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Near-onset dynamics in natural doubly
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Doubly diffusive convection is considered in a vertical slot where horizontal temperature
and solutal variations provide competing effects to the fluid density while allowing the
existence of a conduction state. In this configuration, the linear stability of the conductive
state is known, but the convection patterns arising from the primary instability have
only been studied for specific parameter values. We have extended this by determining
the nature of the primary bifurcation for all values of the Lewis and Prandtl numbers
using a weakly nonlinear analysis. The resulting convection branches are extended using
numerical continuation and we find large-amplitude steady convection states can coexist
with the stable conduction state for sub- and supercritical primary bifurcations. The
stability of the convection states is investigated and attracting travelling waves and periodic
orbits are identified using time stepping when these steady states are unstable.

Key words: double diffusive convection, bifurcation

1. Introduction

Doubly diffusive convection can occur when a binary fluid is subject to external gradients
of temperature and of concentration. It has primarily been studied in the context of
oceanography as an important mechanism for heat and salt transport (Huppert & Turner
1981; Schmitt 1994), since approximately 44 % of the world’s oceans are known to
display this phenomenon (You 2002). Doubly diffusive convection can display a wealth of
behaviour that depends on the respective orientations of the (thermal and solutal) driving
gradients. At low latitude, oceans typically feature thermohaline staircases (Schmitt et al.
1987, 2005), where the flow is characterised by well-mixed horizontal layers interspersed
with interfaces displaying sharp upward pointing gradients of temperature and salinity.
In configurations forced by upward gradients of salinity and temperature, fluids display
strikingly complex dynamics characterised by an alternation of well-mixed convection
zones and fingers transporting salt mostly vertically (Krishnamurti 2003, 2009).
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This salt fingering instability is a natural mechanism that enhances the local mixing of the
oceans (Schmitt 1994). At high latitude, the forcing gradients typically point downwards
and perturbations to the thermohaline staircase give rise to oscillatory dynamics in a
behaviour called diffusive layering (Kelley et al. 2003; Pérez-Santos et al. 2014). Similar
doubly diffusive phenomena are also found at the Earth’s core–mantle boundary (Lay,
Hernlund & Buffett 2008), in astrophysical flows (Spiegel 1969, 1972; Bethe 1990) and
in processes involving solidification (Wilcox 1993), such as in magma crystallisation
(Huppert & Sparks 1984).

Originally motivated by the above configurations, doubly diffusive convection has
become a paradigm for the study of fluids as dynamical systems. A large variety of flow
states comprised of convection rolls have been identified, including standing, travelling
and modulated waves (Deane, Knobloch & Toomre 1988; Kolodner 1991; Predtechensky
et al. 1994). Temporal complexity has also been found in various forms (Spina, Toomre
& Knobloch 1998; Batiste et al. 2001) and is generated in a number of ways (Knobloch
et al. 1986; Rucklidge 1992; Beaume 2020). Work focusing on the steady state dynamics
also revealed intricate phenomena like spatial localisation in the presence (Mercader
et al. 2009, 2011) and in absence (Beaume, Bergeon & Knobloch 2011) of the Soret
effect. Localised convection states, called convectons, are found on solution branches
exhibiting oscillatory trajectories in parameter space in a behaviour called snaking
(Knobloch 2015). Travelling versions of convectons have also been found and produce
an interesting hierarchy of interconnected instabilities (Watanabe, Iima & Nishiura 2012,
2016).

Practical considerations led to the study of inclined domains, where gravity and the
driving gradients are no longer aligned (Paliwal & Chen 1980a,b; Bergeon, Ghorayeb &
Mojtabi 1999), as well as cases in which the salinity and temperature gradients are not
aligned with each other (Tsitverblit & Kit 1993; Tsitverblit 1995; Dijkstra & Kranenborg
1996). Motivated by solidification fronts (Wilcox 1993) and mixing currents in the vicinity
of icebergs (Huppert & Turner 1981), this article focuses on a configuration, typically
referred to as natural doubly diffusive convection, where the driving gradients are aligned
but orthogonal to gravity.

The bifurcation scenario for a range of small-aspect-ratio domains was elucidated
by Xin, Le Quéré & Tuckerman (1998) and Bergeon & Knobloch (2002), and
large-aspect-ratio domains were found to support the existence of spatially localised states
(Bergeon & Knobloch 2008b). More recent work focused on a full characterisation of these
localised states and on the emergence of chaos in large-aspect-ratio domains (Beaume,
Bergeon & Knobloch 2013a,b, 2018; Beaume 2020). Most of the pattern formation
introduced in the above references can be found close to onset but they have, mostly,
been studied for a certain set of parameter values. Despite the fact that a comprehensive
linear stability analysis in the special case of balancing thermal and solutal gradients has
been available for more than two decades (Ghorayeb & Mojtabi 1997), the analysis for
unbalanced gradients was only recently attempted by Shankar, Kumar & Shivakumara
(2021). Further, little is known about the dynamics near onset in the balanced case besides
its linear regime, which makes it difficult to extrapolate the dynamics of the system away
from the parameter values used in previous studies. Here, we perform a weakly nonlinear
analysis and augment it by numerically continuing branches of spatially periodic states in
a small-aspect-ratio domain. Our present work extends the previous analyses to a wider
range of parameter values. In the next section, we present the mathematical framework
associated with our case of doubly diffusive convection. In § 3, we detail the weakly
nonlinear analysis of this system, followed by a characterisation of the nonlinear dynamics
in § 4. We conclude in § 5 with a short discussion.
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x∗

z∗ u∗
w∗

g
T ∗ = T 0 + �T ,
C ∗ = C0 + �C,
u∗ = 0,
w∗ = 0,

T ∗ = T 0,
C∗ = C 0,
u∗ = 0,
w∗ = 0,

L

Figure 1. Sketch of the two-dimensional domain of interest together with the dimensional form of the
boundary conditions.

2. Mathematical formulation

We consider the natural doubly diffusive convection of an incompressible fluid in a
two-dimensional domain with periodic boundary conditions in the vertical direction.
The sidewalls are rigid, impermeable and maintained at fixed temperatures and solutal
concentration. The right wall is held at a higher temperature (T0 +�T) and solutal
concentration (C0 +�C) than the left wall, where the temperature is T0 and the solutal
concentration is C0. This configuration is depicted in figure 1.

The system is governed by the Navier–Stokes equation for fluid momentum, the
incompressibility condition and advection–diffusion equations for both the temperature
and the concentration. Cross-diffusion due to the Soret and Dufour effects is not
considered. The imposed temperature and solutal concentration differences are assumed
to be small enough so that the Boussinesq approximation can be applied, whereby density
variations are neglected except in buoyancy terms. The density of the fluid is assumed to
have a linear dependence on its temperature and concentration

ρ∗ = ρ0 + ρT(T∗ − T0)+ ρC(C∗ − C0), (2.1)

where ρ0 is the density of the fluid at temperature T0 and concentration C0 and ρT < 0
(respectively ρC > 0) is the thermal (respectively solutal) expansion coefficient.

We introduce the non-dimensional quantities

x = x∗

L
, t = t∗

L2/κ
, u = u∗

κ/L
, T = T∗ − T0

�T
, C = C∗ − C0

�C
, p = p∗

ρ0κν/L2 ,

(2.2a–f )

where L is the wall separation, κ is the rate of thermal diffusivity and ν is the kinematic
viscosity. The non-dimensional governing equations for the fluid velocity u = ux̂ + wẑ,
the pressure p, the temperature T and the concentration C thus read

1
Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + Ra (T + NC) ẑ, (2.3)
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∇ · u = 0, (2.4)

∂T
∂t

+ u · ∇T = ∇2T, (2.5)

∂C
∂t

+ u · ∇C = 1
Le

∇2C, (2.6)

where ẑ is the vertical ascending unit vector and where we have introduced the following
dimensionless parameters:

the Prandtl number Pr = ν

κ
, (2.7)

the Rayleigh number Ra = gL3|ρT |�T
ρ0νκ

, (2.8)

the buoyancy ratio N = ρC�C
ρT�T

(2.9)

and the Lewis number Le = κ

D
, (2.10)

where D is the rate of solutal diffusivity. The non-dimensional boundary conditions read

u = 0, w = 0, −∂p
∂x

+ ∂2u
∂x2 = 0, T = 0, C = 0 on x = 0, (2.11)

u = 0, w = 0, −∂p
∂x

+ ∂2u
∂x2 = 0, T = 1, C = 1 on x = 1, (2.12)

where the pressure boundary condition is the projection of the Navier–Stokes equation on
the boundary. Each variable is periodic in the vertical direction.

We restrict our attention to the case N = −1, where the full system (2.3)–(2.6), (2.11),
(2.12) admits the steady conduction state with linear temperature and concentration
profiles between the sidewalls

u = 0, T = x, C = x. (2.13a–c)

We further introduce convective variables as the departures of the temperature and
concentration from the conduction state

Θ = T − x, (2.14)

Φ = C − x. (2.15)

Using these new variables, the conduction state takes the form

u = 0, Θ = 0, Φ = 0, (2.16a–c)

and system (2.3)–(2.6) can be written as

1
Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + Ra (Θ −Φ) ẑ, (2.17)

∇ · u = 0, (2.18)

∂Θ

∂t
+ u · ∇Θ = −u + ∇2Θ, (2.19)

∂Φ

∂t
+ u · ∇Φ = −u + 1

Le
∇2Φ. (2.20)
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This formulation involving the convective variables allows the identification of two
symmetries of the system: the reflection SΔ and the continuous translation Tδ:

SΔ : (x, z) �→ (1 − x,−z), (u,w,Θ,Φ) �→ −(u,w,Θ,Φ), (2.21)

Tδ : (x, z) �→ (x, z + δ), (u,w,Θ,Φ) �→ (u,w,Θ,Φ). (2.22)

With periodic boundary conditions, these generate the symmetry group O(2) and restrict
the types of bifurcation that can occur from the conduction state.

3. Weakly nonlinear predictions

To predict the pattern formation present in our system, we start by performing the
linear stability analysis of the conduction state (u,w, p,Θ,Φ) = (0, 0, 0, 0, 0), which
was previously done by Ghorayeb & Mojtabi (1997) and by Xin et al. (1998). We briefly
rederive their results in the following subsection so that they can be applied in the later
weakly nonlinear analysis, where we derive Ginzburg–Landau equations to model the
small-amplitude behaviour close to the primary bifurcation for all Lewis and Prandtl
numbers.

3.1. Linear stability analysis
We first consider small-amplitude stationary normal mode perturbations to the conduction
state

(u,w, p,Θ,Φ)T = ε((U1(x),W1(x),P1(x),Θ1(x),Φ1(x))T eikz + c.c.)+ O(ε2), (3.1)

where c.c. denotes the complex conjugate of the preceding term, ε � 1, and k is the
vertical wavenumber and λ is the temporal growth rate of the perturbation. Inserting
expansion (3.1) into system (2.17)–(2.20) and linearising the resulting system yields the
eigenvalue problem

L(Ra)Ψ 1 = 0, (3.2)

for Ra and Ψ 1 where

Ψ 1 = (U1,W1,P1,Θ1, Φ1)
T eikz + c.c., (3.3)

and

L(Ra) =

⎛
⎜⎜⎜⎜⎜⎝

∇2 0 −∂x 0 0
0 ∇2 −∂z Ra −Ra
∂x ∂z 0 0 0
−1 0 0 ∇2 0

−1 0 0 0
1
Le

∇2

⎞
⎟⎟⎟⎟⎟⎠ . (3.4)

The complex functions U1, W1, P1, Θ1 and Φ1 satisfy Dirichlet boundary conditions on
the sidewalls for the velocity, temperature and concentration perturbations

U1(x) = W1(x) = Θ1(x) = Φ1(x) = 0 on x = 0, 1, (3.5)

and the projection of the Navier–Stokes equation onto the boundary for the pressure
perturbation

0 = −∂P1

∂x
+ ∂2U1

∂2x
on x = 0, 1. (3.6)

Solutions to (3.2)–(3.6) are independent of Pr and satisfy Φ1 = LeΘ1. Consequently,
the only parameter dependence in the linear problem comes from the buoyancy term
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Figure 2. Marginal stability curve for the onset of doubly diffusive convection. The conduction state is stable
to modes with wavenumber k below the curve, and unstable to them above. The minimum of this curve is
Rac|Le − 1| ≈ 6509 with wavenumber kc ≈ 2.5318 and corresponds to the location of the primary bifurcation.
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Figure 3. Contour plots of a single wavelength of the real critical eigenvector Ψ 1 for Le = 11 (kc ≈ 2.53). The
profiles show the perturbations in (a) horizontal velocity, u, (b) vertical velocity, w, (c) velocity streamfunction,
ψ , where u = −ψz and w = ψx, and in the convective variables (d) Θ and (e) Φ. Black (grey, dotted) lines
indicate positive (negative, zero) values and are separated by 20 % of the maximum absolute value.

in the momentum equation, which takes the form Ra(1 − Le)Θ1. The accordingly
simplified version of (3.2) is then solved using a spectral eigenvalue solver based on
a Chebyshev–Legendre collocation method for a range of k to determine the marginal
stability curve in figure 2. This curve reveals a minimum at kc ≈ 2.5318 and Rac|Le − 1| ≈
6509, which corresponds to the primary instability of the conduction state. The absolute
value here comes from the fact that the system resulting from left wall heating and that
resulting from right wall heating are equivalent. Contour plots presenting the fields for
the velocity components, streamfunction and convective variables of this eigenmode for
Le = 11 are shown in figure 3. The conduction state is thus first unstable to a spatially
periodic state constituted of counter-rotating convection rolls that, when Le > 1, slant
downwards from the hotter wall, filling the domain and extending to the cold wall.

The conduction state can also undergo Hopf bifurcations, where the growth rate is
purely imaginary. However, for the parameter values tested, these bifurcations occurred for
Rayleigh numbers that are orders of magnitude larger than that of the primary stationary
bifurcation and are therefore out of the scope of the present work.
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3.2. Weakly nonlinear analysis
To investigate the weakly nonlinear regime around this primary bifurcation, we set
Ra = Rac + ε2r with r = O(1) and ε � 1 and assume that the system evolves on
a slow temporal scale T1 = ε2t. We also introduce a long spatial scale, Z = εz, to
allow small-amplitude states with long spatial modulations. The small-aspect-ratio
domains considered in the numerical computations in § 4 do not permit these long-scale
modulations, so terms involving derivatives with respect to Z may be ignored in the
subsequent analysis with no effect on the main result of this section: the criticality of the
primary bifurcation. However, this long spatial variable has been included here to broaden
the scope of the analysis and will be considered in future work. We emphasise that each of
the state variables of our system (u, w, p,Θ andΦ) depend upon the independent variables:
x, z, Z and T1. Using this multiple-scale approach, the partial derivatives become

∂

∂t
�→ ε2 ∂

∂T1
and

∂

∂z
�→ ∂

∂z
+ ε

∂

∂Z
. (3.7a,b)

Introducing the notation Ψ = (u,w, p,Θ,Φ)T, we can express each of the variables as a
perturbation expansion in ε about the conduction state Ψ 0 = (0, 0, 0, 0, 0)T

Ψ = Ψ 0 + εΨ 1 + ε2Ψ 2 + . . . , (3.8)

where Ψ j = (uj,wj, pj, θj, φj)
T is the correction at O(ε j) for j = 1, 2, . . . .

The corrections are periodic in z and also satisfy homogeneous boundary conditions at
each order in ε

uj = wj = θj = φj = 0 on x = 0, 1, j = 1, 2, . . . , (3.9)

as well as the pressure boundary condition

∂2uj

∂x2 − ∂pj

∂x
= 0 on x = 0, 1, j = 1, 2, . . . . (3.10)

The expansion (3.8) is substituted into the full system (2.17)–(2.20) and the perturbations
are solved numerically order by order in ε using an extension of the aforementioned
collocation method. By further extracting the parameter dependence of the perturbations
at each order, we obtain a Ginzburg–Landau equation that can be applied for all parameter
values and will indicate the criticality of the primary bifurcation.

We proceed by detailing this formulation, which should be applied to the cases Le > 1
and Le < 1 separately, owing to the parameter combination Ra(1 − Le) changing sign
between them. However, the results for Le < 1 can be related to those for Le > 1 by
using an alternative non-dimensionalisation to (2.2a–f ) involving the solutal diffusivity,
D, instead of thermal diffusivity, κ , which results in a set of equations like (2.3)–(2.6),
except with T and C exchanged and the Lewis, Prandtl and Rayleigh numbers replaced
by the inverse Lewis number, Schmidt number, Sc = LePr, and solutal Rayleigh number,
RaS = −RaNLe, respectively.

The conduction state solves the system at leading order. At O(ε), the correction is given
by the solution to linear system (3.2)

Ψ 1 = A1(Z, T1) (U1(x),W1(x),P1(x),Θ1(x), LeΘ1(x))T eikcz + c.c., (3.11)

where kc is the critical wavenumber. No phase constraint is applied at this point, but the
amplitude of the eigenfunction is fixed using

〈U1,U1〉 + 〈W1,W1〉 + 〈P1,P1〉 + 〈Θ1,Θ1〉 = 1, (3.12)

934 A42-7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f L

ee
ds

, o
n 

25
 Ja

n 
20

22
 a

t 1
4:

31
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
21

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.1121


C. Beaume, A.M. Rucklidge and J. Tumelty

fij j

0 1 2

1 Ū1
dU1

dx
+ ikcW̄1U1 + c.c. −2ikcU1 U1

dU1

dx
+ ikcW1U1

2 Ū1
dW1

dx
+ ikcW̄1W1 + c.c. −2ikcW1 + P1 U1

dW1

dx
+ ikcW2

1

i 3 0 −W1 0

4 Ū1
dΘ1

dx
+ ikcW̄1Θ1 + c.c. −2ikcΘ1 U1

dΘ1

dx
+ ikcW1Θ1

Table 1. Functions fij (i = 1, 2, 3, 4, j = 0, 1, 2) in the nonlinear term N2 at O(ε2) in (3.14). The overbar
denotes complex conjugation.

with the inner product

〈 f , g〉 = 1
λc

∫ λc

0

∫ 1

0
f̄ T g dx dz, (3.13)

where λc = 2π/kc is the wavelength of the critical eigenvector, the overbar denotes
complex conjugation and the superscript T denotes the transposition operation when f
is a vector. Due to the lack of available explicit expressions for the solutions to this
perturbation problem, these inner products need to be computed numerically, which we
achieved by using the Clenshaw–Curtis quadrature on the collocation nodes used in § 3.1.
The amplitude A1 evolves over both long spatial and temporal scales according to an
amplitude equation that will be determined at higher order.

At O(ε2), the linear operator L acts on the second-order terms and is forced by both the
nonlinear terms between the O(ε) corrections and terms proportional to the slow spatial
derivative of the O(ε) correction A1Z

L(Rac)Ψ 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Pr

f10|A1|2 +
(

A1Zf11eikcz + c.c.
)

+ 1
Pr

(
f12A2

1e2ikcz + c.c.
)

1
Pr

f20|A1|2 +
(

A1Zf21eikcz + c.c.
)

+ 1
Pr

(
f22A2

1e2ikcz + c.c.
)

(
A1Zf31eikcz + c.c.

)
f40|A1|2 + (

A1Zf41eikcz + c.c.
)+ (

f42A2
1e2ikcz + c.c.

)
Lef40|A1|2 + (

A1Zf41eikcz + c.c.
)+ Le

(
f42A2

1e2ikcz + c.c.
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N2

, (3.14)

where the functions fij(x) for i = 1, 2, 3, 4 and j = 0, 1, 2 are independent of Pr and Le
and are given in table 1.

To ensure the existence of a unique solution at this order, we derive a solvability
condition using the Fredholm alternative theorem. This involves the adjoint operator to
L, L†, defined through the relationship

〈 f ,Lg〉 = 〈L†f , g〉, (3.15)
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Near-onset dynamics in natural doubly diffusive convection

which holds for all vector functions f and g. Integrating the left-hand side by parts, we find
that the adjoint operator takes the form

L† =

⎛
⎜⎜⎜⎜⎜⎝

∇2 0 −∂x −1 −1
0 ∇2 −∂z 0 0
∂x ∂z 0 0 0
0 Rac 0 ∇2 0

0 −Rac 0 0
1

Le
∇2

⎞
⎟⎟⎟⎟⎟⎠ , (3.16)

together with the adjoint boundary conditions

u† = 0, w† = 0, θ† = 0, φ† = 0 on x = 0, 1, (3.17)

∂2u†

∂x2 − ∂p†

∂x
= 0 on x = 0, 1, (3.18)

and periodicity in the vertical direction.
The Fredholm alternative allows us to pose the adjoint problem

L†Ψ † = 0, (3.19)

whose solution is unique up to a vertical translation and a multiplicative constant. This
solution may be written in the form

Ψ † =
(

U†(x),W†(x),P†(x),
1

1 − Le
Θ†(x),− Le

1 − Le
Θ†(x)

)T

eikcz + c.c., (3.20)

where the parameter dependence of the components has been extracted. The amplitude
and phase are fixed by imposing the conditions

〈U†,U†〉 + 〈W†,W†〉 + 〈P†,P†〉 + 〈Θ†,Θ†〉 = 1, (3.21)

and
Im(〈U†,U1〉) = 0, (3.22)

where Im represents the imaginary part, respectively.
Using this adjoint solution, we then apply the O(ε2) solvability condition

〈Ψ †,N2〉 = 0. (3.23)

Owing to the vertical wavenumber dependence of terms in N2, the only non-trivial
contributions come from those proportional to A1Z and their complex conjugates and
(3.23) then reduces to

− 2ikc〈U†,U1〉 − 2ikc〈W†,W1〉 + 〈W†,P1〉 − 〈P†,W1〉 − 2ikc〈Θ†,Θ1〉 = 0, (3.24)

which may be further simplified to 〈
Ψ †,

∂LΨ 1

∂kc

〉
= 0. (3.25)

Thus, this solvability condition is automatically satisfied as the primary bifurcation occurs
at a quadratic minimum of the marginal stability curve (see figure 2).
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The O(ε2) system (3.14) can be solved to find that the second-order correction to the
conduction state is

Ψ 2 = |A1|2Ψ 0
2 + ((A2Ψ 1 + A1ZΨ 1

2)e
ikcz + c.c.)+ (A2

1Ψ
2
2e2ikcz + c.c.), (3.26)

where Ψ 2 = (u2,w2, p2, θ2, φ2)
T and the functions Ψ i

2 for i = 0, 1, 2 have the following
parameter dependence:

Ψ 0
2 =

(
0,

1
Pr

w̃2 + (1 + Le)w̃3,
1

Pr
p̃2, θ̃3, Le2θ̃3

)T

, (3.27)

Ψ 1
2 =

(
ũ7, w̃7, p̃7, θ̃7, Le θ̃7

)T
, (3.28)

Ψ 2
2 =

(
1

Pr

(
ũ4, w̃4, p̃4, θ̃4, Leθ̃4

)
+ (1 + Le)(ũ5, w̃5, p̃5, 0, 0)

+ (0, 0, 0, θ̃5, Le2θ̃5)+ Le(0, 0, 0, θ̃6, θ̃6)

)T

. (3.29)

The newly introduced functions ũi, w̃i, p̃i and θ̃i for i = 2, . . . , 7 are independent of Le and
Pr and satisfy (A1)–(A5) in § A.1 of the Appendix A.

Continuing to O(ε3), both the deviation away from the critical Rayleigh number and the
slow time dependence of the solution appear in the right-hand side of the resulting system,
in addition to nonlinear terms between first and second-order corrections and terms with
slow spatial derivatives. The system to solve at third order is

L(Rac)Ψ 3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
Pr

(
∂u1

∂T1

+ J(u, u)
)

− 2
∂2u2

∂z∂Z
− ∂2u1

∂Z2

1
Pr

(
∂w1

∂T1

+ J(u,w)
)

− r (θ1 − φ1)− 2
∂2w2

∂z∂Z
− ∂2w1

∂Z2 + ∂p2

∂Z

−∂w2

∂Z(
∂θ1

∂T1

+ J(u, θ)
)

− 2
∂2θ2

∂z∂Z
− ∂2θ1

∂Z2(
∂φ1

∂T1

+ J(u, φ)
)

− 2
Le
∂2φ2

∂z∂Z
− 1

Le
∂2φ1

∂Z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N3

,

(3.30)
where the advective terms are

J(u, f ) = u1 · ∇f2 + u2 · ∇f1 + w1∂Zf1, (3.31)

where f1 and f2, respectively, refer to the first- and second-order corrections of the variables
f = u,w, θ and φ.

The solvability condition at this order

〈Ψ †,N3〉 = 0, (3.32)

is no longer trivially satisfied because some nonlinear terms contained in N3 have
eikcz dependence arising from terms proportional to A1, |A1|2A1, A1ZZ , A2Z and their
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Near-onset dynamics in natural doubly diffusive convection

Term in the Ginzburg–Landau equation (3.33)

αA1T1 γ rA1 β|A1|2A1 δA1ZZ

Terms in N3 proportional to
∂f1
∂T1

r(θ1 − φ1) u1 · ∇f2
∂2f2
∂z∂Z

,
∂2f1
∂Z2

u2 · ∇f1
∂p2

∂Z
,
∂w2

∂Z

Table 2. Terms from N3 (see (3.30)) contributing to the Ginzburg–Landau equation (3.33). The column in
which these terms are placed informs on the term to which they contribute. Here, f1 and f2, respectively refer
to first- and second-order corrections of the variables f = u,w, θ and φ.

complex conjugates. However, the contributions to (3.32) from terms proportional to
A2Z , cancel for the same reason that the solvability condition at O(ε2) was satisfied.
Consequently, A2 remains arbitrary at this order. Collecting the remaining terms from
(3.32), we obtain the Ginzburg–Landau equation, that holds for both Le > 1 and
Le < 1

αA1T1 = γ rA1 + β|A1|2A1 + δA1ZZ, (3.33)

where table 2 indicates which terms of N3 contribute to each term above. This equation is
equivariant under the O(2) symmetry so we may choose the phase of the O(ε) correction
so that these coefficients are real. The coefficient δ is independent of the physical
parameters Pr and Le, while α, β and γ satisfy the relations

α = 1
Pr
α1 + (1 + Le)α2, (3.34)

β = 1
Pr2β1 + 1 + Le

Pr
β2 + (1 + Le2)β3 + Leβ4, (3.35)

γ = (1 − Le)γ1, (3.36)

where full expressions used to obtain αi, βi, γ1 and δ are provided in (A6)–(A9) and
evaluated in table 4 in § A.2. By dividing (3.33) through by α, (3.33) is more conveniently
written as

A1T1 = a1rA1 + a2|A1|2A1 + a3A1ZZ, (3.37)

where a1 = γ /α, a2 = β/α and a3 = δ/α.
The solutions to the Ginzburg–Landau equation (3.37) are good approximations of the

small-amplitude solutions of the full doubly diffusive system (2.17)–(2.20). Of particular
interest here are the two steady solutions that are invariant with respect to the long spatial
scale Z. The first of these solutions is the trivial solution

A1 = 0. (3.38)

This solution is valid for all r and corresponds to the conduction state (2.16a–c). The
second important solution is

A1 =
(

−a1r
a2

)1/2

eiχ , (3.39)
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Le

Pr

10–4

10–5

10–3

10–1

101

103

10–2 100

Supercritical

Subcritical
1 2

4
5

7

8

6

3

102 104 106

Figure 4. Boundary a2 = 0 in (Le,Pr) parameter space separating the region where the primary bifurcation
from the conduction state is subcritical (above) from that where it is supercritical (below). The conduction state
is linearly stable for all Ra at Le = 1 and this point is indicated by the open circle. The grey regions indicate
parameter values from Schmitt (1983) for the physical doubly diffusive systems: (1) salt/sugar, (2) magmas,
(3) oxide semiconductors, (4) heat/salt 0 ◦C, (5) heat/salt 30 ◦C, (6) humidity/heat, (7) liquid metals and (8)
stellar interiors.

where χ is an arbitrary phase. This solution relates to states of small-amplitude spatially
periodic convection that can be found near the primary bifurcation. These fluid states can
then be approximated by

(u,w, p,Θ,Φ)T ≈
√

−a1(Ra − Rac)

a2
(U1(x),W1(x),P1(x),Θ1(x),LeΘ1(x))T eikcz + c.c., (3.40)

where the phase χ has been absorbed into z via a vertical translation. These states only
exist at small amplitude for Rayleigh numbers that satisfy

a1

a2
(Rac − Ra) > 0. (3.41)

Consequently, the sign of the ratio a1/a2 determines the criticality of the primary
bifurcation and the initial direction of branching.

Using the numerical values in table 4, we computed ai over a range of parameter values.
The coefficients a1 and a3 are positive for all Pr provided Le /= 1, whereas the sign of a2
changes as these parameters are varied. As a result, there exists a boundary in parameter
space that separates regions where the primary bifurcation is subcritical (a2 > 0) from
those where it is supercritical (a2 < 0). This boundary is shown in figure 4 and implies
that, for any value of the Lewis number, there exists a critical value of the Prandtl
number, Prc(Le), expressed in terms of the physical parameters in (A15), above which
the bifurcation is subcritical. This critical value tends to 0.376 for small Lewis numbers
while it approaches the asymptotic relation Prc ∼ 0.376/Le as the Lewis number tends to
infinity. We further note that the parameter values for physical doubly diffusive systems
from Schmitt (1983) all lie within the region where the primary bifurcation is subcritical.
While we are unaware of further fluid systems lying within the supercritical region of
parameter space, we expect that they exist since some of the physical systems identified in
figure 4, including humidity/heat and stellar interiors (marked (6) and (8), respectively),
have parameter values that are within an order of magnitude of the sub/supercritical
boundary.
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Near-onset dynamics in natural doubly diffusive convection

We can gain physical insight into the criticality of the primary bifurcation by examining
the contributions that each of the nonlinear terms from (2.3)–(2.6) make to a2, using a
similar approach to the one Requilé et al. (2020) applied to plane Poiseuille and plane
Couette flows with viscous dissipation. The expression of the coefficient β (3.35) and
the corresponding numerical values provided in table 4 in the Appendix A, show that
the inertial term u · ∇u (contributing to β1 and β2) provides a negative contribution to a2,
whereas thermal u · ∇T and solutal u · ∇C advective terms (mostly contributing to β3 and
β4) provide a positive contribution to a2. The latter statement is further justified in § A.3 in
the Appendix A. It is therefore solutal and thermal advection in the system that drives the
subcriticality of the primary bifurcation, while inertial effects drive the supercriticality.
Thus, reducing the Prandtl number reduces the subcriticality of the bifurcation since the
effects of inertia are strengthened.

The final term in the Ginzburg–Landau equation (3.37), a3A1ZZ , allows small-amplitude
solutions of the doubly diffusive system to exhibit long-scale amplitude modulation. These
solutions include phase-winding states that describe patterns whose wavenumbers are
close to the critical wavenumber kc (Cross et al. 1983), and spatially modulated states that
can develop into localised states away from the primary bifurcation (Bergeon & Knobloch
2008a). These are out of the scope of the present work, but we will consider the effect of
the term a3A1ZZ on spatially localised states in future work.

4. Fully nonlinear behaviour

Having established the region of (Le,Pr) parameter space in which the bifurcation is
subcritical, we can now investigate the nonlinear behaviour of the system near the onset
of convection. In particular, we focus on the structure and stability of the primary branch
of spatially periodic convection states with wavenumber kc as it extends towards larger
amplitudes. For this, we consider a single-wavelength domain with Lz = λc = 2π/kc,
which precludes modulational instabilities arising in large domains that are captured by
our weakly nonlinear analysis through the A1ZZ term in (3.37).

We numerically continue the primary branch against the Rayleigh number across a range
of Lewis (Le ∈ [5, 100]) and Prandtl (Pr ∈ [2 × 10−3, 10]) numbers. Cases for which Le <
1 can be extrapolated from our results by a suitable transformation. The solution branches
will be identified on bifurcation diagrams showing either the total kinetic energy of steady
states

E = 1
2

∫ λc

0

∫ 1

0
(u2 + w2)dx dz, (4.1)

or the average velocity ‖u‖2 = √
2E/λc, against the Rayleigh number Ra.

Computations were carried out using a spectral element numerical method based on
a Gauss–Lobatto–Legendre discretisation (Bergeon & Knobloch 2002) and supplemented
by Stokes preconditioning with�t = 0.1, as detailed by Beaume (2017). Numerical results
were validated against a discretisation of up to 4 spectral elements with 29 nodes in
both the x and z directions. The stability of the steady states was computed using an
Arnoldi method based on a time-stepping scheme (Mamun & Tuckerman 1995). Further
direct numerical simulations used a stiffly stable second-order splitting scheme based on
Karniadakis, Israeli & Orszag (1991) with time step �t = 10−3.

4.1. Bifurcation structure
The results can be summarised by dividing parameter space according to the qualitative
nature of the bifurcation diagram. Figure 5(a) indicates the four main regimes found.
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Le

Pr

Ra Ra102

(4)

(3)

(1)

(2)

10–2

10–1

‖u‖2 ‖u‖2

‖u‖2 ‖u‖2

100

101

(e)

(b)

(c)

(d )

(e)

(b)
(a)

(c)

(d )

Region 1 Region 2

Region 3 Region 4

Figure 5. (a) Enlargement of a subset of the parameter space shown in figure 4 showing four regions where
the bifurcation diagrams exhibit qualitatively different behaviours. The thick line separates subcritical from
supercritical branching, while the additional region boundaries are identified with either dotted or dashed lines.
(b–e) Representative bifurcation diagrams for parameter values within each of the four regions. The stability
of the branch segments is also indicated using thick lines for stable solutions, thin lines for solutions unstable
to amplitude perturbations and dashed lines for solutions unstable to drift. The location of bifurcations depend
upon the specific parameter values used, so those used for each sketch have been marked in panel (a).

Region (1) describes the moderate and large Pr behaviour for all Le. In this region, the
primary bifurcation is strongly subcritical and the primary branch has a single saddle
node, as shown in figure 5(b). Parameter values within this region have received the most
attention in previous studies focusing on subcritical pattern formation (e.g. see Xin et al.
1998; Bergeon & Knobloch 2008b). Region (2) occupies a small region of parameter space
above the boundary Pr = Prc, where the primary bifurcation is weakly subcritical, and
separates the typical subcritical behaviour in region (1) from the supercritical behaviour
in regions (3) or (4). The steady convection state branches typically have three saddle
nodes in region (2), as exemplified in figure 5(c). Regions (3) and (4) identify the
two qualitatively different types of bifurcation diagrams observable when the primary
bifurcation is supercritical. In both cases, the primary branch has two saddle nodes, with
the first lying in the supercritical region Ra > Rac. The difference between the regions
is the location of the second saddle node: in region (3), it is found for Ra < Rac (see
figure 5d), whereas, in region (4), it is found in Ra > Rac (see figure 5e). Consequently,
a large-amplitude convection state may coexist with the stable conduction state when the
primary bifurcation is supercritical, but, for sufficiently small Pr, steady convection states
are found entirely within the supercritical region, where the conduction state is unstable.
There may exist a fifth region, where the primary branch increases monotonically in both
Rayleigh number and in amplitude, but we have not identified it in this study.

We now determine the structure of the primary branch as Pr decreases for a fixed
value of Le. To achieve this, we follow the locations of its three saddle nodes with
respect to Ra and Pr. In doing so, we observed two different scenarios according to
whether the pair of saddle nodes are created on the lower or upper part of the primary
branch. These are exemplified in figure 6 for Le = 11 (representative of 5 � Le � 15) and
Le = 20 (representative of 19 � Le < 100). Since the transition between the two scenarios
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Figure 6. Location of the three saddle-node bifurcations of the primary branch in (Ra,Pr) parameter space
for (a) Le = 11 and (b) Le = 20. The dashed line marks the critical Rayleigh number at which the primary
bifurcation is found, Rac, and the cross marks the codimension two point (Rac,Prc) explained in the text. The
insets provide enlargements of the area around Rac in each case. Arrows mark the bifurcation diagrams shown
in figure 7.

occupies a small region of parameter space within region (2) for 15 � Le � 19, we did not
investigate it any further.

To help interpret the plots in figure 6, figure 7 demonstrates the evolution of the
bifurcation diagrams as Pr decreases for Le = 11 (a–f ) and Le = 20 (g–l). The structure
of the bifurcation diagrams in region (1), for high Pr, remain similar, as shown in
figures 7(a) and 7(g). From the primary bifurcation, the primary branch extends towards
lower Rayleigh numbers and proceeds to turn around at a saddle node, hereafter referred
to as SN1, before heading towards large amplitude convection states at large Ra. Figure 6
suggests that, as Pr → ∞, the location of SN1 tends to a constant Rayleigh number,
dependent upon Le. This figure also shows that SN1 occurs at larger Ra as the Prandtl
number is decreased and the primary bifurcation becomes less subcritical.

Upon decreasing the Prandtl number, the primary branch undergoes a cusp bifurcation
at Pr ≈ Prcusp(Le) > Prc(Le), while still subcritical, denoting the beginning of region (2).
The cusp produces two additional saddle nodes along the primary branch: SN2 and SN3.
The exact process by which this is achieved depends on the Lewis number. For Le �
15, the cusp bifurcation occurs at smaller amplitude than SN1 and the saddle nodes are
labelled SN3, SN2, SN1 as the branch is followed in the direction of increasing energy (see,
for e.g. figure 7(d) for Le = 11 and Pr = 0.032, near the cusp parameter value: Prcusp ≈
0.033). In contrast, for Le � 19, the cusp bifurcation occurs at higher amplitude than SN1
and saddle nodes are labelled SN1, SN2, SN3, as shown in figure 7(i) for Le = 20, Pr =
0.023 ≈ Prcusp.

Continuing to reduce Pr across region (2) (from Prcusp to Prc), the Rayleigh number
associated with SN2 increases so that it reaches the supercritical region before Pr = Prc.
During this transition, the saddle node with smallest amplitude (SN3 for Le � 15; SN1
for Le � 19) moves to larger Rayleigh numbers but with decreasing amplitude until it
collides with the primary bifurcation at Pr = Prc and Ra = Rac, where the primary
bifurcation changes from subcritical to supercritical. This process is highlighted in the
insets of figure 6 and results in the primary branch possessing only two saddle nodes in
the supercritical regime (Pr < Prc).
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Figure 7. Bifurcation diagrams showing the primary branch of steady convection and the stability of the
related states across the four regions, indicated in the top left corner. Thick lines indicate stable solutions,
thin lines indicate solutions unstable to amplitude perturbations and dashed lines indicate solutions unstable
to drift. Saddle nodes are marked by symbols: SN1 (filled circle), SN2 (asterisk) and SN3 (triangle). The open
circle corresponds to the destabilising drift bifurcation. The parameter values, also indicated by the arrows
in figure 6, are: Le = 11, and (a) Pr = 1, (b) Pr = 0.1, (c) Pr = 0.042, (d) Pr = 0.032, (e) Pr = 0.01, ( f )
Pr = 0.005; as well as Le = 20, and (g) Pr = 1, (h) Pr = 0.1, (i) Pr = 0.023, (j) Pr = 0.02, (k) Pr = 0.01 and
(l) Pr = 0.005. For Le = 11 (respectively Le = 20), Prc ≈ 0.031, Prcusp ≈ 0.033 (respectively Prc ≈ 0.018,
Prcusp ≈ 0.023).

The locations of the remaining two saddle nodes go toward larger Ra as Pr decreases
and are found in the supercritical region (Ra > Rac) in region (4), as shown in figure 5. It
is therefore clear that multiple steady convection states can exist for the same parameter
values near the onset of convection, regardless of the criticality of the primary bifurcation.
This result extends earlier observations on the number of saddle-node bifurcations
occurring along the primary branch in related systems (Tsitverblit & Kit 1993).

More insight into these results can be obtained by representing, as in figure 8, the
location of the saddle nodes for various Lewis numbers as a function of the reduced
Prandtl number Pr/Prc and combined parameter Ra|Le − 1|. These reduced parameters
allow us to identify the location where the criticality of the primary bifurcation changes as
the single coordinate point: Pr/Prc = 1, Ra|Le − 1| ≈ 6509.

Figure 8 shows that, for Pr < Prc and the chosen values of the Lewis number, the
location of the first supercritical saddle node SN2 can be approximated by

RaSN2 ≈ 6460
|Le − 1|

(
Pr
Prc

)−0.24

. (4.2)

For Pr < 10−2 (not shown), the location of saddle node SN2 deviates from the relation
above, indicating a potentially different asymptotic regime. These results also illustrate the
large Pr behaviour of the subcritical saddle node SN1: RaSN1 |Le − 1| tends to a constant
as the Prandtl number tends to infinity. This constant increases with Le and saturates for
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Figure 8. Saddle-node locations for Le = 5 (green), Le = 11 (purple), Le = 20 (blue) and Le = 50 (red). The
black dashed line marks the location of the primary bifurcation and the black cross marks the codimension two
point where the criticality of the primary bifurcation changes, at Pr = Prc. The black dotted line represents the
relationship (4.2). Saddle nodes are marked by circles for SN1, asterisks for SN2 and triangles for SN3.

large values of the Lewis number. These results echo those obtained in doubly diffusive
convection in a two-dimensional vertical porous enclosure, where Mamou, Vasseur &
Bilgen (1998) used a parallel flow approximation to demonstrate that the Rayleigh number
at which the subcritical saddle node occurs is proportional to 1/(1 − Le) for large enough
Lewis numbers.

4.2. Solution profiles
Despite the different scenarios obtained at different values of the Prandtl number (see
figure 5), the steady convection states undergo similar structural changes along their
branch, as evidenced in figure 9 for Le = 11 and Pr = 1, 0.032, 0.01 and 0.005. The
streamfunction profiles are similar near the primary bifurcation regardless of the value of
the Prandtl number (see second column of figure 9), which is in agreement with the linear
stability results from figure 3(c). Moving along the branches in the direction of increasing
energy, the first change that we observe is the strengthening of the anticlockwise roll,
where fluid near the hotter wall moves upwards. This occurs in both the subcritical and
the supercritical regimes, as can be seen in the third column of figure 9. Continuing the
branches to the large-amplitude saddle node and beyond, the amplitude of the weaker roll
decreases, leaving room for the stronger roll to straighten. At large enough amplitude, an
anticlockwise roll occupies the domain, irrespective of the value of Pr. Its amplitude grows
as the upper branch is followed to larger values of Ra, where the Prandtl number starts to
impact the flow: the roll occupies a smaller area at lower values of the Prandtl number,
as seen within the final column of figure 9. This resembles the fly-wheel convection, with
nearly circular streamlines, seen in low Prandtl Rayleigh–Bénard convection as studied by
Clever & Busse (1981).

To characterise these observations in more detail, figure 10 reports the horizontal
velocity profiles observed on the upper branch for Pr = 1, 0.1, 0.032 and 0.005. The
decrease in roll size is apparent when Pr is decreased. This is particularly evident for
Pr = 0.005, where the horizontal velocity remains small except within the range 0.6 �
z � 1.9, in such a way that the roll only occupies about half of the domain’s extent.
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Figure 9. Streamfunctions of the steady states on the primary branch when Le = 11 for different values of the
Prandtl number: top row Pr = 1, second row Pr = 0.032, third row Pr = 0.01 and bottom row Pr = 0.005. The
left column shows the respective bifurcation diagrams and indicates with a cross the solutions that have been
represented in the subsequent panels. Black (grey, dotted) contours indicate positive (negative, zero) values of
the streamfunction. Contour intervals: first column, top two rows – 10−4; first column, third row – 10−5; first
column, bottom row – 2 × 10−5; second column, top two rows – 0.02; second column, bottom two rows – 0.01;
third column – 0.02; fourth and fifth columns – 0.05.
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Figure 10. Horizontal velocity and streamfunction of solutions from the upper segment of the primary branch
at Ra = 700 for Pr = 1, 0.1, 0.032, 0.005 and Le = 11 represented via (a) the midline horizontal velocity
(u(x = 0.5, z)) and streamfunction contours plots for (b) Pr = 1, (c) Pr = 0.1, (d) Pr = 0.032 and (e) Pr =
0.005 with contour intervals 0.1.

Figure 10(a) additionally shows the transition to these states from the large rolls observed
at O(1) Prandtl numbers. For Pr = 1, the maximum horizontal velocity is achieved far
from the centre of the roll, at z ≈ 0.44, 2.04, producing a region of strong shear between
the rolls and gentle quasi-linear velocity variations inside the rolls. As Pr is lowered, these
maxima move towards the centre of the roll by initially becoming less pronounced and
creating flatter extrema (see figure 10c), followed by the emergence of peaks at z = 1 and
z ≈ 1.5. The maximum horizontal velocity does not change significantly within this range
of Prandtl number values in such a way that the low Pr rolls represent narrow regions of
strong shear surrounded by low-amplitude flow.

4.3. Stability of the nonlinear states
The stability of states on the primary branch is controlled by two eigenmodes: an amplitude
mode that preserves the SΔ symmetry of the system and a drift mode that breaks the
SΔ symmetry. The translation mode, associated with vertical translations due to the
symmetry Tδ , remains marginal along the branch and none of the other eigenmodes
become destabilising over the range of parameters considered.

Close to the onset of convection, the amplitude mode is initially destabilising when
the bifurcation is subcritical (Pr > Prc), whereas it is stabilising when the bifurcation is
supercritical (Pr < Prc). This mode subsequently changes stability at successive saddle
nodes. In particular, it becomes stabilising at saddle nodes SN1 and SN3, where the branch
turns towards higher Ra, but becomes destabilising at SN2, where the branch turns towards
lower Ra. As a result, the upper branches of steady convection states are always stable to
amplitude perturbations for all Le and Pr.

The drift mode is stabilising near the primary bifurcation at Ra = Rac for all Pr, but
becomes destabilising at a drift-pitchfork bifurcation further along the branch at Ra = Rad,
whose location depends upon both Le and Pr, as can be seen in figure 7. The marginal
mode is identical to the translation mode at this bifurcation and its destabilisation leads
to a pair of branches of travelling wave solutions, as shown in figure 11(a) for Pr = 0.1
and Le = 11. Close to their onset, these states take the form of a single large-amplitude
convection roll (see figure 11c) that slowly drifts either upwards or downwards. As
these branches are followed beyond the drift bifurcation, an asymmetric streaming flow
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Figure 11. Drift bifurcation and downward-travelling waves for Pr = 0.1, Le = 11, for which Rad ≈ 638.
(a) Bifurcation diagram showing the kinetic energy E as a function of the Rayleigh number Ra for steady states
and travelling waves. Thick lines indicate stable solutions, thin lines indicate solutions unstable to amplitude
perturbations and dashed lines indicate solutions unstable to drift. The drift bifurcation is shown by the open
circle. (b) Stable convection state at Ra = 630 shown by contours of its streamfunction with intervals 0.1 (first
red cross in (a)). Further panels show similar representations of stable travelling waves at: (c) Ra = 645 and
(d) Ra = 700. (e) Squared drift speed along the stable branch as a function of the Rayleigh number. The dotted
line shows the fitting law: vd ≈ 0.12

√
Ra − 640.

strengthens while the convection roll weakens and moves toward the wall where the
streaming flow is the weakest. This transition is shown from figure 11(b) at Ra = 630
to figure 11(d) at Ra = 700. At the same time, the drift speed increases at a rate
approximately proportional to

√
Ra − Rad, as shown in figure 11(e). This result extends the

findings obtained for Le = 1.2, Pr = 1 by Xin et al. (1998) to a wider range of parameter
values.

The stability of the travelling waves is determined by the location of the drift bifurcation:
these states are initially stable when the bifurcation occurs on the upper branch of steady
convection states, whereas they are unstable when the bifurcation occurs along the lower
branch. Both cases can be achieved for a given Le when Pr is varied, as figure 7 illustrates
for selected values of the Prandtl number with Le = 11 and Le = 20. For large values of the
Prandtl number, the drift bifurcation occurs on the upper branch at large Rayleigh numbers.
This location moves closer to the saddle node with decreasing Prandtl numbers so that the
two coincide at Pr = Pr∗ and Ra = Ra∗. For Le = 11, we found that Pr∗ ≈ 0.042 and
Ra∗ ≈ 614.9 (see figure 7(c) for a bifurcation diagram at similar values of the parameters).
For smaller values of the Prandtl number, the drift bifurcation occurs along the lower
branch of convection states and at a value of the Rayleigh number that increases as Pr is
decreased. For all the parameter values tested, this bifurcation was found to occur at larger
amplitude than saddle node SN2 and, consequently, the small-amplitude steady convection
states remain stable to drift.

4.4. Dynamical attractors
The temporal dynamics of the system changes as the drift bifurcation passes below the
subcritical saddle node since all the steady convection states from the upper branch and
the travelling wave states are destabilised in the process. Many initial conditions will
consequently decay towards the conduction state at low Pr and Ra. This decay is not
possible when the conduction state is unstable for Ra > Rac, where we find that the
dynamics converge on time-dependent states.

To understand how this behaviour arises, we unfold the saddle-node-pitchfork normal
form near the codimension two point (Ra∗,Pr∗) where the drift bifurcation and saddle
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Figure 12. (a) Unfolding near the codimension two saddle-node-pitchfork bifurcation at μ1 = μ2 = 0 given
by system (4.3), (4.4), after Guckenheimer & Holmes (1983). The different phase portraits are classified in
five different regions labelled using Roman numerals and accompanied with a sketch of the corresponding
phase space. In each of these sketches, the fixed points on the vertical line represent steady convection states.
The vertical (respectively horizontal) direction is the eigendirection related to the amplitude (respectively drift)
mode. (b) Analogy with the doubly diffusive convection problem is made by replacing μ1 by Pr − Pr∗ and μ2
by Ra − Ra∗ and regions of the (Ra,Pr) parameter space are shown as a function of the observed temporal
behaviour for Le = 11. (c) Magnification of panel (b) near (Ra∗,Pr∗). Arrows indicate the values of Pr used
to produce the bifurcation diagrams in figure 13. In the panels, the bifurcations are represented by: black, red
and blue solid lines (saddle nodes), blue dotted lines (drift bifurcation), red dotted lines (Hopf bifurcation), red
dot-dashed lines (heteroclinic connection) and in (b,c), the vertical dashed lines (primary stationary bifurcation
of the conduction state).

node coincide. This unfolding takes the form (Guckenheimer & Holmes 1983)

ẋ = −μ1x + b1xz, (4.3)

ż = μ2 − x2 − z2 + b2z3, (4.4)

where x represents the extent to which the state drifts, z represents the amplitude of the
convection states, b1 > 0, b2 < 0, and μ1 and μ2 are two unfolding parameters that are
introduced to respectively represent the deviations Pr − Pr∗ and Ra − Ra∗.

When μ1 = μ2 = 0, the trivial state, (x, z) = (0, 0), undergoes a codimension two
bifurcation. One of five phase portraits is observed in the vicinity of this bifurcation and
these are shown in figure 12(a). In addition to the steady states previously discussed, the
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Stable in region?

State Oa Ob Ia Ib IIa IIb IIIa IIIb IVa IVb IVc Va Vb

O x — x — x — x — x x — x —
SOCs — x — — — — — — — x x — x
SOCl — — x x — — — — — — — — —
TW — — — — x x — — — — — — —
PO — — — — — — x x — — — — —

Table 3. Stability of the observed doubly diffusive states within each region of the parameter space from
figure 12. The naming convention used is as follows: O, conduction state; SOCs, small-amplitude stationary
overturning convection; SOCl, large-amplitude stationary overturning convection; TW, travelling wave; and
PO, relative periodic orbit. The regions Oa, . . . ,Vb refer to the regions introduced in figure 12.

unfolding reveals the presence of periodic orbits. Relating the unfolding back to doubly
diffusive convection, these correspond to relative periodic orbits consisting of drifting
states that originate either from a travelling wave undergoing a Hopf bifurcation or from a
global bifurcation where two steady convection states connect heteroclinically.

Although the normal form (4.3), (4.4) only formally represents the dynamics of the
full system close to the codimension two point, each of the regions shown in figure 12
continues to be observed an appreciable distance away from this point. Figures 12(b) and
12(c) illustrate the extent of the corresponding regions in the doubly diffusive system
when Le = 11 and we anticipate that similar results will hold for other values of the Lewis
number. In this figure, the regions have been subdivided according to the types of stable
attracting states that they display. The subdivisions occur owing to the instability of the
conduction state at Rac and the creation of a pair of saddle nodes at (Racusp,Prcusp), which
enrich the previous unfolding. The resulting subregions, together with their associated
attracting states, are summarised in table 3 and on the bifurcation diagrams in figure 13.
As Pr varies, the system admits one of seven qualitatively distinct bifurcation diagrams.
Six of these are presented in figure 13, which also indicate the range of kinetic energies
over each relative periodic orbit attained via time stepping. The seventh type of bifurcation
diagram, where the primary branch lies entirely within the supercritical regime, is not
shown but possesses similar features to that seen for Pr = 0.02 in figure 13( f ) including
stable small-amplitude steady convection states and relative periodic orbits.

The three most relevant stable attracting states close to the primary bifurcation at high
Pr (Pr > Pr∗ here) are: the conduction state (O), the large-amplitude steady convection
states (SOCl) and the travelling wave states (TW). Below the onset of convection (region
Oa), all initial conditions decay towards the first of these. In region Ia, above subcritical
onset but before the drift instability, initial conditions converge towards SOCl, as evidenced
by the energy–time and drift speed–time plot in figure 14(a). Increasing Ra beyond the
drift instability into region IIa, SOCl is now unstable and the flow converges towards TW.
Figure 14(b) shows that the former state may still be observed in the temporal dynamics
as the initial condition first rapidly changes amplitude to approach SOCl before it builds
vertical drift and converges to TW.

The stable branch of travelling waves destabilises in a supercritical Hopf bifurcation
that leads to a stable relative periodic orbit, as shown in figure 13 for Pr = 0.043.
Figures 15(a)–15(e) depict such an orbit shortly after the bifurcation at Ra = 650 and
Pr = 0.043, where we see that the states exhibit small oscillations about a drifting state.
The Hopf bifurcation moves towards lower Rayleigh numbers as Pr approaches Pr∗ from
above, which reduces the extent over which stable TW are found. This continues until
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Figure 13. Bifurcation diagrams showing the primary branch and other stable attracting states for Le = 11,
and (a) Pr = 1, (b) Pr = 0.1, (c) Pr = 0.043, (d) Pr = 0.04, (e) Pr = 0.032 and ( f ) Pr = 0.02. The solid
circles mark the saddle nodes and open circles indicate where the drift bifurcation occurs. Thick (thin) lines
represent states stable (unstable) to the amplitude mode whilst solid (dashed) lines show those stable (unstable)
to the drift mode. Thick blue lines indicate the minimal and maximal energies achieved in the stable limit cycle,
which starts in a Hopf bifurcation in (c) and in a heteroclinic bifurcation in (d–f ). The unstable branches of
travelling waves are not shown.

Pr = Pr∗, when stable TW cease to exist and the relative periodic orbit bifurcates directly
from the codimension two bifurcation at the saddle node.

Upon further decreasing of the Prandtl number, so that the drift bifurcation occurs on the
lower branch of steady convection, the system admits neither stable SOCl nor stable TW.
Instead, the bifurcation diagrams are similar to that shown for Pr = 0.04 in figure 13(d),
where a branch of unstable TW extends from the drift bifurcation towards higher Rayleigh
numbers and stable relative periodic orbits exist after a global bifurcation, where the stable
manifold of SOCl connects heteroclinically with the unstable manifold of the convection
state on the lower branch and vice versa.

The lack of stability of the nonlinear states before the heteroclinic connection lead
all initial conditions to decay down to the conduction state in regions IVa and Va.
Figures 14(d) and 14( f ) illustrate this tendency for Pr = 0.032 when Ra = 630 and
Ra = 620, respectively. In both cases, the amplitude of the initially imposed roll rapidly
decreases to approach that of SOCl rolls. Afterwards, the drift speed of the state increases,
as SOCl is unstable to drift, and reaches a maximum around t ≈ 50. The drift speed
subsequently decays down to zero, due to the instability of TW, and the time-dependent
state converges on the conduction state, which is the only stable attractor in these regions.
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Figure 14. Energy–time (black) and drift speed–time (red) plots illustrating regions I–V in figure 12 with
Le = 11. In each case, the initial state was the large-amplitude convection state at Ra = 700 for Pr = 0.1
that was perturbed in the direction of its unstable drift eigenmode. States approached during the trajectory
are labelled as follows: (a) region Ia, convergence to SOCl when Pr = 0.1 and Ra = 630; (b) region IIb,
convergence to TW when Pr = 0.1 and Ra = 660; (c) region IIIb, convergence to PO when Pr = 0.032 and
Ra = 660, (d) region IVa, convergence to O when Pr = 0.032 and Ra = 630; (e) region IVc, convergence to
SOCs when Pr = 0.02 and Ra = 700; and ( f ) region Va, convergence to O when Pr = 0.032 and Ra = 620.

Beyond the heteroclinic connection, initial conditions tend to converge towards the
relative periodic orbit, as they invariably do in region IIIb, where the conduction state
is unstable. Figure 14(c) illustrates this convergence starting from a large-amplitude roll
with Pr = 0.032 and Ra = 660 perturbed in the direction of its unstable drift eigenmode.
A single cycle of this orbit is shown in further detail in figures 15( f )–15(j). This relative
periodic orbit cycles between the three states: SOCl, TW and a steady small-amplitude
convection state, in the following manner. The first stage of the orbit, from 15 � t � 40,
resembles the temporal behaviour seen in region IIa (figure 14b), where the solution
remains close to SOCl in profile (figure 15h) while the drift speed slowly increases
in magnitude. Following this, between t ≈ 40 and t ≈ 54, the drift speed and kinetic
energy rapidly increase as the profile of the state exhibits properties of the travelling
wave (TW) solution (figure 15i). Between t ≈ 54 and t ≈ 68, both the drift speed and
kinetic energy decrease as the state approaches a small-amplitude, non-drifting convection
state with inclined rolls (figure 15j). The final stage of this orbit is the transition from
the small-amplitude back to large-amplitude steady convection, which is indicated by the
monotonic increase in kinetic energy while maintaining vd ≈ 0 for t � 70 and t � 15 in
figure 15(g).

The heteroclinic connection leading to these orbits moves towards higher Rayleigh
numbers as Pr decreases and coincides with SN2 for Pr � 0.032 (see figure 13e, f ).
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Figure 15. Temporal evolution of downward-travelling states across one cycle of two relative periodic orbits
at: (a–e) Ra = 650 with Pr = 0.043 and Le = 11 and ( f –j) Ra = 660 with Pr = 0.032 and Le = 11 (as in
figure 14c). (a, f ) Anticlockwise trajectory of the periodic orbit in drift speed–energy phase space. Blue dots in
( f ) mark the conduction and steady convection states. (b,g) Energy–time (top) and drift speed–time (bottom)
plots. (c–e) Streamfunctions of states along the orbit in (a) at (c) t = 0, (d) t = 8 and (e) t = 20 with contour
intervals 0.1. (h–j) Streamfunctions of states along the orbit in ( f ) at (h) t = 26, (i) t = 52 and (j) t = 68, with
contour intervals 0.05. The streamfunctions have been translated vertically for better visual representation.

This suggests that a saddle-node infinite period (SNIPER) bifurcation explains the origin
of the relative periodic orbits at low Prandtl and high Rayleigh numbers. However, by
considering various properties of the relative periodic orbits for Pr = 0.032 and Le = 11
as Ra approaches RaSN2 from above (figure 16), we additionally find that a gluing
bifurcation occurs in the vicinity of the SNIPER bifurcation.

At large Rayleigh numbers, a pair of relative periodic orbits with states drifting either
upwards or downwards are related by the reflection symmetry. The maximal energy and
drift speed attained along these orbits decrease with decreasing Rayleigh number, and the
trajectories approach the stable and unstable manifolds of SOCl, as seen in figure 16(a).
This leads to the two relative periodic orbits connecting in a gluing bifurcation around
Ra ≈ 652 so that the trajectories become a single periodic orbit where states alternately
drift in opposite directions. This is reminiscent of the pulsating waves seen in nonlinear
magnetoconvection (Matthews et al. 1993).

The resulting single periodic orbit persists until RaSN2 , where it terminates in the
SNIPER bifurcation. This is evidenced by the period of a single loop of the orbit
scaling like tP ∝ (Ra − RaSN2)

−0.56 as SN2 is approached, which is close to the expected
tP ≈ |Ra − RaSN2 |−0.5 scaling. The energy–time plots in figure 16(c) illustrate that the
predominant increase in duration occurs near the small-amplitude steady convection state
as the orbit approaches the steady state at SN2 in phase space. We also find that the time
spent near SOCl increases, whilst the time where the state has large drift speed remains
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Figure 16. Relative periodic orbits for Le = 11, Pr = 0.032 where RaSN2 ≈ 650.82. (a) Trajectories in (vd,E)
phase space for Ra = 650.85 (blue), Ra = 660 (red) and Ra = 700 (black). For Ra = 700 and Ra = 660, a
pair of relative periodic orbits associated with either negative or positive drift velocity are shown, while for
Ra = 650.85, a single periodic orbit with alternating negative and positive drift velocities is shown. (b) Period
tP of orbits for selected Ra > RaSN2 . The red dashed line shows that approximately tP ∝ (Ra − RaSN2 )

−0.56.
(c) Energy–time plots for Ra = 700 (top), Ra = 660 (middle) and Ra = 650.85 (bottom).

small, implying that the global bifurcation is due to the collision of the periodic orbit with
the stable manifold of SOCl.

The final attracting state that the flow may converge to is SOCs, as figure 14(e) illustrates
for Pr = 0.02 and Ra = 700. This is possible for Pr < Prcusp in the supercritical regions
Ob, IVc and Vb, where it is the only stable attracting state, and in the subcritical region
IVb, where convergence towards the stable conduction state is also possible.

5. Discussion

This paper considers doubly diffusive convection driven by horizontal gradients of
temperature and concentration, a configuration typically referred to as natural doubly
diffusive convection. We have extended the linear stability analysis of Ghorayeb & Mojtabi
(1997) by performing a thorough weakly nonlinear analysis of the system. This was
complemented by a numerical exploration of the nonlinear regime, thereby also extending
the analysis of Xin et al. (1998), who focused on Pr = 1 and Le = 1.2. From this analysis,
we unravelled the relationships between saddle nodes, drift and global bifurcations.

We have identified regions where the resulting primary branch exhibits qualitatively
different behaviour. For large values of the Prandtl number, the bifurcation is subcritical
and hysteresis takes place between the conduction state and large-amplitude convection.
Whereas, for Prandtl numbers below a critical value, the primary bifurcation is
supercritical but this is preceded by the creation of two saddle nodes without affecting
the existence of large-amplitude convection. Despite this, we did not find any hysteresis in
the supercritical regime owing to the presence of a destabilising drift bifurcation along the
primary branch. The presence of multiple folds along a primary supercritical branch has
already been observed in a non-homogeneous fluid system (Erenburg et al. 2003) but we
believe that is the first time that it has been observed in homogeneously forced convection
in such a small domain.
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Near-onset dynamics in natural doubly diffusive convection

By determining the stability of steady convection states along the primary branch, we
identified a codimension two point between a large-amplitude saddle node and a drift
bifurcation. We analysed the dynamics around this codimension two point using its normal
form and numerical simulations to investigate new Hopf and heteroclinic bifurcations
giving rise to periodic orbits. Such time-dependent states are common features of low
Prandtl number doubly diffusive convection (see also Umbría & Net 2019). Finally, we
provided a classification of the various regions in (Ra,Pr) parameter space according to
the nature of their dynamical attractors, for a representative value of the Lewis number.

We anticipate that the analysis provided in this paper may serve as a guide for future
research in natural doubly diffusive convection by providing a comprehensive map of
the near-onset dynamics as a function of the parameter values. Despite our attempt to
be thorough, the characterisation of the nonlinear regime at very small Prandtl numbers,
which is relevant in astrophysical contexts (see Garaud 2018), remains to be explored.
We observed that this regime behaves differently from extrapolated predictions from O(1)
Prandtl numbers but have not pursued this any further.

Lastly, the coexistence of steady overturning convection with the stable conduction state
when the primary bifurcation is supercritical has important dynamical implications, which
will be the subject of future exploration. In particular, it makes this system a candidate
for spatially localised pattern formation in a supercritical fluid system, owing to the
similarity of the primary branch structure with the Swift–Hohenberg equation considered
by Knobloch, Uecker & Wetzel (2019).
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Appendix A. Further expressions for the weakly nonlinear analysis

A.1. Second-order corrections
The solution to the system at O(ε2) (3.14) given in (3.26) involves parameter-free functions
ũi, w̃i, p̃i and θ̃i for i = 2, . . . , 7 within the expressions for Ψ 0

2,Ψ
1
2 and Ψ 2

2 (3.27)–(3.29).
These functions satisfy the forced linear equations

⎛
⎜⎜⎝

−D 0 0 0
0 D2 0 0
0 0 D2 Rac(1 − Le)
0 0 0 D2

⎞
⎟⎟⎠
⎛
⎜⎝

p̃2
w̃2
w̃3
θ̃3

⎞
⎟⎠ =

⎛
⎜⎝

f10
f20
0

f40

⎞
⎟⎠ , (A1)

⎛
⎜⎜⎜⎜⎝

D2 − 4k2
c 0 −D 0

0 D2 − 4k2
c −2ikc Rac(1 − Le)

D 2ikc 0 0
−1 0 0 D2 − 4k2

c

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

ũ4
w̃4
p̃4
θ̃4

⎞
⎟⎠ =

⎛
⎜⎝

f12
f22
0
0

⎞
⎟⎠ , (A2)
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⎜⎜⎜⎜⎜⎜⎝

D2 − 4k2
c 0 −D 0 0

0 D2 − 4k2
c −2ikc Rac(1 − Le) 0

D 2ikc 0 0 0
−1 0 0 D2 − 4k2

c 0
−1 0 0 0 D2 − 4k2

c

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ũ5
w̃5
p̃5
θ̃5
θ̃6

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
0
0

f42
0

⎞
⎟⎟⎟⎠ , (A3)

⎛
⎜⎜⎝

D2 − k2
c 0 −D 0

0 D2 − k2
c −ikc Rac(1 − Le)

D ikc 0 0
−1 0 0 D2 − k2

c

⎞
⎟⎟⎠
⎛
⎜⎝

ũ7
w̃7
p̃7
θ̃7

⎞
⎟⎠ =

⎛
⎜⎝

f11
f21
f31
f41

⎞
⎟⎠ , (A4)

where D = d/dx, and ũi, w̃i and θ̃i satisfy homogeneous boundary conditions and the
pressure boundary conditions come from a projection of the Navier–Stokes equation onto
the sidewalls

ũi = 0, w̃i = 0, −∂ p̃i

∂x
+ ∂2ũi

∂x2 = 0, θ̃i = 0 on x = 0, 1. (A5)

A.2. Coefficients in the Ginzburg–Landau equation
Expressions for the coefficients α, β, γ and δ in the Ginzburg–Landau equation (3.33) are
obtained by evaluating

α = 1
Pr

(
〈U†,U1〉 + 〈W†,W1〉

)
+ (1 + Le)〈Θ†,Θ1〉

= 1
Pr
α1 + (1 + Le)α2, (A6)

β = −
(

1
Pr

〈U†,NU
3 〉 + 1

Pr
〈W†,NW

3 〉 + 1
1 − Le

〈Θ†,NΘ
3 − LeNΦ

3 〉
)

= 1
Pr2β1 + 1 + Le

Pr
β2 + (1 + Le2)β3 + Leβ4, (A7)

γ = (1 − Le)〈W†,Θ1〉
= (1 − Le)γ1, (A8)

δ = 〈U†,U1〉 + 〈W†,W1〉 + 〈Θ†,Θ1〉
+ 2ikc

(
〈U†, ũ7〉 + 〈W†, w̃7〉 + 〈Θ†, θ̃7〉

)
+ 〈P†, w̃7〉 − 〈W†, p̃7〉, (A9)

where the nonlinear functions N F
3 , for F = U,W,Θ,Φ, and coefficients βi for i =

1, 2, 3, 4 are

N F
3 = U1

dF0
2

dx
+ Ū1

dF2
2

dx
+ U2

2
dF̄1

dx
+ 2ikcW̄1F2

2 + ikcW0
2 F1 − ikcW2

2 F̄1, (A10)

β1 = −
〈
U†, Ū1

dũ4

dx
+ ũ4

dŪ1

dx
+ 2ikcũ4W̄1 + ikcw̃2U1 − ikcw̃4Ū1

〉

−
〈
W†,U1

dw̃2

dx
+ Ū1

dw̃4

dx
+ ũ4

dW̄1

dx
+ ikcW̄1w̃4 + ikcW1w̃2

〉
, (A11)
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α1 1.11 × 10−4 β2 −1.63 × 10−8 (Le > 1) γ1 −8.85 × 10−7

α2 2.27 × 10−4 β3 7.47 × 10−8 (Le < 1) γ1 8.85 × 10−7

β1 −4.43 × 10−9 β4 1.58 × 10−7 δ 7.38 × 10−4

Table 4. Numerical values of the coefficients α1, α2, β1, β2, β3, β4, γ1 and δ in (3.33). The sign of γ1
depends upon whether Le > 1 or Le < 1 as γ > 0 for all Le, while all other coefficients are independent
of the parameters Le and Pr.

β2 = −
〈
U†, Ū1

dũ5

dx
+ ũ5

dŪ1

dx
+ 2ikcũ5W̄1 + ikcw̃3U1 − ikcw̃5Ū1

〉

−
〈
W†,U1

dw̃3

dx
+ Ū1

dw̃5

dx
+ ũ5

dW̄1

dx
+ ikcW̄1w̃5 + ikcW1w̃3

〉

−
〈
Θ†, Ū1

dθ̃4

dx
+ ũ4

dΘ̄1

dx
+ 2ikcW̄1θ̃4 + ikcw̃2Θ1 − ikcw̃4Θ̄1

〉
, (A12)

β3 = −
〈
Θ†,U1

dθ̃3

dx
+ Ū1

dθ̃5

dx
+ ũ5

dΘ̄1

dx
+ 2ikcW̄1θ̃5 + ikcw̃3Θ1 − ikcw̃5Θ̄1

〉
, (A13)

β4 = −
〈
Θ†,U1

dθ̃3

dx
+ Ū1

(
dθ̃5

dx
+ dθ̃6

dx

)
+ 2ũ5

dΘ̄1

dx

+ 2ikc

(
W̄1

(
θ̃5 + θ̃6

)
+ w̃3Θ1 − w̃5Θ̄1

)〉
. (A14)

These expressions for the parameter-free coefficients αi, βi, γ1 and δ are evaluated
numerically and are given in table 4.

Of particular interest is the boundary where the primary bifurcation changes from
subcritical to supercritical. This occurs when β = 0, which we may find explicitly by
taking the positive root of (A7), to find

Prc =
−(1 + Le)β2 +

√
(1 + Le)2β2

2 − 4β1
[
(1 + Le2)β3 + Leβ4

]
2[(1 + Le2)β3 + Leβ4]

. (A15)

A.3. Effect of thermal and solution advective terms on a2

To determine the contributions that each of the nonlinear terms make to a2, we introduce
the factors ζ1 and ζ2 that multiply the thermal and solutal advective terms, respectively.
We numerically perform the weakly nonlinear analysis for the modified system

1
Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + Ra(T − C)ẑ, (A16)

∇ · u = 0, (A17)
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Figure 17. Contours of the coefficient a2 as a function of ζ1 and ζ2, which respectively multiply thermal
and solutal advective nonlinearities in (A16)–(A19), for (a) Le = 11, Pr = 1 and (b) Le = 1/11, Pr = 1. The
contour a2 = 0, which marks the boundary between subcriticality and supercriticality, is shown in bold.

∂T
∂t

+ ζ1u · ∇T = ∇2T, (A18)

∂C
∂t

+ ζ2u · ∇C = 1
Le

∇2C, (A19)

with ζ1, ζ2 ∈ [10−2, 104] and selected values of the Prandtl and Lewis numbers. The
coefficient a2 tends to increase when one of ζ1 or ζ2 increases, while keeping the other
fixed, as indicated by the contours in figure 17. Thus, advection of both heat and solute
enhance the subcriticality of the primary bifurcation.
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