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Abstract
We consider a close relative of plane Couette flow called Waleffe flow in which the fluid is
confined between two free-slip walls and the flow driven by a sinusoidal force. We use a reduced
model of such flows constructed elsewhere to compute stationary exact coherent structures in
this flow in periodic domains with a large spanwise period. The computations reveal the
emergence of stationary states exhibiting strong amplitude and wavelength modulation in the
spanwise direction. These modulated states lie on branches exhibiting complex dependence on
the Reynolds number but no homoclinic snaking.
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1. Introduction

Many parallel shear flows are characterized by a laminar
unidirectional flow state that is linearly stable regardless of
the value of the Reynolds number Re UL nº , where U is a
typical flow speed, L is a characteristic length scale and ν is
the kinematic viscosity of the fluid. Despite the stability of the
laminar flow, experiments and numerical simulations invari-
ably reveal the presence of turbulence at large values of Re.
Unlike fully developed turbulent flows, transitional parallel
shear flows are characterized by the importance of exact
coherent structures (ECS): patterned stationary or time-peri-
odic states that are exact solutions of the Navier–Stokes
equations. These ECS are formed at moderate values of the
Reynolds number, Re O 100( )= , through saddle-node
bifurcations and are characterized by a small number of
unstable eigendirections. As a result, they attract transitional
flow trajectories which can then be thought of as bouncing
from ECS to ECS [12, 17]. Of these, two specific ECS are of
particular interest in small domains: the least unstable lower
branch solution and the associated upper branch solution. The
lower branch ECS are typically attractors on the separatrix

between the stable laminar unidirectional flow and the
attracting turbulent state and are referred to as edge states
[23]. As the Reynolds number increases, the energy of this
state decreases and the basin of attraction of the laminar state
shrinks in favor of that of turbulence. On the other hand, the
upper branch ECS are known to reproduce important low-
order statistics of the turbulent flow associated with it
[16, 28]. Numerous other ECS have been found all of which
have a small number of unstable eigendirections. Together
these states form a highly complex network that acts as a
backbone of turbulence in small domains [12]. The situation
in large domains is naturally more complicated, although
simulations have provided some insight, notably into spatially
extended edge states [11, 25].

In small domain plane Couette flow, edge states can be
decomposed into Fourier modes in the streamwise direction
and continued to higher values of the Reynolds number to
reveal a characteristic scaling with inverse powers of the
Reynolds number [29], confirming earlier scaling theory
[13, 26, 27]. This particular ECS consists of a streamwise-
invariant streamwise velocity mode that remains O(1) at all
values of Re: the streaks. These are complemented with rolls,
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a streamwise-invariant vorticity/streamfunction mode whose
amplitude decays like Re−1, and fluctuations, i.e., the
streamwise dependent part of the solution that decays roughly
like Re 0.9- . In this paper, we use a reduced model based on
this scaling derived by Beaume et al [2, 5] to calculate spa-
tially extended ECS in the spanwise direction. In the next
section, we introduce the reduced model, followed in
section 3 by a description of the new ECS computed in a
moderately large domain. The paper ends with a brief
conclusion.

2. Reduced model

We consider Waleffe flow in which a fluid confined between
two parallel stationary stress-free walls is driven by a
streamwise-invariant volume force varying sinusoidally with
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y 1, 1[ ]Î - . The streamwise x and spanwise z directions are
considered periodic. This flow was first introduced by Drazin
and Reid as an exception to Rayleigh’s inflection point the-
orem [10]. It has also been used by Waleffe as an analogy to
plane Couette flow that makes it possible to project solutions
onto a small set of Fourier modes [27]. The flow was recently
used to motivate the reduced model [5] used here and shown
to display qualitatively the same physics as plane Couette
flow but without the boundary layers present in the latter
[5, 8]. As emphasized below the reduced model that results is
independent of the specific choice of base flow.

The Reynolds number scaling of the lower branch solu-
tions observed in plane Couette flow [29] can be used as part
of a multiscale analysis by introducing the small quantity

Re 11 = -  and a slow time scale T t= . The incom-
pressible Navier–Stokes equations for Waleffe flow then
takes the form
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where u v wu , ,( )= is the velocity field and p the pressure.
The following expansion is assumed:

u x y z t T u y z T

u y z T u y z t T O

, , , , , ,

, , , , , e c.c. ,

3

x

0

1 1
i 2

( ) ( )
[ ( ) ( ) ] ( )

( )
 

~

+ + ¢ + +a

v x y z t T v y z T

v y z t T O

, , , , , ,

, , , e c.c. ,

4

x

1

1
i 2

( ) [ ( )
( ) ] ( )

( )





~

+ ¢ + +a

w x y z t T w y z T

w y z t T O

, , , , , ,

, , , e c.c. ,

5

x

1

1
i 2

( ) [ ( )
( ) ] ( )

( )





~

+ ¢ + +a

with p expanded analogously to ensure incompressibility. In
writing these expressions, we have used the numerical

observations of Wang et al [29] and introduced the stream-
wise wavenumber α. The quantities with an overline
represent streamwise-invariant quantities while primed quan-
tities represent fluctuations about this mean state. Note that
streamwise-invariant quantities do not vary with the (fast)
time t [5].

Using these expansions in equations (1) and (2), and
averaging over x and t, we obtain:
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where v wv ,1 1 1( )º^ , v wv ,1 1 1( )¢ º ¢ ¢^ , , ;y z( ) º ¶ ¶^ v v1 1¢ ¢^ ^
denotes the (x, t)-average of the product of the fluctuations.
The fluctuations in turn obey a set of quasilinear equations
obtained by substracting the above system from the Navier–
Stokes equations:
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The above set of equations is further simplified by
writing it in terms of the streamfunction 1f for the rolls:
v z1 1f= -¶ , w y1 1f= ¶ , and the associated vorticity

1
2

1w f= ^ . Taking the divergence of the fluctuation
equations (9) and (10) and using the incompressibility con-
dition (11) we obtain a Helmholtz problem for the pressure
that does not involve the streamwise fluctuation u1¢. Since this
quantity is also absent from the Reynolds stress term

v v1 1· ¢ ¢^ ^ ^ there is no need to solve equation (9). Lastly, the
fluctuations are regularized by retaining subdominant diffu-
sion. The reduced equations used in this paper are therefore
the following:
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In writing these equations we have dropped all overbars
and primes and introduced the notation J ,1( ·)f =

y z z y1 1· ·f f¶ ¶ -¶ ¶ . The symbol  denotes the real part of a
complex quantity while an asterisk denotes complex con-
jugation. The boundary conditions associated with Waleffe
flow read:

u v w y0 on 1. 16y y0 1 1 1 1 ( )w f¶ = = = = ¶ = = 

The reduced system (12)–(15) represents a simplification
of the full three-dimensional Navier–Stokes system. First, the

2

Phys. Scr. 91 (2016) 024003 C Beaume et al



equations have been projected onto a two-dimensional spatial
domain. Second, the mean equations (12) and (13) have O(1)
diffusion while the fluctuation equations (14) and (15) are
weakly diffusive and quasilinear with respect to the fluctua-
tions. The resulting system bears some similarity with earlier
work based on critical layer theory at very large Reynolds
numbers [14], but we focus here on transitional states and
hence on moderate Reynolds numbers. In particular we allow
the critical layer to have a finite width, hereafter called a
critical region, by retaining a subdominant diffusion term in
equation (15). This regularizing term allows us to work with
an equation set that is defined on the entire two-dimensional
domain while retaining the Re-dependence of the ECS
through the parameter Re 1 º - .

Obtaining ECS from this system is not trivial: these states
are nonlinear and not connected to any trivial solution. The
same difficulty is encountered in the fully three-dimensional
Navier–Stokes framework but the structure of the reduced
system allows easier computation. The streamwise-invariant
quantities evolve slowly (with T) while the fluctuations pos-
sess fast dynamics. The streaks in equations (14) and (15) can
then be thought of as frozen, resulting in a linear problem for
the fluctuations. The fluctuation system is then solved as an
eigenvalue problem for the (fast) growth rate σ of the fluc-
tuations, assuming that u0 is fixed. Consequently, obtaining a
good ECS guess involves a two-step iterative algorithm:
selecting fluctuations with the smallest growth rate for the
given u0 and then finding the corresponding steady solution

u ,0 1( )f from the streamwise-averaged equations. Repeating
these two steps several times while tuning the amplitude of
the fluctuations enables us to adjust the growth rate σ of the
fluctuations to near zero, thereby yielding a good initial
condition that can be converged to stationary ECS using an
appropriately designed preconditioned Newton method on the
complete system (12)–(15). The resulting solution is then
numerically continued in Re. A more detailed description of
the method is available in [6].

3. Extended states

In this section, we compute time-independent exact solutions
of the reduced system (12)–(15) with the boundary conditions
(16). We choose 0.5a = for which the lower branch
solution in plane Couette flow is only once unstable [23], and
discretize the (y, z) domain using equidistributed points.
Minimal meshes consist of 16 points per unit length in the
wall-normal direction and 32 p points per unit length in the
spanwise direction. The calculations are carried out in Fourier
space and fully dealiased. For simplicity we impose the three-
dimensional reflection symmetry R u v w: , , , ,0 1 1 1 1( )w f y z,( )

u v w, , , ,0 1 1 1 1( )* *w f - - - y z,( )- - , together with
a a - .

3.1. Spatially periodic states

Converged ECS from the reduced system (12)–(15) have
already been investigated in small periodic domains [5, 6].
For a domain of spanwise period Lz p= , these solutions take
the form of canonical ECS reminiscent of the Nagata states in
plane Couette flow [21]. In the asymptotically reduced model
of Waleffe flow these states are formed at a saddle-node
bifurcation at Re 136sn » , forming upper and lower ECS
branches. These solutions, together with their bifurcation

Figure 1. Bifurcation diagram for a domain with spanwise period
Lz p= and streamwise wavenumber 0.5a = . The normalized

enstrophy: N
D

y z
1

d d1
2


ò w=w is shown as a function of the

Reynolds number Re. Here  represents the two-dimensional

domain and D y zd d

ò= . The insets represent the lower and upper

branch states at Re 1500» and the solution at the saddle-node
Re Resn» . The thick black line represents the critical layer u 00 = ,
and thinner black contours are plotted for u 0.5, 10 =   . The rolls
are represented in color, with red (respectively blue) standing for
positive (respectively negative) values of the streamfunction, i.e., for
counter-clockwise and clockwise motion, respectively. The contours
plotted are multiples of 0.4 for the lower branch state, of 0.5 for the
saddle-node state and of 0.65 for the upper branch state.

Figure 2. Relevant solutions, gper and glam, used to generate the
initial condition g0 using the formula (17). The spanwise period is
4p. The solutions and initial condition are represented the same way
as the saddle-node solution in figure 1. For clarity we illustrate the
case 1c = (bottom panel).

3

Phys. Scr. 91 (2016) 024003 C Beaume et al



diagram, are shown in figure 1. The primary difference
between the lower and upper branch states lies in the O(1)
streaks. The lower branch streaks undulate with small ampl-
itude around y=0 as opposed to the upper branch streaks
which are more pronounced, nearly spanning the entire
domain. The streak deformation is the result of their inter-
action with O ( ) rolls which are generated by O ( ) fluctua-
tions accumulating around the u 00 = contour, that is, around
the curve of vanishing streaks. In the nominally inviscid
problem, i.e., the regime of very high Reynolds numbers, this
contour corresponds to the so-called critical layer. The lower
branch ECS display quasi-circular rolls, explaining the sinu-
soidal shape of the u 00 = contour. As the Reynolds number
is decreased toward the saddle-node, the rolls strengthen
while maintaining their nearly circular shape and the undu-
lation amplitude grows. The rolls associated with the upper
branch ECS are more complex: away from the saddle-node

they become bimodal with a pair of local cores replacing the
single core along the lower branch. These cores gradually
move apart, toward the extrema of the u 00 = contour,
leading to substantial changes (figure 1).

3.2. Modulated states

It is known that a number of different instabilities leading to
spatial modulation can arise in large domains along branches
of spatially periodic structures and in particular in the vicinity
of saddle-nodes of spatially periodic states [1, 25]. This
process has been studied in detail in the context of the bistable
Swift–Hohenberg equation posed on a one-dimensional
domain with a large spatial period [7], and becomes analyti-
cally accessible in the context of the corresponding Ginz-
burg–Landau equation [15]. The resulting modulational

Figure 3. Bifurcation diagram for the modulated state M1 obtained using the initial condition (17) for Re=140 and 0.2c = . The

quantities represented in (a) are the same as in figure 1 while a measure of the fluctuation energy N
D

v w y z
1

d d1
2

1
2( )


ò¢ = + is shown in

(b). The upper branch, lower branch and saddle-node solutions of the periodic states P are shown in detail in figure 1.

Figure 4. Progressive modulation of the amplitude of the modulated
state as the M1 branch departs from the vicinity of the saddle-node of
the spatially periodic states. The corresponding bifurcation diagram
is shown in figure 3. The solutions are represented as in figure 2 with
multiples of 0.6 for the streamfunction contours.

Figure 5. Evolution of the M1 branch after its first saddle-node at
Re 225» . From top to bottom: solutions at successive saddle-
nodes until the leftmost saddle-node at Re 145» . The corresp-
onding bifurcation diagram is shown in figure 3. The solutions are
represented as in figure 2 with, from top to bottom, multiples of 0.95,
0.75 and 0.55 for the streamfunction contours.
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instability may lead to the development of a hole within the
spatially periodic pattern when the modulation amplitude
becomes so large that the periodic state is invaded by intervals
of the trivial (laminar) state.

With this in mind, we set the domain size to L 4z p= and
look for the formation of modulated structures at Re Resn» .
The modulational instabilities described in the Swift–
Hohenberg equation [7, 15] or in other fluid problems [3, 18]
are linear instabilities occurring close to the saddle-node. We
therefore consider the following initial conditions g0 for our
Newton method:

g
z

g

z
g

1
2

1 cos
2

2
1 cos

2
. 17

0 per

lam ( )

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥

c

c

= - +

+ +

Here gper is the spatially periodic solution at the saddle-node,
glam is the homogeneous laminar solution and χ is a modulation
factor. For 0c = , the initial condition is the unmodulated
periodic state gper; as χ increases spatial modulation with
wavelength 4p (i.e., the spanwise period of the domain) of the
pattern develops until 1c = where the modulation is

maximum: at z=0 and z 4p= the corresponding solution
looks like the laminar profile while at z 2p= its profile takes
the form of the saddle-node solution. An example of such an
initial condition is shown in figure 2 together with the exact
periodic state gper and the trivial laminar state glam.

To identify initial conditions that converge to a modu-
lated state, we scanned the (Re, χ) parameter space. When the
Reynolds number is too close to Resn, small values of χ

generate initial conditions that are too close to the spatially
periodic state and the Newton iteration converges to it.
However, beyond a threshold value of χ all attempts at
convergence failed, the initial condition being structurally too
far away from any physical state. Likewise, values of Re that
were too far from Resn also failed to converge regardless of
the choice of χ. However, a converged modulated state was
found for Re=140 and 0.2c = and this state was then
continued using our continuation algorithm [6] to trace out the
branch M1 of the corresponding solutions (figure 3). As
expected, the modulated solution emerges from a bifurcation
close to the saddle-node of the branch of spatially periodic
states. As the solution branch is continued, the modulation of
the roll amplitude (and therefore of the streaks) becomes the
dominant feature (figure 4): the central (counter-clockwise)
roll becomes stronger while the adjacent rolls become pro-
gressively weaker. This is particularly noticeable close to the
first saddle-node of the modulated states at Re 225» . There
the counter-clockwise roll located at the edge of the (periodic)

Figure 6. Evolution of the M1 states after their approach to the
periodic state (see figure 5). The solutions are shown, from top to
bottom, at the four successive saddle-nodes between Re=250 and
Re=300, starting from the one of least energy; the final solution is
taken at Re 500» . The corresponding bifurcation diagram is
shown in figure 3. The solutions are represented as in figure 2 with
multiples of 0.6 for the streamfunction contours except for the
Re 264» and Re 500» solutions for which the contours are
multiples of 0.9.

Figure 7. Nearby M1 and M2 solutions represented as in previous
figures with streamfunction contours that are multiples of 0.6. These
solutions are indicated with a solid dot in the corresponding
bifurcation diagram shown in figure 8.

Figure 8. Close-up of the region where the M1 and M2 states
approach each other. The solution on M1 indicated by the solid dot
was used to converge to theM2 solution also indicated by a solid dot.
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domain has nearly completely vanished and the adjacent
clockwise rolls (in blue in figure 4) are substantially weaker,
smaller and displaced from their original position (figure 4,
bottom panel). To understand the displacement of the weaker
rolls, we substitute the fluctuation velocities from
equation (15) into equation (14) and obtain:

p
u

p u u v
2
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18

2 2
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0
0 0

2
1( ) ( · · )

( )

a -  = -  +  ^ ^ ^ ^ ^ ^

Here the term u v0
2

1· ^ ^ ^ arises from the nature of the
asymptotics performed in section 2 but v2

1^ ^ is never large.
However, the presence of u0 in the denominator of the right
side of equation (18) is responsible for the presence of
enhanced forcing of the fluctuations in the vicinity of the
contour u 00 = , implying that fluctuations necessarily con-
centrate in the critical region, where they strengthen the rolls
and in particular the counter-clockwise central roll. The weak
clockwise rolls at either end deform the u 00 = contour less,
resulting in a displacement of the contour downward on the
left and upward on the right (figure 4, bottom panel).

As the branch M1 turns around towards lower values of
the Reynolds number near the Re 225» saddle-node, the
clockwise rolls weaken while the counter-clockwise rolls
strengthen. The resulting solution is shown in figure 5 for
Re=155 (top panel). At this location the M1 branch has a
saddle-node; by the next saddle-node (at Re 177» , middle
panel) the central roll is starting to lose its dominance, and
this evolution continues towards the leftmost saddle-node (at

Re 145» , bottom panel) resulting in a roll pattern with a
rather weak but nonetheless complex modulation structure
characterized by a weaker central roll embedded between a
pair of stronger counter-rotating rolls on either side. This
modulation structure strengthens and by the next saddle-node
at Re 271» a fully developed double-well modulation is
present, centered on the roll pairs on either side of the
counter-clockwise central roll (figure 6). The modulation
strenghens the roll pairs on either side of the central roll while
progressively weakening the central roll; this evolution gen-
erates a pair of strong streaks (see e.g. Figure 6, middle panel)
while broadening the weak clockwise structures towards the

Figure 9. Bifurcation diagram for the modulated states M1 and M2. The quantities represented are the same as in figure 3.

Figure 10. Solution taken along the upper M2 branch at Re 500» .
The corresponding bifurcation diagram is shown in figure 9. The
solution is represented as in figure 2 with multiples of 0.6 for the
streamfunction contours.

Figure 11. Solutions along the lowerM2 branch at successive saddle-
nodes at Re 342» , Re 315» , Re 411» and Re 278» . The
corresponding bifurcation diagram is shown in figure 9. The solution
is represented as in figure 2 with multiples of 0.7 for the
streamfunction contours, except for the Re 278» saddle-node
where multiples of 1.2 have been used.
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outside. The next saddle-node on the left reveals the presence
of dramatic weakening of the outer counter-clockwise rolls
while the inner clockwise rolls strengthen resulting in the
steeping of the u 00 = contour within the latter, a process that
is progressively enhanced as Re increases (figure 6, bottom
panel), in a manner suggestive of incipient roll-up. The fold
at Re 145» is therefore responsible for the splitting of the
one-pulse state into two pulses. Similar splitting of a single-
pulse localized structure occurs in rotating convection [4].

While tracking the M1 state in figure 3, we noticed the
presence of a (well-resolved) sharp angle in the direction of
the branch at Re 220» in all the quantities we monitored.
This type of event might indicate an imperfect bifurcation and
therefore the existence of another branch nearby with similar
solutions. We initialized a Newton search with an M1 solution
at Re 220.0320» and slightly perturbed it by increasing its
amplitude and the Reynolds number. Using this procedure we
were able to converge to another kind of modulated state,
labelled M2. The M1 solution we picked together with the M2

state we converged to are represented in figure 7 to illustrate
the similarities and differences between them, with the asso-
ciated bifurcation diagram displayed in figure 8. The full
bifurcation diagram of the M2 states is shown in figure 9.
Continuation of the modulated states M2 shows that these
states are created at a saddle-node at Re 218» . The upper
and lower branches emanating from this saddle-node then
have a completely different fate. The upper M2 branch
evolves monotonically to larger Reynolds numbers while the
modulation of the amplitude of the rolls increases and the size
of the central roll decreases. This simple evolution is shown
in figure 10. The lower branch has a more complex structure,
however. Along this branch the central counter-clockwise roll
gradually weakens and then splits into two maxima in the
vicinity of the center of the domain. At the same time the
remaining counter-clockwise rolls also weaken leaving a
structure dominated by a pair of strong clockwise rolls. This
process manifests itself in the presence of a small loop
between Re 315» and Re 342» and terminates near the
Re 411» saddle-node in figure 11.

The branch then turns around and both N and N¢ increase
dramatically. During this process the two clockwise rolls near
the center of the domain that dominate the flow at Re 411»
are swamped by the growth of a pair of clockwise rolls near
either side of the domain and the associated elimination of
counter-clockwise rolls from all but the center of the domain
where a weak counter-clockwise roll persists. It is significant
that the new clockwise rolls that appear are no longer centered
on the u 00 = contour. This appears to be a consequence of
their proximity in a domain with periodic boundary condi-
tions and of the resulting roll-up. This incipient roll-up may in
turn be responsible for the dramatic increase in roll
and fluctuation energies observed in figure 9. This behavior
hints at a possible failure of the asymptotic approach although
we have not pushed the calculations into this regime.
We reiterate that all the solutions reported here are fully
converged.

4. Conclusion

In this paper, we have obtained and numerically continued the
first spanwise-modulated states in a reduced model of parallel
shear flow, focusing on time-independent solutions with the
symmetry R. These states were found using insight from
pattern-forming systems: the saddle-node of subcritical spa-
tially periodic states in extended systems is known to give rise
to modulational instabilities. We constructed an artificial
modulation of the saddle-node solution and converged it to a
modulated state referred to as M1 that we have successfully
continued to unveil a complex bifurcation structure reminis-
cent of fully three-dimensional shear flows [12, 19, 22].
Additional solutions such as the M2 modulated states were
identified by perturbing the M1 state close to what looks like
an imperfect bifurcation, and these were likewise continued
numerically to substantially different Reynolds numbers. We
mention that states with a shift-reflect symmetry, corresp-
onding to a cross-stream reflection followed by a half wave-
length shift in the streamwise direction, are also expected to
be present [6, 24]. Such solutions are not stationary, however,
but drift steadily in the streamwise direction, i.e., they are
traveling waves. We have not computed traveling states of
this type.

The reduced model used for this purpose has been
derived based on the scaling properties of the lower branch
state observed in plane Couette flow [29]. The resulting
equations are in effect projected in the streamwise direction
on the fundamental and first Fourier components of the
velocity and pressure fields but spanwise and wall-normal
directions are treated as in fully simulated flows. As a result,
three real fields (u0, 1w and 1f ) and three complex fields (p1,
v1 and w1) have to be solved for on a Ny×Nz mesh, where Ny

(respectively Nz) stands for the number of points in the wall-
normal (respectively spanwise) direction. The computation of
such states using a direct numerical solver on the primitive
equations typically involves four real fields—the three com-
ponents of the velocity and the pressure—on a N N Nx y z´ ´
mesh with N O 10x ( )= at least [12, 19, 23]. The calculations
presented here would therefore have been at least ten times
slower had a fully three-dimensional solver been used.
Additional difficulties arise in the Newton iteration as the
number of degrees of freedom increases.

The finding of the modulated states M1 and M2 in a
reduced model has several implications for transitional shear
flows. It shows that the reduced model (12)–(15), originally
designed to capture the lower branch solutions, not only
captures the upper branch states, but also bifurcations from
these states and even more complex, unconnected states. This
property of the reduced model is expected to provide sub-
stantial help in the systematic study of both extended and
spatially localized ECS [24]. In the present study no ECS
localized in the spanwise direction were found but some of
the modulated states strongly suggest that spanwise-localized
modulated states do, in fact, exist although no homoclinic
snaking was observed. The M1 and M2 states nearly coincide
in an imperfect bifurcation around Re=220. Had they con-
nected their connection would have given rise to a branch
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starting from the saddle-node of the periodic states, spending
some time around Re=220, before extending monotonically
to large Reynolds numbers and resulting in solutions con-
sisting of a spatially modulated roll pattern with a simple
structure. Similar modulated states that do not snake but
instead extend monotonically to large parameter values have
been found in Marangoni convection [1] and studied in detail
in the context of binary fluid convection [20]. These studies,
in conjunction with earlier studies of model equations such as
the Swift–Hohenberg equation [7, 9], indicate that in finite
domains the behavior of branches of modulated structures is
strongly affected by the spanwise spatial period imposed on
the system, suggesting that for a different choice of this
period homoclinic snaking may in fact be present in the
reduced shear flow model studied here. This is particularly so
for moderately large domains, such as L 4z p= , as used here.
However, despite this limitation, the present study serves as a
proof of concept that reduced models, such as that consisting
of equations (12)–(15), do capture more dynamics than they
have been designed for, thereby paving the way for future
studies on larger domains at lesser computational cost.
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