nz). (4.1.24)

Since equation (4.1.9) is linear, we can take linear combinations of the basic separated solu-
tions to obtain,

ũ(z, t) =
∞∑
n=1

ane
λnt sin(nz), (4.1.25)

where the an are constants determined from the Fourier sine-series representation.
The threshold of instability occurs for the smallest value of R such that λn = 0. This

implies that the critical value of R, Rc, is

Rc ≡ min
n≥1

n2 = 1. (4.1.26)

For λn to be positive, we require R > n2. Hence the base flow will be stabilising if and only
if all the modes are stable as well.

If we assume the flow is just unstable, that is R is slightly greater than Rc or equivalently
0 < R − Rc � 1, then all normal modes decay exponentially in time except the n = 1
mode. However this exponentially growing mode in linear theory cannot represent the correct
solution to the problem because it quickly grows large enough that the nonlinear terms become
significant. Hence, a nonlinear analysis is necessary here.

Let us define a small parameter ε by the relationship,

ε2r = R−Rc, (4.1.27)

where r is a scaling parameter of order 1. This choice of ε2 seems arbitrary, but will become
apparent throughout the calculation. Then, let us also define the variable T as,

T = ε2t, (4.1.28)

not to be confused with the temperature T in the fluid flow systems that we are studying.
This leads us to the assumption that the weakly nonlinear solution is of the form,

u(z, T ) = u0(z, T ) + εαu1(z, T ) + ε2αu2(z, T ) + . . . , (4.1.29)

where the value of α is to be determined and recalling that u0 = 0.
Substituting the previous expansion of u into the governing equation (4.1.7), we have,

εα+2∂u1
∂T

+ ε2α+2∂u2
∂T

+ . . .− (εαu1 + ε2αu2 + . . .) +
1

6
(εαu1 + ε2αu2)

3 + . . .

= (1− ε2r + ε4r2 + . . .)

(
εα
∂2u1
∂z2

+ ε2α
∂2u2
∂z2

+ . . .

)
(4.1.30)

noting that sinu = u− u3

3! + u5

5! − . . ., and that 1
R = 1

Rc+ε2r
= 1

1+ε2r
= 1−ε2r+ε4r2−ε6r3+ . . ..

Equating coefficients of order εα, regardless of the value of α, we have,

O(εα) :
∂2u1
∂z2

+ u1 = 0. (4.1.31)

Equation (4.1.31) can be shown (by similar methods we have used earlier in this section) to
have a non-zero solution of the form,

u1(z, T ) = A1(T ) sin(z). (4.1.32)
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In other words, there is a non-zero solution to the equation Lu1 = 0, where L = ∂2

∂z2
+ 1 is a

self-adjoint operator with weight function w(x) = 1.
Subtracting equation (4.1.31) from the governing equation (4.1.30) and dividing the re-

maining terms by εα, we are left with,

ε2
∂u1
∂T

+ εα+2∂u2
∂T

+ . . .− (εαu2 + ε2αu3 + . . .) +
1

6
(ε2αu31 + ε5αu32 + . . .) + . . .

= −ε2r∂
2u1
∂z2

+ εα
∂2u2
∂z2

− εα+2r
∂2u2
∂z2

+ ε2α
∂2u3
∂z2

− ε2α+2r
∂2u3
∂z2

+ . . . . (4.1.33)

If we assume here that α = 2, then to the lowest order of ε, we have,

O(ε2) :
∂u1
∂T
− u2 = −r∂

2u1
∂z2

+
∂2u2
∂z2

. (4.1.34)

Rearranging equation (4.1.34), and by using equations (4.1.31) and (4.1.32), we can write,

∂2u2
∂z2

+ u2 =
∂u1
∂T

+ r
∂2u1
∂z2

=
∂u1
∂T
− ru1

=
∂

∂T
A1 sin(z)− rA1 sin(z)

=

(
∂A1

∂T
− rA1

)
sin(z).

(4.1.35)

This equation for u2 is not homogeneous, but still satisfies the same boudary conditions
that u1 did. Since there was a non-zero solution (4.1.32) to the homogeneous problem, by
Fredholm’s alternative (see Section 4.1.1), we know that equation (4.1.35) only has solution
if the solvability condition, 〈(

∂A1

∂T
− rA1

)
sin(z), u1

〉
= 0, (4.1.36)

is satisfied. Given that u1(z) ∝ sin(z) and that 〈sin(z), sin(z)〉 6= 0, equation (4.1.36) is
equivalent to requiring,

∂A1

∂T
− rA1 = 0, (4.1.37)

which has solution,
A1(T ) = c1e

rT , (4.1.38)

where c1 is an integration constant. This essentially recovers linear theory—as long as the
amplitude of the perturbation is of the order ε2 or less, A1 continues to grow exponentially.

In order to account for nonlinear saturation, we want the nonlinear terms of equation
(4.1.33) to be of the same order as the ∂u1

∂T term. This is why it was convenient to define ε as
a squared term. Therefore, taking α = 1, to the lowest order of ε we have,

O(ε) :
∂2u2
∂z2

+ u2 = 0. (4.1.39)

Solving this, we find that this has solution,

u2(z, T ) = A2(T )sin(z). (4.1.40)
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Taking the next order terms, we have,

O(ε2) :
∂u1
∂T
− u3 +

1

6
u31 = −r∂

2u1
∂z2

+
∂2u3
∂z2

. (4.1.41)

Rearranging equation (4.1.41), we can write,

∂2u3
∂z2

+ u3 =
∂u1
∂T

+ r
∂2u1
∂z2

+
1

6
u31

=
∂

∂T
A1 sin(z)

1

6
A3

1 sin3(z)− rA1 sin(z)

=

(
∂A1

∂T
+

1

8
A3

1 − rA1

)
sin(z)− 1

24
A3

1 sin(3z),

(4.1.42)

by using equations (4.1.31) and (4.1.32), and the fact that sin3(z) = 3
4 sin(z)− 1

4 sin(3z). By
Fredholm’s alternative, equation (4.1.42) only has a solution if the solvability condition,〈(

∂A1

∂T
+

1

8
A3

1 − rA1

)
sin(z)− 1

24
A3

1 sin(3z), u1

〉
= 0, (4.1.43)

is satisfied. Since we know that u1 ∝ sin(z) and that the sin(3z) term is orthogonal to sin(z)
whilst the sin(z) term is not, equation (4.1.43) is equivalent to requiring,

∂A1

∂T
+

1

8
A3

1 − rA1 = 0. (4.1.44)

This is the Landau equation for this problem, which we see can be transformed into the
normal form for a pitchfork bifurcation. The sign of the parameter r tells us the bifurcation
is subcritical (when r is negative) or supercritical (when r is positive). Changing the value
of r does not change the solution, but changes the scale of ε, since the Landau equation is
essentially of the form

ε3
dA1

dt
= (R−Rc)A1 −

1

8
ε3A3

1. (4.1.45)

Equation (4.1.44) is a Bernouilli ordinary differential equation with general solution,

A1(T ) = ±2
√

2
√
rc1e

rT√
c1e2rT − 1

, (4.1.46)

where c1 is an integration constant. Since we assumed that α = 1, we have that,

u(z, T ) = εA1(T ) sin(z)

= ± 2
√

2rc1e
rT√

c1e2rT − 1
sin(z),

(4.1.47)

is an approximate solution to the original equation (4.1.7).
Note that we could go to higher order of ε and find solutions for u4, u5 and so on.

We stopped here because we found the leading asymptotic behaviour of the system and
determined the primary bifurcation.
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4.2 Weakly Nonlinear Analysis of Rayleigh–Bénard
Convection

Using the methods in Section 4.1, we will derive weakly nonlinear equations for the
Rayleigh–Bénard problem.

Recall that the behaviour of Rayleigh–Bénard convection for Ra just above onset Rac is
a rapid transition to another steady state that has 2D convective rolls. We will therefore
look for weakly nonlinear solutions of the problem by first defining a small parameter that
represents this distance to onset, expand all quantities in powers of that small parameter,
and then finding solutions order by order using the solvability condition (4.1.4).

Recall that in Section 2.3.5, we rewrote the governing equations in terms of the vorticity
and streamfunction to obtain,

∂ω

∂t
+ J(ψ, ω) = −RaPr∂T

∂x
+ Pr∇2ω, (4.2.1)

∂T

∂t
+ J(ψ, T ) =

∂ψ

∂x
+∇2T, (4.2.2)

where J(ψ, ω) = ∂ψ
∂x

∂ω
∂z −

∂ψ
∂z

∂ω
∂x and J(ψ, T ) = ∂ψ

∂x
∂T
∂z −

∂ψ
∂z

∂T
∂x .

Let us define a small parameter ε by the relationship,

ε2r = Ra−Rac, (4.2.3)

where Rac is the critical value at which the first mode becomes unstable, which we found in
Section 3.2. Let us also define the variable τ as

τ = ε2t. (4.2.4)

This leads us to the assumption that the weakly nonlinear solution is of the form

ψ(x, z, τ) = εαψ1(x, z, τ) + ε2αψ2(x, z, τ) + . . . (4.2.5a)

ω(x, z, τ) = εαω1(x, z, τ) + ε2αω2(x, z, τ) + . . . (4.2.5b)

T (x, z, τ) = εαT1(x, z, τ) + ε2αT2(x, z, τ) + . . . , (4.2.5c)

noticing that these are functions of τ rather than t. Substituing equations (4.2.5) into equation
(4.2.1) and dividing by εα we have(

ε2
∂ω1

∂τ
+ εα+2∂ω2

∂τ
+ . . .

)
+ εαJ(ψ1, ω1) + ε2αJ(ψ1, ω2) + ε2αJ(ψ2, ω1) + . . .

= −(Rac + ε2r)Pr

(
∂T1
∂x

+ εα
∂T2
∂x

+ . . .

)
+ Pr∇2(ω1 + εαω2 + . . .).

(4.2.6)

Similarly, equation (4.2.2) becomes(
ε2
∂T1
∂τ

+ εα+2∂T2
∂τ

+ . . .

)
+ εαJ(ψ1, T1) + ε2αJ(ψ1, T2) + ε2αJ(ψ2, T1)

=

(
∂ψ1

∂x
+ εα

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εαT2 + . . .).

(4.2.7)

At zeroeth order in ε, (O(ε0) = O(1)) we have

−RacPr
∂T1
∂x
− Pr∇4ψ1 = 0, (4.2.8a)

∂ψ1

∂x
+∇2T1 = 0. (4.2.8b)
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There is a trivial solution to the above equations, namely

ψ1 = T1 = 0. (4.2.9)

However, we know that at Ra = Rac there is a non-trival solution since linear theory predicted
that this is the point convection is just becoming linearly unstable.

Let us define Ψ1 ≡ (ψ1, T1)
T . Then we can write equations (4.2.8a) and (4.2.5) as

LΨ1 = 0, (4.2.10)

where L is a 2× 2 matrix operator given by

L =

(
−Pr∇4 −RacPr ∂

∂x
∂
∂x ∇2

)
. (4.2.11)

It can be shown that L is self-adjoint with respect to the inner product

〈Ψm,Ψn〉 =

¨
(ψmψn +RacPrTmTn) dzdx, (4.2.12)

assuming periodicity in x, for any two functions Ψm and Ψn. Indeed, by integration by parts
we have

〈Ψm,LΨn〉 =

ˆ L

0

ˆ 1

0

[
ψm

(
−Pr∇4ψn −RacPr

∂Tn
∂x

)
+RacPrTm

(
∂ψn
∂x

+∇2Tn

)]
dzdx

=

ˆ L

0

ˆ 1

0

[
−Pr∇2ψm∇2ψn +RacPrTn

∂ψm
∂x
−RacPrψn

∂Tm
∂x

+RacPr∇Tm∇Tn
]
dzdx

=

ˆ L

0

ˆ 1

0

[
ψn

(
−Pr∇4ψm −RacPr

∂Tm
∂x

)
+RacPrTn

(
∂ψm
∂x

+∇2Tm

)]
dzdx

= 〈Ψn,LΨm〉
= 〈LΨn,Ψm〉,

(4.2.13)
where the last equality holds since the inner product is symmetric for real functions. Recall
that we found the critical wavenumber at Ra = Rac to be ac = π√

2
. Therefore, if we assume

periodicity in x, then we must have L = 2π
ac

.
Recall that in Section 3.2 we assumed that solutions were of the form

w = f(x)w̄(z)eλt, (4.2.14)

and that
w̄n(z) ∝ sin(nπz). (4.2.15)

Note that in general, the eigenvalue λ is complex-valued, but for Rayleigh–Bénrad convection,
we showed that λ is real. Therefore, we define

ψ1(x, z, τ) = ψ̂ sin(πz) cos(acx)A1(τ), (4.2.16)

where we arbitrarily pick the cosine mode in the x–direction, recalling that in Section 3.2.3,
we deduced that 2D convection rolls arise when choosing f(x) to be of the form cos(ax).
Then we have

ω1 = −∇2ψ

= (a2c + π2)(ψ̂ sin(πz) cos(acx))A1(τ),
(4.2.17)
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and

∇2T1 = −∂ψ1

∂x
, (4.2.18)

which implies that

T1 = −acψ̂ sin(πz) sin(acx)A1(τ)

a2c + π2
. (4.2.19)

Returning now to equation (4.2.6), we see that in order for the nonlinear terms (the
Jacobian terms) to be of the same order as the ε2rPr ∂T1∂x term, we choose α = 1. Note that
we chose to define ε in the way we did in order to be able to choose α = 1. We now rewrite
equation (4.2.6) as(

ε2
∂ω1

∂τ
+ ε3

∂ω2

∂τ
+ . . .

)
+ εJ(ψ1, ω1) + ε2J(ψ1, ω2) + ε2J(ψ2, ω1) + . . .

= −(Rac + ε2r)Pr

(
∂T1
∂x

+ ε
∂T2
∂x

+ . . .

)
+ Pr∇2(ω1 + εω2 + . . .),

(4.2.20)

and equation (4.2.7) as(
ε2
∂T1
∂τ

+ ε3
∂T2
∂τ

+ . . .

)
+ εJ(ψ1, T1) + ε2J(ψ1, T2) + ε2J(ψ2, T1)

=

(
∂ψ1

∂x
+ ε

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εT2 + . . .).

(4.2.21)

Now, to the next order in ε, O(ε), we have

J(ψ1, ω1) = −RacPr
∂T2
∂x
− Pr∇4ψ2, (4.2.22a)

J(ψ1, T1) =
∂ψ2

∂x
+∇2T2. (4.2.22b)

However, since J(ψ1, ω1) = −J(ψ1,∇2ψ1) = −(a2c + π2)J(ψ1, ψ1) = 0, we have

LΨ2 =

(
−Pr∇4 −RacPr ∂

∂x
∂
∂x ∇2

)(
ψ2

T2

)
=

(
0

J(ψ1, T1)

)
, (4.2.23)

where we have defined Ψ2 ≡ (ψ2, T2)
T . Since we already know that L is self-adjoint and that

LΨ1 = 0 has a non-trivial solution, then by Fredholm’s alternative, the solvability condition
is given by 〈(

ψ1

T1

)
,

(
0

J(ψ1, T1)

)〉
= 0, (4.2.24)

or equivalently,

RacPr

¨
T1J(ψ1, T1) dzdx = 0. (4.2.25)

Substituing expressions for ψ1 and T1, J(ψ1, T1) is given by

J(ψ1, T1) = ψ̂2 a2cπ

a2c + π2
sin(2πz)

2
A2

1, (4.2.26)

which is independent of x. Since T1 ∝ sin(acx), we know that equation (4.2.25) is true, and
so we can expect a solution to equations (4.2.22a) and (4.2.23).
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Since the left hand side of equations (4.2.22a)) and (4.2.23) are independent of x, let us
posit that the solution is also independent of x. We try ψ2 = ψ2(z, τ) and T2 = T2(z, τ).
This gives us

− Pr∂
4ψ2

∂z4
= 0, (4.2.27)

which, when subject to the boundary conditions we have defined for this problem, has solution

ψ2 = 0, (4.2.28)

and
∂2T2
∂z2

= ψ̂2 a2cπ

a2c + π2
sin(2πz)

2
A2

1, (4.2.29)

which has solution

T2 = − ψ̂a2c
a2c + π2

sin(2πz)

8π
A2

1. (4.2.30)

Returning to equations (4.2.20) and (4.2.21), equating coefficients of O(ε2), we have

∂ω1

∂τ
+ J(ψ1, ω2) + J(ψ2, ω1) = −rPr∂T1

∂x
−RacPr

∂T3
∂x

+ Pr∇2ω3, (4.2.31a)

∂T1
∂τ

+ J(ψ1, T2) + J(ψ2, T1) =
∂ψ3

∂x
+∇2T3. (4.2.31b)

However, ψ2 = ω2 = 0 implies that J(ψ1, ω2) = J(ψ2, ω1) = J(ψ2, T1) = 0. Therefore, we
write

∂ω1

∂τ
+ rPr

∂T1
∂x

= −RacPr
∂T3
∂x
− Pr∇4ω3, (4.2.32a)

∂T1
∂τ

+ J(ψ1, T2) =
∂ψ3

∂x
+∇2T3, (4.2.32b)

which is equivalent to

LΨ3 =

(
−Pr∇4 −RacPr ∂

∂x
∂
∂x ∇2

)(
ψ3

T3

)
= N3, (4.2.33)

where we have defined Ψ ≡ (ψ3, T3) and

N3 ≡
(

∂ω1
∂τ + rPr ∂T1∂x

∂T1
∂τ + J(ψ1, T2)

)
. (4.2.34)

By Fredholm’s alternative, equation (4.2.33) only has solution when

〈Ψ1, N3〉 = 0. (4.2.35)

Through a lengthy process, we solve equation (4.2.35), which gives us the Landau equation[(
(a2c + π2) +

RacPra
2
c

a2c + π2

)
∂A1

∂τ
− rPra2c
a2c + π2

A1 +
RacPra

4
cψ̂

2

8(a2c + π2)2
A3

1

]
= 0. (4.2.36)

This tells us that the primary bifurcation of Rayleigh–Bénard convection is a pitchfork bifurc-
ation. It is subcritical when r is negative and supercritical when r is positive. However, since
this analysis was done by assuming that the fluid is just unstable, so that 0 < Ra−Rac � 1,
we have that r is positive.
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Using a continuation and bifurcation package for MATLAB called pde2path (Uecker et al.,
2014; Dohnal et al., 2014; deWitt et al., 2017), we can plot a bifurcation diagram showing the
primary bifurcation. Figure 4.1 shows bifurcation diagram for Pr = 1 with a supercritical
bifurcation. We can see a bifurcation branch at ψ = 0 that is stable for Ra < Rac and
unstable for Ra > Rac. At Rac, a stable branch of solutions emerge. In Figure 4.2, we can
see how solutions of the fluid at the stable bifurcation branch form convection rolls.

Figure 4.1: Bifurcation diagram showing the primary supercritical pitchfork bifurcation in
Rayleigh–Bénard convection for Pr = 1. Thicker lines represent stable solutions and thinner
lines represent unstable solutions. The circle represents the bifurcation point Rac.

Note that these figures were calculated for a fluid layer rescaled to be between z = −0.5
and z = 0.5 with free-slip horizontal boundary conditions at x = ±2π

ac
so that we have

periodic boundary conditions that emulate a fluid in an infinite layer. Note also that this was
computed on a rather coarse mesh of 100× 25 grid points due to computational constraints.
For a more accurate diagram, a more refined mesh should be used, however, this is good
enough here to qualitatively visualise the bifurcation diagram.
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Figure 4.2: Sample solution of Rayleigh–Bénard convection at the stable branch shown in
red in Figure 4.1. This is in terms of the streamfunction ψ, where the arrows indicate the
direction of the fluid flow.

4.3 Weakly Nonlinear Analysis of Doubly-Diffusive
Convection: A Horizontal Layer Heated and Salted from
Below

Following a similar procedure as we used in the previous sections, we now derive weakly
nonlinear equations for a fluid in a horizontal layer that is heated and salted from below.

Recall that for N < N (OS) instability arises through a stationary instability, and for
N > N (OS) instability arises through an oscillatory instability, where N (OS) is given by

N (OS) =
Pr + 1

Le(LePr + 1)
. (4.3.1)

We will look for weakly nonlinear solutions to the problem by defining a small parameter
that represents a small distance of RaT to the critical value of the onset of convection, which

is given by Ra
(O)
T or Ra

(S)
T depending on the value of N , where

Ra
(O)
T =

27π4

4

(
1 +

1

Le

)(
1 +

1

LePr

)(
Le(Pr + 1)

Le(Pr + 1)−N(LePr + 1)

)
, (4.3.2)

and

Ra
(S)
T =

27π4

4(1− LeN)
. (4.3.3)
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Recall that we may write the governing equations of the problem in terms of the streamfunc-
tion and the vorticity to obtain

∂ω

∂t
+ J(ψ, ω) = −RaTPr

∂

∂x
(T −NC) + Pr∇2ω, (4.3.4a)

∂T

∂t
+ J(ψ, T ) =

∂ψ

∂x
+∇2T, (4.3.4b)

∂C

∂t
+ J(ψ,C) =

∂ψ

∂x
+

1

Le
∇2C, (4.3.4c)

where J(f, g) = ∂f
∂x

∂g
∂z −

∂f
∂z

∂g
∂x .

Let ε be a small parameter defined by the relationship

ε2r = RaT −RaTc, (4.3.5)

where RaTC is the critical value at which the first mode of the normal mode solution becomes
unstable. Let us also define the variable τ as

τ = ε2t. (4.3.6)

We will now assume that the weakly nonlinear solution is of the form

ψ(x, z, τ) = εαψ1(x, z, τ) + ε2αψ2(x, z, τ) + . . . (4.3.7a)

ω(x, z, τ) = εαω1(x, z, τ) + ε2αω2(x, z, τ) + . . . (4.3.7b)

T (x, z, τ) = εαT1(x, z, τ) + ε2αT2(x, z, τ) + . . . , (4.3.7c)

C(x, z, τ) = εαC1(x, z, τ) + ε2αC2(x, z, τ) + . . . . (4.3.7d)

Substituting the above equations into equations (4.3.4a), (4.3.4b) and (4.3.4c) and dividing
by εα, we obtain the following equations:(

ε2
∂ω1

∂τ
+ εα+2∂ω2

∂τ
+ . . .

)
+ εαJ(ψ1, ω1) + ε2αJ(ψ1, ω2) + ε2αJ(ψ2, ω1) + . . .

= −(RaTc + ε2r)Pr

(
∂T1
∂x

+ εα
∂T2
∂x

+ . . .

)
+ (RaTc + ε2r)PrN

(
∂C1

∂x
+ εα

∂C2

∂x
+ . . .

)
+Pr∇2(ω1 + εαω2 + . . .),

(4.3.8)

(
ε2
∂T1
∂τ

+ εα+2∂T2
∂τ

+ . . .

)
+ εαJ(ψ1, T1) + ε2αJ(ψ1, T2) + ε2αJ(ψ2, T1)

=

(
∂ψ1

∂x
+ εα

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εαT2 + . . .),

(4.3.9)

(
ε2
∂C1

∂τ
+ εα+2∂C2

∂τ
+ . . .

)
+ εαJ(ψ1, C1) + ε2αJ(ψ1, C2) + ε2αJ(ψ2, C1)

=

(
∂ψ1

∂x
+ εα

∂ψ2

∂x
+ . . .

)
+

1

Le
∇2(C1 + εαC2 + . . .).

(4.3.10)

At zeroeth order in ε, or O(1), we have

0 = −RaTcPr
∂T1
∂x

+RaTc
∂T1
∂x
− Pr∇4ψ1, (4.3.11a)

0 =
∂ψ1

∂x
+∇2T1, (4.3.11b)

0 =
∂ψ1

∂x
+

1

Le
∇2C1. (4.3.11c)
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We can see that there is a trivial solution to these equations, which is given by

ψ1 = T1 = C1 = 0, (4.3.12)

however, from linear theory, we know that there is a non-trivial solution at the point Ra =
RaTc. If we define Ψ1 ≡ (ψ1, T1, C1)

T , then we can write equations (4.3.11a), (4.3.11b) and
(4.3.11c) as

LΨ1 = 0, (4.3.13)

where L is now a 3× 3 operator given by

L =

−Pr∇4 −RaTcPr ∂
∂x RaTcPrN

∂
∂x

∂
∂x ∇2 0
∂
∂x 0 1

Le∇
2

 . (4.3.14)

It can be shown by repeated integration by parts that L is self-adjoint with respect to the
inner product

〈Ψm,Ψn〉 =

¨
(ψmψn +RaTcPrTmTn −RaTcPrCmCn) dzdx, (4.3.15)

when we assume periodicity in the x–direction, with period 2π
ac

.
Recall now that we wanted to solve for

w = f(x)w̄eλt (4.3.16)

where λ is a complex eigenvalue. We deduced that w̄n was of the form sin(nπz), hence, we
choose

ψ1(x, z, τ) = ψ̂ sin(πz)cos(acx)A(τ), (4.3.17)

where we again arbitrarily choose the cosine mode in the x-direction. Then we have

ω1 = (a2c + π2)ψ̂ sin(πz)cos(acx)A(τ), (4.3.18a)

T1 = −acψ̂ sin(πz) sin(acx)A(τ)

a2c + π2
(4.3.18b)

C1 = −Leacψ̂ sin(πz) sin(acx)A(τ)

a2c + π2
. (4.3.18c)

Now, if we want the nonlinear terms and the ε2rPr(∂T1∂x −N
∂C1
∂x ) term of equation (4.3.8) to

be of the same order, then we choose α = 1.
Therefore, we now rewrite equations (4.3.8), (4.3.9) and (4.3.10) as(

ε2
∂ω1

∂τ
+ ε3

∂ω2

∂τ
+ . . .

)
+ εJ(ψ1, ω1) + ε2J(ψ1, ω2) + ε2J(ψ2, ω1) + . . .

= −(RaTc + ε2r)Pr

(
∂T1
∂x

+ ε
∂T2
∂x

+ . . .

)
+ (RaTc + ε2r)PrN

(
∂C1

∂x
+ ε

∂C2

∂x
+ . . .

)
+Pr∇2(ω1 + εω2 + . . .),

(4.3.19)(
ε2
∂T1
∂τ

+ ε3
∂T2
∂τ

+ . . .

)
+ εJ(ψ1, T1) + ε2J(ψ1, T2) + ε2J(ψ2, T1)

=

(
∂ψ1

∂x
+ ε

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εT2 + . . .),

(4.3.20)
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(
ε2
∂C1

∂τ
+ ε3

∂C2

∂τ
+ . . .

)
+ εJ(ψ1, C1) + ε2J(ψ1, C2) + ε2J(ψ2, C1)

=

(
∂ψ1

∂x
+ ε

∂ψ2

∂x
+ . . .

)
+

1

Le
∇2(C1 + εC2 + . . .).

(4.3.21)

Equating coefficients of O(ε), we have

J(ψ1, ω1) = −RaTcPr
∂T2
∂x

+RaTcPrN
∂C2

∂x
− Pr∇4ψ2, (4.3.22a)

J(ψ1, T1) =
∂ψ2

∂x
+∇2T2, (4.3.22b)

J(ψ1, C1) =
∂ψ2

∂x
+

1

Le
∇2C2. (4.3.22c)

However, since J(ψ1, ω1) = −J(ψ1,∇2ψ1) = −(a2c + π2)J(ψ1, ψ1) = 0, we have

LΨ2 =

−Pr∇4 −RaTcPr ∂
∂x RaTcPrN

∂
∂x

∂
∂x ∇2 0
∂
∂x 0 1

Le∇
2

ψ2

T2
C2

 =

 0
J(ψ1, T1)
J(ψ1, C1)

 , (4.3.23)

where Ψ2 ≡ (ψT , T2, C2)
T . Since L is self-adjoint and we know that LΨ1 = 0 has a non-trivial

solution, then Fredholm’s alternative tells us that equation (4.3.23) has a solution if〈ψ1

T1
C1

 ,

 0
J(ψ1, T1)
J(ψ1, C1)

〉 = 0, (4.3.24)

is satisfied. The above inner product is equivalent to

RaTcPr

¨
T1J(ψ1, T1)−NC1J(ψ1, C1) dzdx = 0, (4.3.25)

which is always satisfied since J(ψ1, T1) and J(ψ1, C1) depend only on z and τ , whilst T1
and C1 are proportional to sin(acx). Therefore, we expect a solution to equations (4.3.22a),
(4.3.22b) and (4.3.22c).

Noting that the left hand side of equations (4.3.22a), (4.3.22b) and (4.3.22c) are inde-
pendent of x, we expect the solution to the equations to also be independent of x. Letting
ψ2 = ψ(z, τ), T2 = T2(z, τ) and C2 = C2(z, τ), we have

−Pr∂
4ψ2

∂z4
= 0 (4.3.26a)

∂2T2
∂z2

= J(ψ1, T1) (4.3.26b)

∂2C2

∂z2
= LeJ(ψ1, C1), (4.3.26c)

which has solutions

ψ2 = 0, (4.3.27a)

T2 = − a2cψ̂
2A2

8π(a2c + π2)
sin(2πz), (4.3.27b)

C2 = − Le
2a2cψ̂

2A2

8π(a2c + π2)
∈ (2πz). (4.3.27c)
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Equating coefficients of O(ε2), we have

∂ω1

∂τ
+ rPr

∂T1
∂x
− rPrN ∂C1

∂x
= −RaTcPr

∂T3
∂x

+RaTcPrN
∂C3

∂x
− Pr∇4ω3, (4.3.28a)

∂T1
∂τ

+ J(ψ1, T2) =
∂ψ3

∂x
+∇2T3, (4.3.28b)

∂C1

∂τ
+ J(ψ1, C2) =

∂ψ3

∂x
+

1

Le
∇2C3, (4.3.28c)

where we have used the fact that J(ψ1, ω2) = J(ψ2, ω1) = J(ψ2, T1) = J(ψ2, C1) = 0.
Therefore, by similar reasoning as before, the solvability condition is

〈Ψ3, N3〉 = 0, (4.3.29)

where Ψ3 = (ψ3, T3, C3)
T and

N3 =

∂ω1
∂τ + rPr ∂T1∂x − rPrN

∂C1
∂x

∂T1
∂τ + J(ψ1, T2)
∂C1
∂τ + J(ψ1, C2)

 . (4.3.30)

Solving equation (4.3.29) gives us

(a2c + π2) + (1−NLe2)RaTcPra
2
c

(π2 + a2c)
2

∂A

∂τ

−(1−NLe) rPra
2
c

π2 + a2c
A+ (1−NLe2)RaTcPra

4
cψ̂

2

8(π2 + a2c)
A3 = 0.

(4.3.31)

Notice here, that the subcriticality, or the supercriticality of the bifurcation depends on
the value of NLe and NLe2. If we are in the steady state, then the system, then we can
say that the primary bifurcation is subcritical for 1 − NLe2 < 0 and 1 − NLe > 0, or
1
Le2

< N < 1
Le .

Using pde2path, we plot bifurcation diagrams in Figure 4.3 and Figure 4.4 for fixed values
of Pr, Le and for different values of N to show the supercriticality or the subcriticality of
the primary pitchfork bifurcation, respectively. We have rescaled the configuration of the
problem such that the fluid layer is bounded between z = −0.5 and z = 0.5, and we define
free-slip horizontal boundary conditions at x = ±2π

ac
so that we can emulate a fluid in an

infinite layer.

4.4 Weakly Nonlinear Analysis of Doubly-Diffusive
Convection: A Horizontal Layer Heated and Salted from
Above

We will now derive weakly nonlinear equations for a fluid in a horizontal layer that is
heated and salted from above, by following the same methods.

Recall that in Section 3.4 we found that in this configuration, instability arises through a
stationary bifurcation point, which was given by

Ra
(S)
T =

27π4

4(LeN − 1)
(4.4.1)

We look for weakly nonlinear solutions to this problem by defining a small parameter that

represents a small distance of RaT to the critical value Ra
(S)
T .
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Figure 4.3: Bifurcation diagram showing the primary supercritical pitchfork bifurcation in a
horizontal fluid heated and salted from below for Pr = 1, Le = 2 and N = 0.1. Thicker lines
represent stable solutions and thinner lines represent unstable solutions. The circle represents

the bifurcation point Ra
(S)
T .

Recall that we may write the governing equations of the problem in terms of the stream-
function and the vorticity to obtain

∂ω

∂t
+ J(ψ, ω) = −RaTPr

∂

∂x
(T −NC) + Pr∇2ω, (4.4.2a)

∂T

∂t
+ J(ψ, T ) = −∂ψ

∂x
+∇2T, (4.4.2b)

∂C

∂t
+ J(ψ,C) = −∂ψ

∂x
+

1

Le
∇2C, (4.4.2c)

where J(f, g) = ∂f
∂x

∂g
∂z −

∂f
∂z

∂g
∂x . We reiterate that these equations are very similar to the

governing equations of the other configuration of doubly-diffusive convection that we are
studying—the only difference is a sign change in the ∂ψ

∂x terms.
Now, let ε be a small parameter defined by the relationship

ε2r = RaT −Ra(S)T , (4.4.3)

where Ra
(S)
T is the critical value at which the first mode of the normal mode solution becomes

unstable. Then let us also define the variable τ as

τ = ε2t. (4.4.4)
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Figure 4.4: Bifurcation diagram showing the primary subcritical pitchfork bifurcation in a
horizontal fluid heated and salted from below for Pr = 1, Le = 2 and N = 0.3. Thicker lines
represent stable solutions and thinner lines represent unstable solutions. The circle represents

the bifurcation point Ra
(S)
T .

We postulate that the weakly nonlinear solution is of the form

ψ(x, z, τ) = εαψ1(x, z, τ) + ε2αψ2(x, z, τ) + . . . (4.4.5a)

ω(x, z, τ) = εαω1(x, z, τ) + ε2αω2(x, z, τ) + . . . (4.4.5b)

T (x, z, τ) = εαT1(x, z, τ) + ε2αT2(x, z, τ) + . . . , (4.4.5c)

C(x, z, τ) = εαC1(x, z, τ) + ε2αC2(x, z, τ) + . . . . (4.4.5d)

Substituting the above equations into equations (4.4.2a), (4.4.2b) and (4.4.2c) and dividing
by εα, we obtain the following equations:(

ε2
∂ω1

∂τ
+ εα+2∂ω2

∂τ
+ . . .

)
+ εαJ(ψ1, ω1) + ε2αJ(ψ1, ω2) + ε2αJ(ψ2, ω1) + . . .

= −(Ra
(S)
T + ε2r)Pr

(
∂T1
∂x

+ εα
∂T2
∂x

+ . . .

)
+ (Ra

(S)
T + ε2r)PrN

(
∂C1

∂x
+ εα

∂C2

∂x
+ . . .

)
+Pr∇2(ω1 + εαω2 + . . .),

(4.4.6)
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(
ε2
∂T1
∂τ

+ εα+2∂T2
∂τ

+ . . .

)
+ εαJ(ψ1, T1) + ε2αJ(ψ1, T2) + ε2αJ(ψ2, T1)

= −
(
∂ψ1

∂x
+ εα

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εαT2 + . . .),

(4.4.7)

(
ε2
∂C1

∂τ
+ εα+2∂C2

∂τ
+ . . .

)
+ εαJ(ψ1, C1) + ε2αJ(ψ1, C2) + ε2αJ(ψ2, C1)

= −
(
∂ψ1

∂x
+ εα

∂ψ2

∂x
+ . . .

)
+

1

Le
∇2(C1 + εαC2 + . . .).

(4.4.8)

At zeroeth order in ε, or O(1), we have

0 = −Ra(S)T Pr
∂T1
∂x

+Ra
(S)
T

∂T1
∂x
− Pr∇4ψ1, (4.4.9a)

0 = −∂ψ1

∂x
+∇2T1, (4.4.9b)

0 = −∂ψ1

∂x
+

1

Le
∇2C1. (4.4.9c)

We can clearly see that a trivial solution to these equations is given by

ψ1 = T1 = C1 = 0, (4.4.10)

however, from linear theory, we know that there is a non-trivial solution at the point Ra =

Ra
(S)
T . If we define Ψ1 ≡ (ψ1, T1, C1)

T , then we can write equations (4.4.9a), (4.4.9b) and
(4.4.9c) as

LΨ1 = 0, (4.4.11)

where L is a 3× 3 matrix operator given by

L =

−Pr∇4 −Ra(S)T Pr ∂
∂x Ra

(S)
T PrN ∂

∂x

− ∂
∂x ∇2 0

− ∂
∂x 0 1

Le∇
2

 . (4.4.12)

It can be shown by successive integration by parts that L is self-adjoint with respect to the
inner product

〈Ψm,Ψn〉 =

¨
(ψmψn +Ra

(S)
T PrTmTn −Ra(S)T PrCmCn) dzdx, (4.4.13)

when we assume periodicity in the x–direction, with period 2π
ac

.
Recall now that in linear theory we wanted to solve for

w = f(x)w̄eλt (4.4.14)

where λ is a complex eigenvalue. However, we deduced that for this problem, λ was real, so
we may also take λ real here. We also deduced that w̄n was of the form sin(nπz), hence, we
choose

ψ1(x, z, τ) = ψ̂ sin(πz)cos(acx)A(τ), (4.4.15)
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where we again arbitrarily choose the cosine mode in the x-direction. Then we have

ω1 = (a2c + π2)ψ̂ sin(πz)cos(acx)A(τ), (4.4.16a)

T1 =
acψ̂ sin(πz) sin(acx)A(τ)

a2c + π2
(4.4.16b)

C1 =
Leacψ̂ sin(πz) sin(acx)A(τ)

a2c + π2
. (4.4.16c)

In order for the nonlinear terms and the ε2rPr(∂T1∂x −N
∂C1
∂x ) term of equation (4.3.8) to be

of the same order, then we choose α = 1.
Therefore, we now rewrite equations (4.4.6), (4.4.7) and (4.4.8) as(

ε2
∂ω1

∂τ
+ ε3

∂ω2

∂τ
+ . . .

)
+ εJ(ψ1, ω1) + ε2J(ψ1, ω2) + ε2J(ψ2, ω1) + . . .

= −(Ra
(S)
T + ε2r)Pr

(
∂T1
∂x

+ ε
∂T2
∂x

+ . . .

)
+ (Ra

(S)
T + ε2r)PrN

(
∂C1

∂x
+ ε

∂C2

∂x
+ . . .

)
+Pr∇2(ω1 + εω2 + . . .),

(4.4.17)(
ε2
∂T1
∂τ

+ ε3
∂T2
∂τ

+ . . .

)
+ εJ(ψ1, T1) + ε2J(ψ1, T2) + ε2J(ψ2, T1)

= −
(
∂ψ1

∂x
+ ε

∂ψ2

∂x
+ . . .

)
+∇2(T1 + εT2 + . . .),

(4.4.18)

(
ε2
∂C1

∂τ
+ ε3

∂C2

∂τ
+ . . .

)
+ εJ(ψ1, C1) + ε2J(ψ1, C2) + ε2J(ψ2, C1)

= −
(
∂ψ1

∂x
+ ε

∂ψ2

∂x
+ . . .

)
+

1

Le
∇2(C1 + εC2 + . . .).

(4.4.19)

Equating coefficients of O(ε), we have

J(ψ1, ω1) = −Ra(S)T Pr
∂T2
∂x

+Ra
(S)
T PrN

∂C2

∂x
− Pr∇4ψ2, (4.4.20a)

J(ψ1, T1) = −∂ψ2

∂x
+∇2T2, (4.4.20b)

J(ψ1, C1) = −∂ψ2

∂x
+

1

Le
∇2C2. (4.4.20c)

However, since J(ψ1, ω1) = −J(ψ1,∇2ψ1) = −(a2c + π2)J(ψ1, ψ1) = 0, we write this as

LΨ2 =

−Pr∇4 −Ra(S)T Pr ∂
∂x Ra

(S)
T PrN ∂

∂x

− ∂
∂x ∇2 0

− ∂
∂x 0 1

Le∇
2

ψ2

T2
C2

 =

 0
J(ψ1, T1)
J(ψ1, C1)

 , (4.4.21)

where Ψ2 ≡ (ψT , T2, C2)
T . Since L is self-adjoint and we know that the homogenous problem

LΨ1 = 0 has a non-trivial solution, then Fredholm’s alternative tells us that equation (4.4.21)
has a solution if 〈ψ1

T1
C1

 ,

 0
J(ψ1, T1)
J(ψ1, C1)

〉 = 0, (4.4.22)
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is satisfied. The above inner product is equivalent to

Ra
(S)
T Pr

¨
T1J(ψ1, T1)−NC1J(ψ1, C1) dzdx = 0, (4.4.23)

which we can show is always satisfied since J(ψ1, T1) and J(ψ1, C1) depend only on z and τ ,
whilst T1 and C1 are proportional to sin(acx). Therefore, we expect a solution to equations
(4.4.20a), (4.4.20b) and (4.4.20c).

Observe that left hand side of equations (4.4.20a), (4.4.20b) and (4.4.20c) are independ-
ent of x. Therefore, we may reasonably expect the solution to the equations to also be
independent of x. Letting ψ2 = ψ(z, τ), T2 = T2(z, τ) and C2 = C2(z, τ), we have

−Pr∂
4ψ2

∂z4
= 0 (4.4.24a)

∂2T2
∂z2

= J(ψ1, T1) (4.4.24b)

∂2C2

∂z2
= LeJ(ψ1, C1), (4.4.24c)

which has solutions

ψ2 = 0, (4.4.25a)

T2 =
a2cψ̂

2A2

8π(a2c + π2)
sin(2πz), (4.4.25b)

C2 =
Le2a2cψ̂

2A2

8π(a2c + π2)
sin(2πz). (4.4.25c)

Equating coefficients of O(ε2), we have

∂ω1

∂τ
+ rPr

∂T1
∂x
− rPrN ∂C1

∂x
= −Ra(S)T Pr

∂T3
∂x

+Ra
(S)
T PrN

∂C3

∂x
− Pr∇4ω3, (4.4.26a)

∂T1
∂τ

+ J(ψ1, T2) = −∂ψ3

∂x
+∇2T3, (4.4.26b)

∂C1

∂τ
+ J(ψ1, C2) = −∂ψ3

∂x
+

1

Le
∇2C3, (4.4.26c)

where we have used the fact that J(ψ1, ω2) = J(ψ2, ω1) = J(ψ2, T1) = J(ψ2, C1) = 0.
Therefore, by similar reasoning as before, the solvability condition is

〈Ψ3, N3〉 = 0, (4.4.27)

where Ψ3 = (ψ3, T3, C3)
T and

N3 =

∂ω1
∂τ + rPr ∂T1∂x − rPrN

∂C1
∂x

∂T1
∂τ + J(ψ1, T2)
∂C1
∂τ + J(ψ1, C2)

 . (4.4.28)

Solving equation (4.4.27) gives us the Landau equation

(a2c + π2) + (NLe2 − 1)
Ra

(S)
T Pra2c

(π2 + a2c)
2

∂A

∂τ

−(LeN − 1)
rPra2c
π2 + a2c

A+ (NLe2 − 1)
Ra

(S)
T Pra4cψ̂

2

8(π2 + a2c)
A3 = 0.

(4.4.29)
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Notice the similarities between equation (4.3.31) and (4.4.29). This is expected because
notice that the configurations of both of these problems are essentially the same—they are
reflections of each other across the horizontal axis. This is also evident in the forms of the
stationary instability: for a fluid heated and salted from below, this is given by

Ra
(S)
T =

27π4

4(1− LeN)
, (4.4.30)

whilst for a fluid heated and salted from above, this is given by

Ra
(S)
T =

27π4

4(LeN − 1)
. (4.4.31)

If we are in the steady state, we see that in order for the primary bifurcation to be
subcritical, we require that 1

Le2
< N 1

Le . However, this means that the bifurcation occurs at
negative values of RaT , which is not physically possible. Nevertheless, using pde2path, we
do plot a bifurcation diagram of a subcritical bifurcation in Figure 4.6, alongside a diagram
showing a supercritical bifurcation in Figure 4.5 for fixed values of Pr and Le. We have
also rescaled the configuration of the problem such that the fluid layer is bounded between
z = −0.5 and z = 0.5, and define free-slip horizontal boundary conditions at x = ±2π

ac
so that

we can have periodic solutions.
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Figure 4.5: Bifurcation diagram showing the primary supercritical pitchfork bifurcation in a
horizontal fluid heated and salted from above for Pr = 1, Le = 2 and N = 0.9. Thicker lines
represent stable solutions and thinner lines represent unstable solutions. The circle represents

the bifurcation point Ra
(S)
T .
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Figure 4.6: Bifurcation diagram showing the primary subcritical pitchfork bifurcation in a
horizontal fluid heated and salted from above for Pr = 1, Le = 2 and N = 0.3. Thicker lines
represent stable solutions and thinner lines represent unstable solutions. The circle represents

the bifurcation point Ra
(S)
T .
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Chapter 5

Conclusion

5.1 Discussion

In this report, we analysed the behaviour of Rayleigh–Bénard convection and doubly-
diffusive convection in infinite horizontal layers of fluid.

In Chapter 2, we formulated the equations governing Rayleigh–Bénard convection and
doubly-diffusive convection from physical laws governing the motion of fluids, and then ex-
pressed them in non-dimensional quantities. We therefore saw that the dynamics of Rayleigh–
Bénard convection is controlled by non-dimensional parameters Pr and Ra. Similarly, the
dynamics of doubly-diffusive convection is controlled by the non-dimensional parameters Pr,
Le and N . The governing equations were then expressed in two different ways: in terms of
the fluid velocity u and in terms of the streamfunction ψ, and the vorticity ω. The distinction
between the two formulations was stressed because they were be used independently in the
subsequent chapters.

In Chapter 3, we performed linear stability calculations to find the critical values at which
instability arises in the Rayleigh–Bénard and the doubly-diffusive problems. This involved
subjecting the base state of the fluid to small infinitesimal perturbations, and then neglecting
the nonlinear perturbations since these are even smaller than the linear perturbations.

We found that Rayleigh–Bénard convection emerges through a stationary instability at a
critical wavenumber ac and critical Rayleigh number Rac that do not depend on any other
parameters such as Pr. For an infinite horizontal layer, the n = 1 mode in our normal mode
expansion corresponded to the most unstable mode. For Ra > Rac, linear theory predicts
that the solutions will have growing modes, corresponding to the instability or convection
cells that can be observed experimentally and in natural phenomenon (Bénard and Avsec,
1938; Mishra et al., 1999).

Doubly-diffusive convection arises at different critical values depending on the configur-
ation of the problem. For an infinite horizontal fluid layer that is heated and salted from
below, instability arises through a stationary instability for N smaler than the criticalv value
N (OS), and arises through an oscillatory instability, or Hopf bifurcation, for N larger than
the critical value N (OS) that depends on Le and Pr. For a horizontal fluid layer that is
heated and salted from above, instability arises through a stationary instability, because we

restrict our parameters to be positive valued. The critical value Ra
(S)
T at which this occurs

depends on Le and N . These calculations are in agreement with the observed phenomena
that motivated this study. Growing oscillations can be seen in fluids that are heated and
salted from below (Garaud, 2018; Huppert and Moore, 1976) when they exceed a certain
threshold. Similarly, salt fingers is a well-known oceanographical phenomena that occurs at
the critical values that we calculated Stern (1960).
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While linear stability analyses are useful in determining when instabilities will occur, or
at what parameter values they occur, they do not offer us any more information than this.
In order to know how the fluid behaves, we needed to consider the nonlinear terms and how
they contribute to the system. Therefore we turned to weakly nonlinear theory in Chapter 4.

In Chapter 4, we outlined the underlying principles of weakly nonlinear theory by first
explaining Fredholm’s alternative and the solvability condition, and then using the idea to
solve a 1D toy problem. Using this as a foundation, weakly nonlinear solutions were found
for the Rayleigh–Bénard problem and the doubly-diffusive problem. This involved expanding
the solutions in terms of a small parameter ε, and then successively finding solutions using
the solvability condition for increasingly smaller terms. This then allowed us to write Landau
equations, which we in turn used to find the form of the primary bifurcations of each problem
and the parameter values for which they were subcritical or supercritical. We supplemented
this knowledge with bifurcation diagrams generated using the continuation and bifurcation
package for MATLAB called pde2path. Note that due to computational constraints, these
bifurcation diagrams serve more of a qualitative purpose in this analysis. For better results,
a less coarse mesh grid should be used.

We reiterate the fact that we greatly simplified the physical problem in order to per-
form these analytic calculations. When formulating the problem, we stated that many of
the assumptions that we made, such as restricting fluid motion to only two directions and
assuming that we have an infinite layer in the horizontal direction with free-slip boundary
conditions. We should also note that linear and weakly nonlinear analyses are theoretically
only valid in the small regime around the critical value we study. Despite this, we find that
our calculations, explain the physical phenomena well, as evidenced by experiments done by
Bénard and Avsec (1938); Huppert and Moore (1976); Stern (1960); Veronis (1968), and also
help our understanding of the full problems.

5.2 Further Work

Doubly-diffusive convection, in recent years, has garnered a lot of attention. We have
laid a foundation for natural extensions of the problem, such as studying the fluid in an
inclined cavity, not parallel to the horizontal axis. We chose to study the problem posed in a
horizontal layer because this is the physical configuration that motivated the study, and was
a natural extension of the simpler Rayleigh–Bénard problem. In recent publications (Gobin
and Bennacer, 1994; Xin et al., 1998; Beaume et al., 2013), interesting phenomena such as
localised states have been found in vertical fluid layers, that is when a fluid is bounded
between vertical plates. Extending the analysis done here to the vertical case and other
configurations is worthwhile doing.

Kidachi (1982) and Hirschberg and Knobloch (1997) investigated the effects of side walls
in Rayleigh–Bénard convection. While we can theoretically investigate how a fluid will behave
in an infinite layer by assuming that the solutions are periodic, in reality, infinite layers do not
exist. Even fluid that is bounded between a very long layer (that is with large aspect ratio)
will be affected by distant sidewalls due to symmetry breaking. Modifying the governing
equations to take into account sidewalls in 3D would present a much more realistic picture.

As most of the work presented in this report was analytic, more numerical simulations
would provide a deeper understanding of the dynamics of these systems. This, in conjunction
with performing weakly nonlinear analyses to higher orders (O(ε3) and so on) will then allow
us to be able to investigate beyond the primary bifurcations that we studied here. This might
then lead to a full characterisation of the dynamics of the system for the parameters Ra and
a in Rayleigh–Bénard convection, and RaT , Pr, Le and N in doubly-diffusive convection.
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Appendix A

Vector Theorems and Identities

A.1 Vector Calculus Theorems

• The mathematical statement of the divergence theorem is given by,

˚
V

(∇ · F)dV =

¨
S

(F · n̂)dS, (A.1.1)

where V is a volume in R3, with surface S and outward normal n̂ and F is a continuously
differentiable vector field.

• The mathematical statement of Green’s theorem is given by,

‰
C

(Ldx+Mdy) =

¨
A

(
∂M

∂x
− ∂L

∂y

)
(A.1.2)

where C is a positively oriented, piecewise smooth, simple closed curve in a plane, A is
the area bounded by C, and L and M are functions of (x, y) defined on an open region
containing A with continuous partial derivatives, with anticlockwise path of integration
along C.

• The mathematical statement of Stokes’ theorem is given by

A.2 Vector Identities

For any vector fields A, B, C and D and for any scalar fields f and g, we have the
following.

• Addition and Multiplication Identities

A + B = B + A (A.2.1)

A ·B = B ·A (A.2.2)

A×B = −B×A (A.2.3)

(A + B) ·C = A ·C + B ·C (A.2.4)

(A + B)×C = A×C + B×C (A.2.5)

A · (B×C) = B · (C×A) = C · (A×B) (A.2.6)

64



A× (B×C) = (A ·C)B− (A ·B)C (A.2.7)

(A×B)×C = (A ·C)B− (B ·C)A (A.2.8)

A× (B×C) = (A×B)×C + B× (A×C) (A.2.9)

A× (B×C) + C× (A×B) + B× (C×A) = 0 (A.2.10)

(A×B) · (C×D) = (A ·C)(B ·D)− (B ·C)(A ·D) (A.2.11)

(A · (B×C))D = (A ·D)(B×C) + (B ·D)(C×A) + (C ·D)(A×B) (A.2.12)

(A×B)× (C×D) = (A · (B×D))C− (A · (B×C))D (A.2.13)

• Gradient Identities
∇(f + g) = ∇f +∇g (A.2.14)

∇(fg) = g∇f + f∇g (A.2.15)

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B× (∇×A) (A.2.16)

• Divergence Identities
∇ · (A + B) = ∇ ·A +∇ ·B (A.2.17)

∇ · (fA) = f∇ ·A + A · ∇f (A.2.18)

∇ · (A×B) = B · (∇×A)−A · (∇×B) (A.2.19)

• Curl Identities
∇× (A + B) = ∇ ·A +∇ ·B (A.2.20)

∇× (fA) = f∇×A +∇f ×A (A.2.21)

∇× (f∇g) = ∇f ×∇g (A.2.22)

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B (A.2.23)

• Second Derivative Identities
∇ · (∇×A) = 0 (A.2.24)

∇× (∇f) = 0 (A.2.25)

∇ · (∇f) = ∇2f (A.2.26)

∇(∇ ·A)−∇× (∇×A) = ∇2A (A.2.27)

∇ · (f∇g) = f∇2g +∇f · ∇g (A.2.28)

f∇2g − g∇2f = ∇ · (f∇g − g∇f) (A.2.29)

∇2(fg) = f∇2g + 2∇f · ∇g + g∇2f (A.2.30)

∇2(fA) = A∇2f + 2(∇f · ∇)A + f∇2A (A.2.31)

∇2(A ·B) = A · ∇2B−B · ∇2A + 2∇ · ((B · ∇)A + B×∇×A) (A.2.32)

• Third Derivative Identities

∇2(∇f) = ∇(∇ · (∇f)) = ∇(∇2f) (A.2.33)

∇2(∇ ·A) = ∇ · (∇(∇ ·A)) = ∇ · (∇2A) (A.2.34)

∇2(∇×A) = −∇× (∇× (∇×A)) = ∇× (∇2A) (A.2.35)
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Bénard, H. and Avsec, D. (1938). Travaux récents sur les tourbillons cellulaires et les tour-
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dynamique et avec la théorie mécanique de la lumière, volume 2. Gauthier-Villars.

Chandrasekhar, S. (1961). Hydrodynamic and hydromagnetic stability. Cover Publications
Inc.

deWitt, H., Dohnal, T., Rademacher, J., Uecker, H., and Wetzel, D. (2017). pde2path -
a MATLAB package for continuation and bifurcation in systems of pdes, v2.3. http:

//www.staff.uni-oldenburg.de/hannes.uecker/pde2path/.

Dohnal, T., Rademacher, J., Uecker, H., and Wetzel, D. (2014). pde2path 2.0: multi-
parameter continuation and periodic domains. In Ecker, H., Steindl, A., and Jakubek,
S., editors, ENOC 2014 - Proceedings of 8th European Nonlinear Dynamics Conference.
Vienna University of Technology.

Drazin, P. G. and Reid, W. H. (2004). Hydrodynamic Stability. Cambridge Mathematical
Library. Cambridge University Press, 2 edition.

Francis, M. (2011). Physics quanta: Pendulums revisited. https://galileospendulum.org/
2011/05/31/physics-quanta-pendulums-revisited/.

Fredholm, I. (1903). Sur une classe d’équations fonctionnelles. Acta Math., 27:365–390.

Garaud, P. (2018). Double-diffusive convection at low prandtl number. Annu. Rev. Fluid
Mech., 50(1):275–298.

Gobin, D. and Bennacer, R. (1994). Double diffusion in a vertical fluid layer: Onset of the
convective regime. Phys. Fluids, 6(1):59–67.

Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of integrals, series, and products, 6th ed.
Academic Press, 6 edition.

Haberman, R. (2004). Applied Partial Differential Equations: With Fourier Series and
Boundary Value Problems. Pearson Prentice Hall.

66

http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://galileospendulum.org/2011/05/31/physics-quanta-pendulums-revisited/
https://galileospendulum.org/2011/05/31/physics-quanta-pendulums-revisited/


Hirschberg, P. and Knobloch, E. (1997). Mode interactions in large aspect ratio convection.
J. Nonlinear Sci., 7(6):537–556.

Huppert, H. E. and Moore, D. R. (1976). Nonlinear double-diffusive convection. J. Fluid
Mech., 78(4):821–854.

Kidachi, H. (1982). Side wall effect on the pattern formation of the rayleigh-bénard convec-
tion. Progr. Theor. Phys, 68(1):49–63.

Koschmieder, E. (1993). Bénard Cells and Taylor Vortices. Cambridge Monographs on
Mechanics. Cambridge University Press.

Lord Rayleigh (1916). On convection currents in a horizontal layer of fluid, when the
higher temperature is on the under side. London, Edinburgh Dublin Philos. Mag. J. Sci.,
32(192):529–546.

Matkowsky, B. J. (1970). A simple nonlinear dynamic stability problem. Bull. Amer. Math.
Soc., 76(3):620–625.

Mishra, D., Muralidhar, K., and Munshi, P. (1999). Experimental study of rayleighbenard
convection at intermediate rayleigh numbers using interferometric tomography. Fluid Dy-
namics Res., 25(5):231 – 255.

Ovchinnikov, I. V. and Enßlin, T. A. (2016). Kinematic dynamo, supersymmetry breaking,
and chaos. Phys. Rev. D, 93:085023.

Oxburgh, E. R. and Turcotte, D. L. (1970). Thermal structure of island arcs. GSA Bull.,
81(6):1665.

Parker, E. (1955). Hydromagnetic Dynamo Models. Astrophys. J., 122:293.

Plait, P. (2009). How far away is the horizon? http://blogs.discovermagazine.com/

badastronomy/2009/01/15/how-far-away-is-the-horizon/.

Rahmstorf, S. (2003). Thermohaline circulation: The current climate. Nature, 421:699.

Reynolds, O., Brightmore, A. W., and Moorby, W. H. (1903). Papers on Mechanical and
Physical Subjects: The sub-mechanics of the universe, volume 3. The University Press.

Sani, R. (1965). On finite amplitude roll cell disturbances in a fluid subjected to heat and
mass transfer. AIChE J., 11:971 – 980.

Saunders, O. A., Fishenden, M., and Mansion, H. D. (1935). Some measurements of convec-
tion by an optical method. Engineering, 139:483–485.

Schmidt, R. J. and Milverton, S. W. (1935). On the instability of a fluid when heated from
below. Proc. Royal Soc. A, 152(877):586–594.

Schmidt, R. J. and Saunders, O. A. (1938). On the motion of a fluid heated from below.
Proc. Royal Soc. A, 165(921):216–228.

Spiegel, E. and Veronis, G. (1960). On the boussinesq approximation for a compressible fluid.
Astrophys. J., 131:442.

Stern, M. E. (1960). The “salt-fountain” and thermohaline convection. Tellus, 12(2):172–175.

67

http://blogs.discovermagazine.com/badastronomy/2009/01/15/how-far-away-is-the-horizon/
http://blogs.discovermagazine.com/badastronomy/2009/01/15/how-far-away-is-the-horizon/


Stommel, H. and Arons, A. (1959a). On the abyssal circulation of the world ocean—I.
stationary planetary flow patterns on a sphere. Deep Sea Res., 6:140–154.

Stommel, H. and Arons, A. (1959b). On the abyssal circulation of the world ocean—II. an
idealized model of the circulation pattern and amplitude in oceanic basins. Deep Sea Res.,
6:217–233.

Stommel, H., Arons, A. B., and Blanchard, D. (1956). An oceanographical curiosity: the
perpetual salt fountain. Deep Sea Res., 3(2):152–153.

Thorpe, S. A., Hutt, P. K., and Soulsby, R. (1969). The effect of horizontal gradients on
thermohaline convection. J. Fluid Mech., 38(2):375400.

Uecker, H., Wetzel, D., and Rademacher, J. (2014). pde2path a matlab package for continu-
ation and bifurcation in 2D elliptic systems. Numer. Math. Theor. Meth. Appl., 7:58–106.

Veronis, G. (1965). On finite amplitude instability in thermohaline convection. J. Mar. Res,
23(1):1–17.

Veronis, G. (1968). Effect of a stabilizing gradient of solute on thermal convection. J. Fluid
Mech., 34(2):315–336.

Weertman, J. (1978). Creep laws for the mantle of the earth. Philos. Trans. Royal Soc. A,
288(1350):9–26.

Wilson, J. T. (1963). Evidence from islands on the spreading of ocean floors. Nature, 197:536–
538.
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