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Doubly diffusive convection driven by horizontal gradients of temperature and salinity
is studied in a three-dimensional enclosure of square horizontal cross section and large
aspect ratio. Previous studies focused on the primary instability and revealed the formation
of subcritical branches of spatially localized states. These states lose stability because of
their twist instability, thereby precluding the presence of any related stable steady states
beyond the primary bifurcation and giving rise to spontaneous temporal complexity for
supercritical parameter values. This paper investigates the emergence of this behavior.
In particular, chaos is shown to be produced at a crisis bifurcation located close to the
primary bifurcation. The critical exponent related to this crisis bifurcation is computed
and explains the unusually abrupt transition. The construction of a low-dimensional model
highlights that only a few requirements are necessary for this type of transition to occur.
As a consequence, it is believed to be observable in many other systems.
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I. INTRODUCTION

Doubly diffusive convection, the convection of a fluid driven by density variations caused by
two competing components, is a fascinating phenomenon that can lead to a wide range of behavior,
some of which is still poorly understood. It has been mostly studied in oceanography, where it
was shown to occur in 44% of the Earth’s oceans [1]. In the oceanographic context, the flow is
driven by temperature and salt variations and is usually referred to as thermohaline convection. It
can lead to several instabilities, such as salt fingering, and is a major contributor to mixing currents
[2–5]. Doubly diffusive convection is also studied in other contexts, such as in geology, where it
is observed in magma chambers and at the Earth’s core-mantle boundary [6,7], and in astrophysics
[8–10].

In addition to the applied interest it draws, doubly diffusive convection is also a paradigm
for pattern formation in fluids that has been studied in various configurations. The most studied
such configuration is that of horizontal fluid layers placed within negative vertical gradients of
temperature and salinity. Unlike Rayleigh–Bénard convection, this configuration yields primary
bifurcations to standing and traveling waves that can be subcritical [11]. As a result, a wealth of
time-dependent states has been observed both numerically [12–14] and experimentally [15–17], and
temporal complexity, in the form of small amplitude dispersive chaos, emerges near criticality [18].
When the bifurcation to steady states is subcritical, secondary bifurcations have been found that lead
to the formation of steady, spatially localized states known as convectons [19]. Their formation and
their bifurcation diagram were characterized by Mercader et al. [20,21]: The convectons lie on a pair
of branches undergoing well-bounded oscillations in parameter space in a behavior called snaking.
Time-dependent localized states, in the form of traveling convection rolls within a spatially localized
envelope traveling at a different speed, have also been observed to produce similar bifurcation
diagrams [22] and the interplay between their stable and unstable manifolds has been elucidated
by Watanabe et al. [23]. Symmetry-breaking perturbations, such as mixed boundary conditions for
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the temperature [24] and slight inclinations of the fluid layer [25], were also found to imprint a
nonzero traveling speed to the convectons.

The physical system of interest here is that of the doubly diffusive convection arising in a
vertically extended, closed container driven by horizontal gradients of salinity and temperature.
Here, unlike in the previously described configuration, the conduction state loses stability due
to nonoscillatory modes, making steady-state dynamics of prime importance. Steady, spatially
localized convection was once again found to be organized along two subcritical snaking branches.
In two dimensions, some of these convectons are stable, and perturbing the forcing parameter
(typically the Rayleigh number) outside the snaking region reveals a depinning instability in which
the flow successively takes the form of localized states constituted of an increasing number of rolls
until a stable, domain-filling state is reached [26]. Small-aspect-ratio, three-dimensional domains
revealed secondary bifurcations along the branch of steady convection. These bifurcations produce
tilted convection rolls and have a destabilizing effect on steady convection. Bergeon and Knobloch
also observed a transition to chaos via a sequence of period-doubling bifurcations leading to a
symmetric chaotic attractor that then undergoes an internal crisis to become asymmetric [27]. The
three-dimensional convectons undergo a similar instability to that observed in small aspect-ratio
domains: Pitchfork bifurcations can be found along the snaking branches that destabilize the
convectons and give rise to a new family of (unstable) twisted convectons. The absence of any
stable steady states drives the system to produce chaotic dynamics for supercritical parameter values
[28]. The linear stability of the regular and twisted convectons revealed the emergence of transient
temporal complexity in the subcritical regime but does not explain the sudden presence of chaos for
parameter values near criticality [29].

The aim of this paper is to elucidate the transition to chaos observed in three-dimensional, doubly
diffusive convection in a closed container extended in the vertical direction. The rest of this paper is
structured as follows. The mathematical formalism of the problem is exposed in Sec. II, followed, in
Sec. III, by the description of the successive instabilities leading from conduction to chaos. Section
IV is devoted to the mechanism behind the observed transition to chaos. The paper continues with
the construction of a phenomenological, low-dimensional model to highlight the generic character
of the route to chaos identified in doubly diffusive convection. A short discussion concludes this
paper.

II. PROBLEM SETUP

We consider the instability of a binary fluid mixture placed in a closed, three-dimensional
container and subject to thermal and solutal gradients in the horizontal direction. The container
has a square horizontal cross section and is extended in the vertical, x, direction with aspect ratio
L = 19.8536, following earlier studies [28,29] and corresponding to eight critical wavelengths of the
related two-dimensional problem [30]. The two vertical walls at constant z are maintained at fixed
temperatures and salinities while the two other vertical walls are modeled using no-flux boundary
conditions for both temperature and salt concentration. No-slip boundary conditions are used for
the velocity at all the walls.

The fluid obeys the Navier–Stokes equation under the Boussinesq approximation, the incom-
pressibility condition, the heat equation, and an advection-diffusion equation for the salinity. Upon
nondimensionalization, these equations read

Pr−1[∂t u + (u · ∇)u] = −∇p + Ra(T + NC)ex + ∇2u, (1)

∇ · u = 0, (2)

∂t T + (u · ∇)T = ∇2T, (3)

∂tC + (u · ∇)C = Le−1∇2C, (4)
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TRANSITION TO DOUBLY DIFFUSIVE CHAOS

where t is the time, u is the velocity field, p is the pressure, and ex represents the vertical ascending
unit vector. To write these equations, the temperature and salinity were rescaled in the following
way:

T = T ∗ − T ∗
ref

�T
, C = C∗ − C∗

ref

�C
, (5)

where T ∗ (resp. C∗) is the dimensional temperature (resp. salinity), T ∗
ref (resp. C∗

ref ) is the reference
temperature (resp. salinity) taken at the z = 0 wall, and �T (resp. �C) is the imposed temperature
(resp. salinity) difference across the domain. System (1)–(4) is controlled by the following dimen-
sionless numbers:

Pr = ν

κ
, Ra = g|ρT |�T l3

ρ0νκ
, Le = κ

D
, N = ρC�C

ρT �T
, (6)

where Pr is the Prandtl number, Ra is the Rayleigh number, Le is the Lewis number, N is the
buoyancy ratio, ν is the kinematic viscosity of the fluid, κ is the thermal diffusivity of the fluid,
g is the gravitational acceleration, ρT /ρ0 is the thermal expansion coefficient in the Boussinesq
approximation evaluated at the reference temperature, ρC/ρ0 is the solutal expansion coefficient
in the Boussinesq approximation evaluated at the reference salinity, ρ0 is the fluid density at the
reference temperature, l is the wall separation in both horizontal directions, and D is the molecular
diffusivity of the fluid. The boundary conditions read

u = v = w = ∂nT = ∂nC = 0 at x = 0, L and y = 0, 1, (7)

u = v = w = T − z = C − z = 0 at z = 0, 1, (8)

where u, v, and w are the projection of the velocity field u in the x, y, and z directions respectively,
and where ∂n represents the gradient in the direction normal to the wall.

We consider the case N = −1 so that the solutal and thermal contributions to the buoyancy
compete with equal strength. This special case allows for the equations to admit the conductive
solution u = 0, T = C = z and to be equivariant with respect to the dihedral group D2 composed
of the identity I and of the reflections

Sy : [u, v,w,�,�](x, y, z) → [u,−v,w,�,�](x, 1 − y, z), (9)

S� : [u, v,w,�,�](x, y, z) → − [u,−v,w,�,�](L − x, y, 1 − z), (10)

where (�,�) = (T − z,C − z) are the so-called convective variables. The composition of both the
above reflections is the reflection with respect to the center point of the domain and is hereafter
called Sc.

In the absence of dynamics in the y direction, the related two-dimensional system [26] only
possesses the S� symmetry (it is thus Z2 equivariant, or O(2) equivariant if spatially periodic
boundary conditions are imposed in x). The instability from the conduction state is subcritical and
the flow evolves toward a steady domain-filling state. In the three-dimensional system of interest
here, the presence of the Sy symmetry is responsible for a major enrichment of the bifurcation
diagram and of the observed dynamics, as described in the following sections for Le = 11 and
Pr = 1.

III. INSTABILITY FROM THE CONDUCTIVE STATE

The conductive state (u = v = w = 0) is linearly stable until Ra ≈ 850.78, where conduction
develops as a result of two close bifurcations. The eigenmodes related to these two bifurcations
produce arrays of steady convection rolls but are different in a subtle way, as shown in Figs. 1(a)
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FIG. 1. Most unstable eigenmodes of the conductive state at Ra = 930 shown using two opposite contours
of u. Eigenmode (a) is the first to become destabilizing at Ra ≈ 850.78. Eigenmode (b) is the one producing
the subcritical patterns shown in Refs. [28,29] and becomes destabilizing at Ra ≈ 850.86. Eigenmodes (c) and
(d) are two-pulse modes that are marginal at Ra ≈ 859, and eigemodes (e) and (f) are three-pulse modes
marginal at Ra ≈ 872. In all figures, the gravity-bearing direction, x, is represented horizontally and the
direction bearing the temperature and salinity gradients, z, is represented vertically.

and 1(b). On the one hand, the eigenmode in Fig. 1(b) satisfies all the symmetries of the system
and creates a transcritical bifurcation at Ra ≈ 850.86, leading to the creation of a wide variety
of localized states [28,29]. On the other hand, the eigenmode in Fig. 1(a) has a similar structure
but with a phase shift of a quarter of the wavelength. As a result, it breaks both the S� and the
Sc symmetry (but preserves Sy). This eigenmode is responsible for the creation of a (subcriti-
cal) pitchfork bifurcation at Ra ≈ 850.78 [29]. The growth rates of the related instabilities are
similar, e.g., λ ≈ 0.20 at Ra = 930, where λ is the temporal growth rate and these eigenmodes
remain the most unstable ones at all the values of the Rayleigh number tested. Other modes
become destabilizing at higher values of the Rayleigh number: Bifurcations to two-pulse states
are found at Ra ≈ 859 and to three-pulse states at Ra ≈ 872. The eigenmodes related to these
bifurcations are represented for Ra = 930 in Fig. 1. At this value of the Rayleigh number, the
two-pulse eigenmodes have growth rate λ ≈ 0.18 while λ ≈ 0.15 for the three-pulse eigenmodes.
Crucially, all these eigenmodes preserve the symmetry Sy and trigger the formation of rolls with
rotation axis ey, i.e., with dominant velocities in x and z. Figure 2 shows the growth rate of
the most unstable eigenmodes for 845 � Ra � 950. The instability hierarchy remains the same
in the parameter region investigated: The leading instability is always one related to one-pulse
perturbations.

As the instability grows, for Ra > 850.78, the rolls displaying downflow close to the hot and
saline wall become suppressed in favor of the other rolls, giving rise to convective structures
composed of corotating rolls [31]. Owing to the presence of walls at x = 0 and x = L, the structure
grows from the center of the domain via successive nucleation of convection rolls. The growth of
the instability is exemplified for Ra = 880 in Fig. 3. A preliminary simulation was initialized by
the conductive state so that the instability developed from numerical noise. As the flow reached
a domain-integrated kinetic energy of about 10−4, the state was stored to be used as the initial
condition of another simulation, shown in Figs. 3(a) and 3(c). Another simulation, shown in
Figs. 3(b) and 3(d), was initialized on the opposite side of the stable manifold of the conduction
state by changing the sign of all the components of u, as well as those of � and �. The results are
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FIG. 2. Most unstable eigenvalues in the range 845 � Ra � 950 represented using the exponential of the
real part of the eigenvalue eλr = eRe(λ). The thick line at eλr = 1 represents marginality. The two eigenvalues
representing the one-pulse eigenmodes are labeled 1p and are indistinguishable; so are those representing the
two-pulse eigenmodes, labeled 2p, and those representing the three-pulse eigenmodes, labeled 3p.

shown through two flow indicators:

Aconv(x, t ) =
√∫ 1

0

∫ 1

0
u2dy dz, (11)

Atilt (x, t ) =
√∫ 1

0

∫ 1

0
v2dy dz, (12)

FIG. 3. Spatiotemporal growth of the convective pattern triggered by numerical noise at Ra = 880 and
represented by an indicator of the convection amplitude Aconv [see Eq. (11)] in panels (a) and (b) and by
an indicator of the tilt amplitude Atilt [see Eq. (12)] in panels (c) and (d) as a function of the time t and
vertical coordinate x. The simulation in panels (a) and (c) and the one in panels (b) and (d) were initialized by
small-amplitude states located on opposite side of the stable manifold of the conduction state.
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FIG. 4. Snapshot from the simulation in Figs. 3(b) and 3(d) taken at t = 72.5. The state is represented
using contours u = ±1.

where u = u(x, y, z, t ) represents the velocity in the vertical, x, direction and v = v(x, y, z, t ) is
the velocity component in the y direction. Indicator Aconv quantifies the convection amplitude
owing to the fact that u typically represents the largest velocity component by nearly an order
of magnitude. The rotation axis of the rolls emerging from the instability is ey and, thus, their
velocity has major components in the x and z directions. When a convection roll is impacted by
the secondary instability, its axis tilts around ex, which generates a nonzero projection on ez and
results in non-negligible velocities in the y direction. Indicator Atilt captures this flow feature: In the
absence of tilt, Atilt � 1. The first simulation, presented in Figs. 3(a) and 3(c), produces a structure
consisting of four corotating rolls at t = 50 before the growth of a fifth one at t ≈ 55 at the top of
the structure, and of a sixth one at the bottom of the structure at t ≈ 67, at which point convection
is domain-filling. The other simulation, in Figs. 3(b) and 3(d), produces an array of five corotating
rolls at t = 50 before two successive nucleations at t ≈ 67 and t ≈ 70, leading to a domain-filling
seven-roll state before the emergence of temporal complexity. Owing to the magnitude difference
between the growth rates of the one-pulse modes and the others for Rayleigh number values close to
onset, any simulation initialized by a sufficiently small perturbation of the conductive state will lead
to one or the other scenario described. At this stage, the flow is Sy symmetric and is reminiscent from
spatially periodic convection [26]. Its roll count depends on the projection of the initial condition
onto the unstable manifold of the conductive flow.

The domain-filling state formed through the process described above is unstable to a secondary
instability that affects each roll individually. The axis of the affected rolls develops a nonzero
component on ez in addition to its dominant component on ey. An example of occurrence of this
instability is shown in Fig. 4 by a state consisting of seven convection rolls. Most these rolls produce
a flow rotating around ey, except for the central roll which is tilted and whose axis is no longer
parallel to ey but has now a non-negligible projection onto ez. Owing to the tilt, the high-velocity
regions of the central roll are no longer parallel to the walls associated with the forcing boundary
conditions. The roll can no longer be maintained and decays shortly after tilting, as shown in Fig. 3.
The next rolls to be affected by the instability are the ones formed right after the central roll: The
ones located next to it. The beginning of this second tilting event is visible in Fig. 4. Figure 3 shows
that all the initial rolls survive for a duration of the order of 20 time units before tilting, decaying,
and the emergence of chaotic dynamics characterized by shorter lived rolls.

To investigate the next stage of the dynamics, characterized by roll decay, a small amplitude
state from the simulation shown in Figs. 3(b) and 3(d) is used to initialize a simulation in a domain
constrained in such a way that only one roll is allowed to grow initially. The results are shown in
Fig. 5 through the quantities Aconv and 	y, where

	y(x, t ) =
∫ 1

0

∫ 1

0
vdy dz. (13)

The artificial damping slows down the growth of the instability: It now takes 260 units of time for
the only roll to reach its full amplitude. The roll then survives for about 30 time units before its
tilt becomes noticeable and reaches its maximum at t ≈ 292, as shown by the y-flow rate profile in
Figs. 5(b) and 6(a). The absence of a nearby wall and of any adjacent roll allows the localized roll
to expand further than it normally would, as can be seen by comparing Fig. 6(a) with Fig. 3. As
the roll tilts, its decay accelerates and it breaks from its center, forming two tilted rolls of smaller
amplitude at t ≈ 293 [see Fig. 6(b)] that continue to decay, albeit more slowly, until the flow energy
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FIG. 5. Growth of the instability in a domain constrained by the addition of additional damping for
x < 7.4451 and x > 12.4085. This simulation was initialized by the same initial condition used for the
simulation shown in Figs. 3(b) and 3(d). The flow is represented in the central part of the domain through
Aconv (a) quantifying the convection strength and the flow rate in the y direction 	y (b).

grows again at t ≈ 296. The signature of these secondary rolls is also visible in the space-time plot
in Fig. 5(b): As the red and blue patches indicating nonzero flow rate in the y direction move away
from each other, two lower intensity patches of the opposite colors appear in between. In addition
to highlighting the mechanisms by which the rolls decay, this provides insight into subsequent roll
formation. The roll breaks up into two smaller structures carrying residual momentum. These two
structures act like seeds for the later growth of the linear instability of the conduction state. In the
above simulation, the two rolls that are produced at t ≈ 302 are very close to the artificial edge
of the domain and all subsequent dynamics are irrelevant. In a full domain simulation, interaction
with the walls and other rolls leads to a strong partitioning of space: As the rolls rarely tilt (and
subsequently decay) at the same time, there is generally not enough room for two rolls to form and
the two seeds of energy quickly merge to yield only one new roll.

FIG. 6. Snapshots from the simulation shown in Fig. 5 taken at t = 292 (a) and t = 293 (b). The states
are represented using contours u = ±1 (a) and u = ±0.8 (b). The orientation of the figure is similar to that of
Fig. 4.
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FIG. 7. Bifurcation diagram showing the total kinetic energy E [see Eq. (14)] as a function of the Rayleigh
number Ra. The diagram shows branches of steady states in color: (red) the convecton branches C correspond
to the branches L± in Refs. [28,29]; (blue) the twisted convecton branches TC correspond to the branches L±

1,2

in Ref. [29]. The black line shows the result of a numerical simulation initialized at Ra = 900 with an arbitrary
instantaneous state obtained from chaotic dynamics at Ra = 900. The Rayleigh number in that simulation was
progressively decreased: Ra = 900 − ξ t with ξ = 1/500.

IV. CRISIS BIFURCATION

The sudden jump in amplitude between the end states observed on either side of the primary
bifurcation point is typical of subcritical systems such as two-dimensional doubly diffusive con-
vection [26]. The fact that the configuration considered here is three-dimensional introduces the
symmetry Sy and allows for a secondary, symmetry-breaking instability to take place and for the
destabilization of steady states that would otherwise be dynamics attractors. To identify the region
of existence of the chaotic behavior, an arbitrary instantaneous flow state obtained from the chaotic
dynamics at Ra = 900 was selected as an initial condition for a simulation in which the Rayleigh
number was progressively decreased. Figure 7 shows the result of this simulation superimposed
onto the bifurcation diagram of the known steady states. The steady states bifurcate subcritically
from the conductive state at Ra ≈ 850.86 and take the form of two pairs of intertwined branches
of convectons C which produce snaking between Ra ≈ 700 and Ra ≈ 810 before going to larger
Rayleigh numbers. They are subject to secondary bifurcations producing a family of secondary
branches of twisted convectons TC, who undergo snaking between Ra ≈ 740 and Ra ≈ 820 before
extending to large Rayleigh numbers. Several simulations were tested in which the Rayleigh number
was a decreasing function of time. The rate of decrease of Ra in the simulation represented in
Fig. 7 is ξ = 1/500. The flow initially displays large-amplitude oscillations spanning two orders of
magnitude in the total kinetic energy,

E = 1

2

∫ 1

0

∫ 1

0

∫ L

0
(u2 + v2 + w2) dx dy dz, (14)

and reaching values up to those of the most energetic convectons. This behavior persists down
to Ra ≈ 850, where the flow tends to approach the conductive state more closely before its final
decay at Ra ≈ 842. Analyzing other simulations revealed that slowing down the rate of decay of
the Rayleigh number, i.e., lowering ξ , led to decay at larger values of the Rayleigh number but no
simulation has been found to decay for Ra > 850.

The sudden decay of chaotic dynamics observed in the simulation shown in Fig. 7 is typical of a
crisis bifurcation. To characterize this transition, we look for the timescale over which chaos persists
beyond the crisis, i.e., for Ra < RaX , where RaX is the crisis location to be determined. As the flow
is highly dependent on the initial condition, we resort to the statistical analysis of a large number

103903-8



TRANSITION TO DOUBLY DIFFUSIVE CHAOS

FIG. 8. Phase portraits of the flow obtained for a simulation at Ra = 900 represented by the reduced kinetic
energies Eu and Ev defined in equations (15) and (16) in (a) linear and (b) logarithmic scales. The darker the
blue, the more often the area is visited by the flow. The red squares indicate the 200 random selected flow states
to serve as initial conditions for the statistical analysis of the crisis time-scales.

of simulations [32–34]. We select initial conditions randomly from a chaotic flow at Ra = 900. The
latter simulation is represented via density plots for the reduced kinetic energies,

Eu = 1

2

∫ 1

0

∫ 1

0

∫ L

0
u2 dx dy dz = 1

2

∫ L

0
A2

conv dx, (15)

Ev = 1

2

∫ 1

0

∫ 1

0

∫ L

0
v2 dx dy dz = 1

2

∫ L

0
A2

tilt dx, (16)

in Fig. 8.
The chaotic flow is attracted by a region of phase space with fuzzy boundaries. To ensure fair

sampling of the dynamics, we collect instantaneous flow states at large enough time intervals so that
they satisfactorily represent the attractor: The selected flow states cover the whole area occupied by
the attractor and their density is higher in areas that are more often visited, as shown in Fig. 8.

Simulations were initialized by the flow states identified in Fig. 8 for a number of subcritical
Rayleigh numbers, ranging from Ra = 750, i.e., far away from the crisis, to Ra = 845, i.e., close
to the crisis. The time at which the chaotic transient decayed or survival time, tdecay, was recorded
by identifying the moment at which the total kinetic energy fell below E < 10−3 for the first time.
The distribution of survival times for a given value of Ra is statistical, as shown in Fig. 9(a). All
the simulations decayed back to the conduction state in finite time and the associated timescale
increased as the value of the Rayleigh number approached that of the crisis.

Much insight can be gained from basic dynamical considerations. First of all, the simulations
have three stages: (i) an initial transient where the initial condition taken at Ra = 900 travels toward
the displaced chaotic saddle, (ii) a chaotic transient where the flow is trapped in the saddle, and (iii)
decay. The stage of interest here is the second one: The first stage is an artifact of the changed value
of Ra and the third stage is dictated by the linear stability of the conduction state. It helps to think
of the chaotic saddle as a topological ball with a hole. Once inside the ball, the trajectory bounces
against its walls until it “finds” the hole, at which point the simulation enters its decay stage. This
probabilistic depiction of chaotic saddles has led them to be called leaky attractors in the context
of the transition to turbulence [35,36]. In this framework, the crisis bifurcation corresponds to the
opening of the hole in the ball and the event corresponding to the trajectory exiting the chaotic
saddle can be assimilated to a memoryless Poisson process. Given the above insight, we can infer
that the probability of the trajectory exiting the leaky attractor follows an exponential distribution
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FIG. 9. (a) Time tdecay at which the simulation first reached values of the total kinetic energy E < 10−3 as a
function of the initial condition used for (black) Ra = 790, (red) Ra = 834, and (blue) Ra = 844. (b) Survival
probability associated with similar data sets as in panel (a) but for (black) Ra = 834, (red) Ra = 838, and
(blue) Ra = 844. The straight lines represent a fit to law (17) with t0 ≈ −2.982 and tc ≈ 174.399 for Ra = 834,
t0 ≈ −60.066 and tc ≈ 467.821 for Ra = 838, and t0 ≈ −58.300 and tc ≈ 2415.18 for Ra = 844.

function of time and thus that the probability of a simulation not decaying before time t follows its
complementary cumulative distribution function,

p(t ) = e
−

t − t0
tc , (17)

where t0 corresponds to the initial transient duration and tc is the characteristic time associated with
the process, both of which are functions of Ra. Similar survival analyses have been used to charac-
terize transient turbulent flows [37,38] and more generally the spatiotemporal chaos generated by
the complex Ginzburg–Landau equation [32]. Figure 9(b) shows the survival probability p for three
sets of simulations taken at Ra = 834, Ra = 838, and Ra = 844 together with the corresponding
least square fit to law (17). The data obtained through the flow simulations are well approximated
by the exponential distribution, with the only visible departures from the law being observed in the
tail of the distributions. This confirms the relevance of the chosen probabilistic approach. Further
examination reveals that tc increases with Ra, leading to longer simulations as we approach the
crisis. The last complete set of simulations was obtained for Ra = 845. All the 200 initial conditions
decayed to the conduction state, with the slowest ones staying in the vicinity of the chaotic saddle
for more than 105 time units. The timescales involved in simulating the flow are such that it was
computationally too expensive to pursue the numerical effort beyond Ra = 845.

The characteristic survival times tc are shown as a function of the Rayleigh number in Fig. 10.
Since the flow eventually decays down to the conduction state for subcritical values of Ra and that
this state loses stability at Ra ≈ 850.78, it is logical to assume that the characteristic time associated
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FIG. 10. Characteristic survival time of the chaotic transients tc as a function of the distance to criticality
RaX − Ra, where RaX = 850.78 is chosen to be the location of the primary bifurcation point. The black dotted
line corresponds to the numerical data while the straight line corresponds to the fit: tc ∼ (RaX − Ra)−3.

with the chaotic transient diverges for Ra � 850.78. The results are therefore represented against
the Rayleigh number offset by RaX , which is an approximate value for the crisis Rayleigh number.
In practice, the data obtained do not allow the accurate determination of RaX , so RaX = 850.78 was
chosen. For RaX − Ra < 50, i.e., for Ra > 800, tc can be remarkably well approximated by

tc ∝ (RaX − Ra)−γ , (18)

where γ ≈ 3. This exponent is larger than the ones typically observed for crisis bifurcations in
fluids. For example, Zammert and Eckhardt found two crises in plane Poiseuille flow, an interior
crisis with γ = 0.8 and a boundary crisis with γ = 1.5 [33], and Kreilos et al. observed a boundary
crisis in plane Couette flow with γ = 2.1 [36]. Figure 11 shows the evolution of the initial transient
time t0 as a function of the Rayleigh number. The initial transient lasts approximately 10 time
units at Ra = 750, the lowest Rayleigh number used, and grows monotonically until Ra = 825,
where it lasts approximately 27 time units. For values of the Rayleigh number beyond Ra = 825,
the results obtained are erratic and can take negative values. As the Rayleigh number is increased,
the characteristic survival time grows at a much faster rate than the initial transient time. The
latter becomes less important to the fitting function and more prone to statistical errors originating
from the finite size of the sample. Figure 11(b) shows the initial transient time normalized by the
characteristic survival time as a function of Ra and clearly shows that, in the region where t0 is
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FIG. 11. (a) Initial transient time t0 and (b) its absolute value normalized by the characteristic survival time
tc as a function of the Rayleigh number Ra.
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poorly approximated (Ra > 825), the absolute value of t0 remains small compared to the values
of tc.

V. LOW-DIMENSIONAL TRANSITION MODEL

Close to the crisis bifurcation, the convection rolls seem to have a well-defined size and location
in the physical domain. We can thus model the dynamics in the vicinity of the crisis by using a
system of Nr coupled oscillators, each oscillator modeling one roll via two quantities: the convection
energy, c, describing the energy contained in the x component of the velocity and main component
of any convective flow observed; and the tilt, τ , describing the intensity of the y component of the
velocity within that roll. The quantity c (resp. τ ) can be thought of as the analog of A2

conv (resp. 	y).

A. One-roll system

An essential feature of doubly diffusive convection (hereafter DDC) is the presence of subcritical
untilted states, as shown by the branches labeled C in the bifurcation diagram in Fig. 7. A similar
bifurcation diagram to that of such states can be obtained by setting a dynamical equation for c
containing a simple quadratic-cubic nonlinearity and by simply damping out τ :

∂t c = rc + c2 − c3, (19)

∂tτ = −γ τ, (20)

where r is the forcing parameter, akin to the Rayleigh number, and γ � 0 is the tilt decay rate. In
DDC, a destabilizing instability arises at a critical roll amplitude [28]. To model this, convection
and tilt can be coupled in Eq. (20) such that when c is larger than a threshold value (function of γ ),
the untilted (τ = 0) states become unstable. This coupled system writes

∂t c = rc + c2 − c3 − βcτ 2, (21)

∂tτ = −γ τ + β

2
cτ, (22)

where β � 0 is the rate of energy transfer between the tilt energy τ 2 and the convection energy c.
The effect of this coupling is to destabilize any solution (c, τ ) = (c, 0) when c > 2γ /β and, thus,
to prevent the hysteresis by destabilizing the upper branch. The system presented above is similar
to Eqs. (16) and (17) of Bergeon and Knobloch [27], except for the absence of one term that the
authors deemed to have “[no] qualitative effect.”

System (21) and (22) admits four steady states:

Cond : (c, τ ) = (0, 0), (23)

Lower : (c, τ ) =
(1

2
− 1

2

√
1 + 4r, 0

)
, (24)

Upper : (c, τ ) =
(1

2
+ 1

2

√
1 + 4r, 0

)
, (25)

Twist : (c, τ ) =
(

2γ

β
,±

√
r

β
+ 2γ

β2
− 4γ 2

β3

)
, (26)

where the subcritical state Lower bifurcates from the conduction state, Cond, at r = 0 and extends
down to rs = −1/4, where it undergoes a stabilizing saddle-node bifurcation producing the upper
branch. The state Twist bifurcates from either Lower or Upper depending on the value of the group
2γ /β. In DDC, this occurs when the roll energy is about 10% of the maximum roll energy within
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FIG. 12. Bifurcation diagram for systems (21) and (22) with β = 2 and γ = 0.1. The steady solutions are
represented via the energy E = c + τ 2 vs the reduced Rayleigh number r. The stability of each solution is
shown in the following way: (eigc, eigτ ), where eigc (resp. eigτ ) represents the sign of the growth rate of the
convection (resp. twist) eigenmode. Although the eigenmodes associated with the linear stability of Twist are
not so trivial, they have, for simplicity, been represented in the same fashion.

the snaking region, implying that 2γ /β ≈ 0.1 and placing this bifurcation along the Lower branch.
The resulting bifurcation diagram is shown for β = 2 and γ = 0.1 in Fig. 12.

The presence of the twist bifurcation alters the stability of the large amplitude steady states.
The eigenmodes of the τ = 0 states (Cond, Lower, and Upper) are decoupled and correspond
either to pure convection or tilt. The former is responsible for the primary bifurcation at r = 0 and
destabilizes Lower for −1/4 < r < 0, becoming stabilizing again at the saddle-node and creating
a heteroclinic connection between Lower/Cond and Upper. Along the lower branch, the twist
eigenmode becomes destabilizing at rτ = 4γ 2/β2 − 2γ /β = −0.09, raising the dimension of the
unstable manifold of both Lower for r < rτ and Upper. The bifurcation at rτ is the surrogate to the
twist bifurcation in DDC and produces the solution Twist. The eigenmodes of Twist do not project
trivially onto c or τ and both eigenvalues collide to form a pair of complex conjugate eigenvalues at
rc = δ2(4δ − 1)2/(2γ ) + 2δ(2δ − 1) = −0.082, where δ = γ /β.

For r > 0, no stable, c � 0 state exists and the dynamics takes the form of periodic orbits driven
by the stable and unstable manifolds of the three fixed points. Three examples of such stable periodic
orbits are shown in Fig. 13. Starting from an initial condition near Cond, the orbit follows the
unstable manifold of Cond, which is also the stable manifold of Upper, as the convection amplitude
grows. The orbit is subsequently repelled along the unstable (twist) manifold of Upper, which results
in the increase of the twist energy, thereby suppressing convection and leading to the closure of the
orbit as it approaches the stable manifold of Cond. This oscillatory behavior is further supported
by the oscillatory instability of Twist. The orbits shown in Fig. 13 approach Cond and Upper as
r is decreased; however, they are not formed at a global bifurcation at r = 0 but at a heteroclinic
bifurcation just below r = 0. This was predicted by Bergeon and Knobloch in Ref. [27]: The case
at hand is similar to their Fig. 15(a) [39]. To illustrate this, Fig. 14 shows the bifurcation diagram
with the periodic orbit for γ = 0.25, where the global bifurcation is at an appreciable distance away
from r = 0. The periodic orbit collides with Lower and Upper at a heteroclinic bifurcation located
at rhet ≈ −0.01. As a result, there exists an interval in r, albeit small, in which the system is bistable.

B. Nr-roll system

There are various ways to couple rolls together. Here, the point is not to be exhaustive but rather
to show a simple example of coupling that can lead to chaos immediately above onset. In DDC,
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FIG. 13. Phase portrait showing the twist energy τ 2 as a function of the convection energy c for simulations
at r = 0.1 (black), r = 0.2 (blue), and r = 0.4 (red). The three fixed points (Cond, Upper, and Twist) are shown
using dots while the stable periodic orbits are shown in solid lines. Parameters are β = 2 and γ = 0.1.

as a roll tilts, its convection amplitude decays, vanishing from the center toward the outside and
forming, for a very short period of time, two smaller tilted rolls (see Figs. 5 and 6). Following the
decay of these rolls, two seeds of kinetic energy are left behind that may lead to the growth of two
rolls instead of one at the newly vacated location. The following coupled system takes inspiration
from this observation:

∂t ci = rci + c2
i − c3

i − βciτ
2
i + η

(
τ 2

i−1 + τ 2
i+1

)
, (27)

∂tτi = −γ τi + β

2
ciτi − ητi, (28)
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FIG. 14. Bifurcation diagram showing the periodic orbit P on top of the steady states represented using the
extrema values of E as a function of r for β = 2 and γ = 0.25. The right panel is an enlargement of the left
panel to show the bifurcation to periodic orbits.
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FIG. 15. Bifurcation diagram showing the value of the energy E as a function of r for system (27) and
(28) with six rolls, β = 2, γ = 0.1 and η = 0.01. The points reported are Poincaré section intersects where the
Poincaré plane is defined via the conditions ∂t E = 0 and ∂2

t E > 0. The diagram shows the density of Poincaré
intersects: the more opaque, the denser.

where the subscript i indicates the ith roll, i = 1, ..., Nr , and η � 0. The coupling term converts
some of the tilt energy of the ith roll into convection energy for the adjacent rolls. More specifically,
the term −ητi in Eq. (28) removes tilt energy at rate −2ητ 2

i , half of which is reinjected in Eq. (27)
for the (i − 1)-th roll, the other half being reinjected in the same equation but for the (i + 1)-th roll.

No-slip boundary conditions can be modeled by assuming that the rolls at the extrema of the
domain lose tilt energy at the same rate as central rolls but will only receive convection energy
from one neighbor: τ0 = 0 and τNr+1 = 0. To illustrate the complexity of the behavior obtained by
weakly coupling the oscillators, we set β = 2, γ = 0.1, and η = 0.01, and consider the Poincaré
section corresponding to the conditions

∂E

∂t
= ∂ (c̄ + τ̄ 2)

∂t
= 0 and

∂2E

∂t2
> 0, (29)

where

c̄ = �
Nr
i=1ci, τ̄ 2 = �

Nr
i=1τ

2
i . (30)

Intersections of the trajectory with this Poincaré section correspond to local minima of the total
energy of the system. Figure 15 shows the resulting diagram for system (27) and (28) with six rolls.
An initial run consisted in a series of simulations, the first of which was set at r = −0.1 and the last
of which at r = 0.8 with increments �r = 5 × 10−4. The first simulation was initialized using a
random initial condition of small amplitude, and then each successive simulation was initialized by
the last state of the simulation that preceded it. Although the simulations were run for 15 000 time
units, only the Poincaré intersections occurring during the last 5000 time units were stored to avoid
capturing any transient dynamics. A second run was then carried out in the reverse direction down to
r = −0.1 to identify the subcritical extent of the chaotic region. Although the initial run identified
the presence of an immediate transition to temporal complexity at r = 0, the second run revealed that
this chaotic behavior persists down to r ≈ −0.044, indicating a small region of coexistence between
chaos and Cond. Figure 15 also indicates a number of distinct regions exhibiting qualitatively
different dynamics. Some of these regions are chaotic, as indicated by a diffuse set of Poincaré
intersects, while others are dominated by periodic orbits and only feature Poincaré intersects at
well-defined values of the energy E . To illustrate these different dynamics, several simulations are
reported in Fig. 16. The observed chaotic trajectory at r = 0 [Fig. 16(a)] displays little structure
besides the dominating anticlockwise cycle resulting from the dynamics imposed by the uncoupled
system (see Fig. 13). When r < rhet in the uncoupled system, decay is unavoidable. On the other
hand, in the presence of coupling, a neighboring roll with nonzero tilt energy provides a source of
convection energy capable of restarting a decaying roll. This, in turn, makes it possible to observe
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and (d) r = 0.3. Each of these trajectories represents the evolution of the system over 1000 time units after an
initial transient of suitable duration was discarded. Parameters are Nr = 6, β = 2, γ = 0.1, and η = 0.01.

nontrivial dynamics below rhet. As r is increased, the temporal dynamics simplifies and, by r = 0.2
[Fig. 13(c)], the trajectory follows two distinct stages. During the first stage, from the lowest energy
point in the cycle to the point of maximum tilt energy τ̄ 2, the system follows straightforward
dynamics: The convection energy c̄ first increases, leading to the buildup of tilt energy, which then
suppresses convection. The second part of the cycle corresponds to the redistribution of twist energy
into convection energy to neighboring rolls. As this happens, the trajectory spirals down to return
to the point of minimal energy. This dynamical structure can be easily observed on the periodic
orbit identified at r = 0.16 [Fig. 16(b)]. As the parameter is increased further, transitions to other
attractors can be seen, such as the one occurring at r ≈ 0.28 and leading to the dynamics shown
in Fig. 16(d). This attractor is denser than the one shown in Fig. 16(c) and both coexist for a range
of parameter values. Lastly, this temporal complexity terminates at r ≈ 0.75 where the last (Hopf)
bifurcation leads to the return to a simple periodic orbit.

VI. DISCUSSION

This paper dealt with doubly diffusive convection in a vertically extended domain with square
horizontal cross section and forced by horizontal gradients of salinity and temperature. This flow
configuration gives rise to a sudden transition to chaos that was here characterized via its successive
temporal instabilities and as a dynamical systems process. While the linear instability from the
conduction state produces an array of counter-rotating convection rolls, nonlinear effects select
half of them, leading to an array of corotating rolls [31]. Past a certain convection amplitude,
the convection rolls become unstable and tilt before decaying. This secondary instability initiates
chaotic dynamics where shorter lived rolls are observed at well-defined locations in the physical
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domain. These rolls obey similar dynamics to the one previously described: Owing to the instability
of the conduction state, they evolve through cycles where they grow, tilt, and then decay. Weak
interactions between these rolls seem to be responsible for temporal complexity by nontrivially
modifying the duration of each of the cycle stage. This chaotic regime disappears at a crisis
bifurcation located in the vicinity of the primary bifurcation. It was found that the crisis bifurcation
is abrupt, with a critical exponent of about 3. To illustrate the dynamical phenomenon at play, a
low-dimensional model was constructed based on basic observations of the bifurcation structure
found in doubly diffusive convection. The model takes advantage of the fact that the convection
rolls always occupy the same position and do not drift, so that they can be represented by oscillators.
The equations for adjacent oscillators were coupled via the addition of terms inspired by the way
rolls interact in doubly diffusive convection. The resulting phenomenological model exhibits a
global bifurcation where time-dependent, long-lasting behavior arises at slightly subcritical values
of the parameter which hints at the possible existence of a small region of bistability between the
conductive state and chaos.

This paper elucidates the transition to chaos observed in doubly diffusive convection in
Refs. [28,29]. While the aforementioned references focused on subcritical pattern formation, the
transition to complex dynamics immediately at onset remained unclear. This paper shows that this
transition to chaos is the result of a crisis bifurcation. Although crises are common in classical
fluid dynamics [33,38,40,41], to the author’s knowledge, it is observed here for the first time in the
vicinity of the primary instability. The phenomenon identified here requires few conditions to take
place, as shown by the construction of a low-dimensional, phenomenological model. It is further
expected that any system displaying subcritical localized states subject to a secondary subcritical
instability might display such an abrupt transition to chaos. This is the case in a variety of systems
related to fluids which display spatially localized pattern formation: With few exceptions, they are
subcritical and their high dimensionality makes the emergence of secondary instabilities likely. As
such, this work may be of relevance to a large range of fluid systems.
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