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Two-dimensional convection in a plane layer bounded by stress-free perfectly
conducting horizontal boundaries and rotating uniformly about the vertical is
considered. Time-independent spatially localized structures, called convectons, of even
and odd parity are computed. The convectons are embedded within a self-generated
shear layer with a compensating shear flow outside the structure. These states are
organized within a bifurcation structure called slanted snaking and may be present
even when periodic convection sets in supercritically. These interesting properties are
traced to the presence of a conserved quantity and hence to the use of stress-free
boundary conditions.
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1. Introduction
Convection in a horizontal fluid layer rotating about the vertical provides one of the

classical examples of hydrodynamic instability (Veronis 1959; Chandrasekhar 1961).
The system is of interest because convection can set in either via an exchange of
stability (a steady-state bifurcation) or via overstability (a Hopf bifurcation) depending
on the Prandtl and Taylor numbers (Veronis 1959; Chandrasekhar 1961; Clune &
Knobloch 1993; Bajaj, Ahlers & Pesch 2002). In the weakly nonlinear regime
classical perturbation theory has revealed branches of steady convection (both two-
and three-dimensional (Veronis 1959; Goldstein, Knobloch & Silber 1990, 1992)) near
the steady-state bifurcation and branches of different types of standing and travelling
waves near the Hopf bifurcation (Veronis 1959; Silber & Knobloch 1990, 1993), as
reviewed elsewhere (Knobloch 1998). When these bifurcations are near one another
(i.e. the rotation rate as measured by the dimensionless Taylor number is near a special
value called a codimension-two point) one can study the interaction between steady
and oscillatory convection at small amplitude. This study has revealed different ways
whereby oscillations, be they in the form of standing or travelling waves, give way
to steady convection as the Rayleigh number increases (Guckenheimer & Knobloch
1983).

In this paper we examine this classical problem from a new point of view and study
steady but spatially localized structures. Following Blanchflower (1999) we refer to
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such states as convectons. For this purpose we adopt the two-dimensional formulation
and suppose that the horizontal extent of the layer is sufficiently small that the Froude
number remains small (i.e. the centrifugal force may be neglected) while at the same
time being sufficiently large that well-localized structures are permitted.

Classical theory of localized states as exemplified by the Swift–Hohenberg equation
(Burke & Knobloch 2007) shows that steady, spatially localized states are found in
the region of bistability between the conduction state and spatially periodic convection.
These states are organized in the so-called snakes-and-ladders structure consisting of
a pair of intertwined branches of states of even and odd parity linked by rung-like
branches consisting of asymmetric states. As one follows the branches to larger energy
the localized states add cells on either side, maintaining symmetry, and so grow in
length until the domain is filled with convection. This type of behaviour has now
been seen in a large variety of fluid flows (Batiste et al. 2006; Assemat, Bergeon &
Knobloch 2008; Bergeon & Knobloch 2008; Lo Jacono, Bergeon & Knobloch 2010;
Schneider, Gibson & Burke 2010; Beaume, Bergeon & Knobloch 2011).

However, with stress-free velocity boundary conditions the equations describing
two-dimensional rotating convection conserve the integral of the transverse or zonal
velocity and this special property of the equations allows localized states to be present
outside of the region of bistability and indeed when spatially periodic convection sets
in supercritically and no bistability is present at all. In this paper we provide numerical
evidence backing these conclusions and relate them to the presence of the conserved
quantity and the associated modulational instability (Cox & Matthews 2001).

This paper is organized as follows. In § 2 we introduce the formulation of the
problem. In § 3 we compute spatially localized states and show that they exhibit
slanted snaking. In § 4 we use the amplitude equation approach to study the
bifurcation to convectons. In § 5 we use multiscale perturbation theory to explain
various aspects of the numerical results. Brief conclusions follow in § 6.

2. Governing equations
The dimensionless equations governing two-dimensional convection in a Boussinesq

layer rotating uniformly about the vertical with angular velocity Ω take the form

Raθx − Tvz +∇4ψ = σ−1[∇2ψt + J(ψ,∇2ψ)], (2.1)

ψx +∇2θ = θt + J(ψ, θ), (2.2)

Tψz +∇2v = σ−1[vt + J(ψ, v)]. (2.3)

Here u≡ (−ψz, v, ψx) is the velocity in the rotating frame with (x, y, z) as coordinates
and ψ(x, z, t) is the poloidal streamfunction. The quantity v(x, z, t) represents the zonal
velocity while θ represents the departure of the temperature Θ from the conduction
profile, and J(ψ, ·) ≡ ψx (·)z− (·)x ψz. To write these equations, we used the height
h of the layer as the unit of length, the thermal diffusion time h2/κ , where κ is
the thermal diffusivity, as the unit of time and the imposed temperature difference
1Θ as the unit of temperature. The resulting system is specified by the following
dimensionless numbers: the Prandtl number σ , the Rayleigh number Ra and the Taylor
number T defined by

σ = ν
κ
, Ra= gα1Θh3

κν
, T = 2Ωh2

ν
. (2.4)
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Here ν is the kinematic viscosity, g is the gravitational acceleration and α is the
thermal expansion coefficient in the Boussinesq approximation. As defined T is the
inverse Ekman number; in other papers the term Taylor number is used to refer to T2.

We impose stress-free and fixed-temperature boundary conditions at the top and
bottom

ψ = ψzz = θ = vz = 0 at z ∈ {0, 1} (2.5)

with periodic boundary conditions (PBC) in the horizontal with period Γ that is
large compared with the onset wavelength λc of convection. With these boundary
conditions, the system possesses the trivial solution ψ = θ = v = 0, corresponding
to the conduction state. This solution is present for all values of the Rayleigh
number Ra and its instability as Ra increases is responsible for the presence of
convection as described by Veronis (1959). The properties of the convecting state
that results are in turn affected by the symmetries of (2.1)–(2.3) with the boundary
conditions (2.5). These include equivariance under horizontal translations, x→ x + `,
(ψ, θ, v)→ (ψ, θ, v), as well as the following two reflections:

R1 : (x, z)→ (−x, z), (ψ, θ, v)→ (−ψ, θ,−v), (2.6a)
R2 : (x, z)→ (x, 1− z), (ψ, θ, v)→ (−ψ,−θ, v). (2.6b)

Non-trivial solutions invariant under R1 have even parity under reflection in x = 0
while those invariant under the point symmetry R1 ◦R2 have odd parity in the midplane
z = 1/2. In the following we refer to localized states with these properties as L+

and L−, respectively. R2-symmetric solutions are only present at much larger Rayleigh
numbers and will not be considered in this paper.

The stress-free boundary conditions (2.5) play an important role in what follows
since with these boundary conditions v is defined only up to a constant, i.e. v is a
phase-like variable. Moreover

d
dt

V̄ = 0, V̄ ≡
∫

D
v(x, z, t) dx dz, (2.7)

where D refers to the domain [−Γ/2, Γ /2] × [0, 1], implying that V̄ remains constant
during time evolution. A similar situation arises in convection in a vertical magnetic
field where the magnetic vector potential is phase-like and the conserved quantity is
the vertical magnetic flux, as emphasized by Cox & Matthews (2001).

In the following, we compute stationary solutions of the equations using a
numerical continuation algorithm based on a Newton solver. The implementation
of the method follows that of Mamun & Tuckerman (1995) but uses a spectral
element discretization in the horizontal. In each element, the fields are approximated
by a high-order interpolant through the Gauss–Lobatto–Legendre points. The Newton
solver requires a first-order time integration scheme for the equations; we use a
scheme in which the diffusive linear part of the equations is treated implicitly and
the nonlinear part explicitly. Each time step therefore requires the inversion of four
Helmholtz problems. These are inverted by combining a Schur decomposition on
the elements and diagonalization in z. We take full advantage of the symmetries
of the equations to compute different spatially localized solutions. The computations
employ approximately two spectral elements per critical wavelength λc, each element
being meshed by a 15 × 11 Gauss–Lobatto–Legendre grid. Calculations with this
resolution are well converged even at the highest Rayleigh numbers employed. The
continuation algorithm has been used to study other systems where convectons are
present, including magnetoconvection (Lo Jacono, Bergeon & Knobloch 2011).
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3. Results
In this section, we discuss time-independent solutions of (2.1)–(2.3) with the

boundary conditions (2.5) and PBC in the horizontal, focusing on spatially localized
states. We first consider the so-called subcritical regime and demonstrate the presence
of slanted snaking in this regime. We then proceed to the supercritical regime and
reveal that very similar behaviour occurs in this regime as well. In both cases we
discuss the role played by the Taylor number. Our solutions are computed with V̄ = 0
implicitly enforced by imposing the symmetry R1 or R1 ◦ R2. Each choice results in a
distinct branch of localized solutions.

3.1. Localized states in the subcritical regime

As Ra increases steady convection sets in at Rac independently of the value of the
Prandtl number σ . As the Taylor number increases Rac moves to higher values:
rotation stabilizes the conduction state against convection. For small Taylor numbers
convection is supercritical but becomes subcritical with increasing Taylor number
whenever the Prandtl number is sufficiently small. This is so for both stress-free and
no-slip boundary conditions (Goldstein et al. 1990; Clune & Knobloch 1993). For yet
larger rotation rates the steady onset is preceded by a Hopf bifurcation. In contrast,
when σ > 0.676605 the onset is steady regardless of the Taylor number and convection
is always supercritical (Goldstein et al. 1990).

In this section we describe the results for σ = 0.1 and several different values of T .
Figure 1 shows the average poloidal kinetic energy,

E ≡ 1
2Γ

∫
D
(ψ2

x + ψ2
z ) dx dz, (3.1)

as a function of the Rayleigh number Ra when T = 20. For this value of T convection
sets in at Rac ≈ 1179.2 and it does so with critical wavenumber kc ≈ 3.1554. The
results are obtained in a periodic domain of length Γ = 10λc, where the critical
wavelength λc ≡ 2π/kc depends on the Taylor number and decreases as T increases.
The figure shows the branch of steady periodic convection with 10 wavelengths in
the domain, labelled P10. The branch bifurcates strongly subcritically but turns around
at a saddle-node at Ra ≈ 913. The figure also shows a pair of branches of even and
odd parity localized states, labelled L±10, that bifurcate from P10 at small amplitude
(Ra ≈ 1175, E ≈ 0.004, see figure 4). These branches also bifurcate subcritically.
Initially both solutions take the form of weakly modulated wavetrains, but as Ra
approaches the leftmost saddle-nodes at Ra ≈ 807 the modulation becomes strongly
nonlinear resulting in the formation of well-localized convectons of even and odd
parity (figure 2). Beyond the leftmost saddle-nodes the two branches intertwine
forming a structure that has been called slanted snaking (Firth, Columbo & Scroggie
2007; Dawes 2008). As one follows the two branches in the direction of increasing
energy the convectons gradually increase in length by nucleating new cells at either
end. Because of the slant in the snaking structure the localized states move towards
larger values of the Rayleigh number and their wavelength grows (figure 2). As a
result of this Rayleigh number dependence of the convecton wavelength the domain Γ
becomes almost full when the convectons have grown to 4 wavelengths. At this point
the structure resembles a periodic wavetrain with defects a distance Γ apart and the
snaking stops. The branches now undergo a loop required to squeeze in an extra pair
of cells and terminate on P5 with 5 wavelengths in the domain Γ (figure 1).
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FIGURE 1. Bifurcation diagram showing the average poloidal kinetic energy E as a function
of the Rayleigh number Ra for slanted snaking when T = 20 and σ = 0.1. The branches
of localized states L±10 in a Γ = 10λc domain are shown. They bifurcate in a secondary
bifurcation on the branch P10 of periodic convection with 10 pairs of counter-rotating rolls in
Γ and connect to P5, the branch of 5 pairs of counter-rotating rolls in Γ . The solutions at each
saddle-node during the snaking process are shown in figure 2.

The lower panels figure 2 show the profile of the depth-integrated zonal velocity

V(x)≡
∫ 1

0
v(x, z) dz. (3.2)

We see that the presence of convection imprints a step-like structure on this profile
much as occurs in the corresponding magnetoconvection problem with imposed
vertical magnetic field (Lo Jacono et al. 2011). This structure turns into a saw-tooth
profile by the time the branches terminate on the branch P5 of periodic states. To
understand this behaviour we first note that the symmetry R2 implies that clockwise
and counterclockwise cells have the same effect on V(x); moreover, the symmetry R1

implies that the slope of V(x) is unaffected by reflection in x= 0. In the periodic state
(top solutions) V(x) varies linearly across each convection cell with steeper diffusive
layers of the opposite slope between adjacent cells. These diffusive layers are quite
broad since their dimensional width is Re−1/2h, where Re ≡ Uh/ν is the Reynolds
number; since the flow speed U ∼ κ/h when Ra∼ Rac the dimensionless width ∼σ 1/2.
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FIGURE 2. Solution profiles at successive saddle-nodes on (a) L−10 and (b) L+10 in figure 1.
Upper panels show isovalues of the streamfunction with light (dark) regions corresponding
to clockwise (counterclockwise) flow. Lower panels show the profiles of V(x). Topmost
solutions correspond to the termination point on P5.

The effect of the cellular motion outside these layers is most easily discussed in terms
of the relation

σ
dV

dx
=−

∫ 1

0
ψzv dz, (3.3)

obtained from (2.3) upon integration over z followed by integration once in x. Thus
non-zero values of the averaged Reynolds stress are responsible for the presence of a
linear profile V(x) across the cell.

These ideas extend to the whole convecton itself. Figure 2 shows that each
convecton is accompanied, regardless of parity, by a non-zero shear across it. This
shear can be quantified by

1V ≡ V(x= L/2)− V(x=−L/2), (3.4)

where L is the length of the convecton. The average shear generated by the presence
of the convecton is therefore 1V/L with the cellular structure imprinted on this
background shear. Of course in view of PBC the shear generated by the convecton
must be compensated by equal and opposite shear in the convection-free part of the
domain. The presence of this compensating shear is also seen in figure 2.

In the following we define the convecton length L as the distance between the
global maxima and minima of the zonal velocity V(x) and show in figure 3(a) the
corresponding velocity difference |1V| for the solutions shown in figure 2 and in
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FIGURE 3. Properties of the convectons computed in figure 1. (a) Jump |1V| in zonal
velocity across the convecton and (b) convecton length L relative to the domain period
Γ = 10λc, both as functions of the Rayleigh number Ra. The length L is shown for the slanted
snaking branch between the leftmost and rightmost saddle-nodes only since its determination
requires that the convectons be well localized. Discontinuities (vertical jumps) correspond to
nucleation of new cells.

figure 3(b) the fraction L/Γ of the domain Γ occupied by the convecton, both
as functions of Ra. Both even- and odd-parity convectons have similar lengths
L at corresponding Rayleigh numbers and generate similar values of 1V . The
resulting shear rate V ′(x) ∼ 1V/L reduces the local rotation rate quite substantially.
For example, when T = 20 and σ = 0.1 the maximum value of the quantity
|1V|/σLT ≈ 0.7 occurs at Ra ≈ 810 and represents a 70 % reduction in the local
rotation rate.

3.2. Effect of domain size
Figure 4 shows the effect of varying the domain size Γ and compares the bifurcation
diagrams for Γ = 10λc, 15λc and 20λc, all for T = 20 and σ = 0.1. As Γ increases
the secondary bifurcation on P10 that creates the localized states moves to smaller
and smaller amplitude (figure 4a) while the leftmost saddle-nodes on L± shift towards
lower Rayleigh numbers (Ra ≈ 807 for L±10, Ra ≈ 798 for L±15, Ra ≈ 793 for L±20,
Ra ≈ 787 for L±40). Moreover, beyond the leftmost saddle-node E increases with Ra
at the same rate in all cases. At the same time the number of saddle-nodes on each
branch increases in proportion to Γ . A careful examination of the solution profiles
in each case indicates that the nucleation of new cells can be associated with the
saddle-nodes on the left, with the new cells at full strength by the time one reaches
the next saddle-node on the right. Thus in larger domains new cells are nucleated
faster in such a way that at a fixed value of Ra the convectons fill the same fraction
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FIGURE 4. Bifurcation diagram showing the average poloidal kinetic energy E as a function
of the Rayleigh number Ra for various domain sizes Γ at T = 20 and σ = 0.1. (a) Small-
amplitude behaviour: the branches Pn of periodic convection coincide, but the convecton
branches L±n move to lower amplitude as Γ increases. At these values of Ra the L±n branches
are exponentially close for each n and hence indistinguishable. (b) Comparison between
branches of localized states for Γ = 10λc, 15λc and 20λc. For clarity, the branches for
Γ = 15λc and Γ = 20λc have been displaced to Ra + 50 and Ra + 100, respectively, i.e.
in proportion to Γ .

of the available domain. Figure 4(b) also reveals that the saddle-nodes occur more
frequently for smaller values of Ra than for larger Ra. This is a consequence of the
wavelength change that occurs with increasing Ra: because of this wavelength change
the structure expands with Ra and so fewer nucleation events become necessary to
maintain the growth rate of the structure with increasing Ra. Figure 4(b) suggests that
this growth rate is constant in Ra and Γ -independent. Computation of the wavelength
within the localized structure as a function of Ra shows that the L±20 branches bifurcate
from P20 with wavelength λ ≈ 1.9912; L+20 terminates on P10 with λ ≈ 3.9825 while
L−20 terminates on P9 with λ≈ 4.4250. Most of the required wavelength increase occurs
along the lower convecton branch, prior to the leftmost saddle-node, growing from
λ ≈ 1.9912 at the initial bifurcation point to λ ' 3.6 at the leftmost saddle-node.
Beyond the saddle-node, within the interval of slanted snaking, the wavelength varies
linearly with Ra but the cumulative increase in the wavelength is less than on the
lower branch.

Figure 5(a) shows the total poloidal kinetic energy E ≡ (1/2) ∫D(ψ
2
x + ψ2

z ) dx dz
as a function of Ra for Γ = 20λc and Γ = 40λc. This representation separates the
two branches and demonstrates the presence of the extra saddle-nodes required for
the localized structure to grow at twice the rate for Γ = 40λc as for Γ = 20λc. In
particular, the figure employs vertical lines to indicate the correspondence between



Convectons in a rotating fluid layer 425

120

80

40

0

120

80

40

0
 790  800  820 810

E

(a) (b)

 750  950  1150

 0.3

 0.1

 0.5

 0.7

 0.9

FIGURE 5. (a) The total poloidal kinetic energy E for L±20 (Γ = 20λc) and L±40 (Γ = 40λc)
as a function of the Rayleigh number Ra. The vertical dashed lines indicate the alignment of
the saddle-nodes. Upper curves: even-parity convectons. Lower curves: odd-parity convectons.
(b) The fraction of the domain period Γ occupied by both even- and odd-parity convectons
when Γ = 10λc (black lines) and Γ = 20λc (grey lines).

the right saddle-nodes along the L+20 and L+40 branches and reveals that every second
right saddle-node on L+40 aligns with the corresponding right saddle-node on L+20. The
intervening right saddle-nodes on L+40 align with those of L−20, since L+40 possesses twice
the number of cells as L±20 at the same Rayleigh number, so the 8-roll saddle-node
solution on L+40 aligns with the 4-roll saddle-node solution on L+20 while the 10-roll
saddle-node solution on L+40 aligns with the 5-roll saddle-node solution on L−20 and so
on. Figure 5(b) confirms the conclusion that convectons grow in length at twice the
rate when the domain size is doubled by showing the fraction of the domain period
occupied by even- and odd-parity convectons when Γ = 10λc and when Γ = 20λc.

3.3. Effect of rotation rate
When rotation is absent the problem reduces to Rayleigh–Bénard convection which is
supercritical and free from localized structures. In figure 6 we show how this picture
changes as the Taylor number increases. Each panel in the figure is computed for the
same Prandtl number σ = 0.1 and Γ = 10λc as used for figure 1 for T = 20. Since the
critical wavelength λc decreases with increasing T this choice implies that the aspect
ratio used also decreases with T . Since motion relieves the stabilizing constraints
of rotation convection quickly becomes subcritical as T increases. Figure 6 shows
that this is already so for T = 10 and reveals that at this rotation rate the leftmost
saddle-nodes of both the periodic states and the localized states are close together.
Since the latter lies below the saddle-node of the periodic state some localized states
already fall outside the region of bistability between the periodic and conduction states.
As T increases both saddle-nodes move towards larger Ra but the saddle-node of the
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FIGURE 6. Bifurcation diagrams E (Ra) displaying the branches L±10 of localized states
together with the P10 branch from which they bifurcate, all for σ = 0.1 and Γ = 10λc.
The periodic branch(es) on which the L±10 terminate is (are) not shown in their entirety (see
table 1). (a) T = 10; (b) T = 40; and (c) T = 80. Figure 1 shows the case T = 20.

T 10 20 40 80

λc 2.423 1.991 1.552 1.198
Rac 826 1179 2068 4195
Left saddle-node of P10 737 913 1418 2721
Left edge of snaking 723 806 964 1258
Right edge of snaking 778 1025 1675 3013
Connects to P7 P5 P4 (L−10) and P3 (L+10) P3 (L−10) and P2 (L+10)
with wavelength 3.64 3.98 3.88 (L−10) and 5.17 (L+10) 3.99 (L−10) and 5.99 (L+10)

TABLE 1. Characteristics of slanted snaking for σ = 0.1, Γ = 10λc and different
values of T .

periodic states does so much faster, thereby opening an increasingly wide Rayleigh
number interval in which localized states fall outside the bistability region. This is
a consequence of the higher rotation rate which stabilizes the conduction state and
pushes Rac higher. This stabilizing effect is present at finite amplitude as well but is
reduced for the localized states from that prevailing for the periodic states by the shear
1V/L that accompanies their presence. As a result the full Rayleigh number interval
in which localized states are present also grows rapidly with the rotation rate (figure 6
and table 1). The right edge of this interval is determined by the rightmost saddle-node
but in all cases studied this point is not far from the saddle-node on the branch
of periodic states on which the convectons terminate. This is a consequence of the
strong Rayleigh number dependence of the wavelength within the convectons which
prevents their termination until periodic states of the right wavelength are present.
Of course, in cases in which the convecton wavelength is strongly incommensurate
with the domain period the wavelength at termination may differ substantially from
the preferred wavelength, as discussed in detail by Bergeon et al. (2008). This is the
case, for example, for T = 40 and T = 80 in figure 6(b,c) for which the L±10 branches
terminate on different periodic branches (see table 1).
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FIGURE 7. (a) Bifurcation diagram showing the average poloidal kinetic energy E as a
function of the Rayleigh number Ra for the periodic states P10, P7 and for the branches L±10
of spatially localized states. (b) The local reduction in the rotation rate within the localized
structures as measured by the quantity |1V|/σLT between the leftmost and rightmost saddle-
nodes on both slanted snaking branches, where L is the convecton length. The parameters are
T = 40, σ = 0.6 and Γ = 10λc.

Figure 6 also reveals that as T decreases from larger values the amplitude of the
oscillations of L± about the overall slope gradually decreases and the saddle-nodes that
are so characteristic of the snaking region are progressively eliminated. In particular, in
the case shown in figure 6(a) the convectons grow in length by adding new cells on
either side while the solution branch remains monotonic in Ra. The resulting smooth
snaking (Dawes & Lilley 2010; Lo Jacono et al. 2011) can also be attributed to the
presence of the conserved quantity V̄ .

3.4. Localized states in the supercritical regime
As σ is increased, the primary branch of periodic states becomes less and less
subcritical and a transition occurs towards supercriticality. Figure 7(a) presents the
bifurcation diagram for σ = 0.6 and T = 40 in a domain Γ = 10λc where, at this
Taylor number, the critical wavenumber kc ≈ 4.0481. For these parameter values the
primary solution branch bifurcates supercritically at Ra = Rac ≈ 2068. This branch
loses stability almost immediately, at Ra ≈ 2073, creating a pair of branches of
spatially modulated states. These states behave in exactly the same way as in the
subcritical case: as one follows the resulting L±10 towards smaller Rayleigh numbers
the modulation strengthens and generates, by the time one reaches the leftmost saddle-
nodes, isolated convectons of even and odd parity. Beyond this point the L±10 branches
intertwine resulting in smooth snaking without any additional saddle-nodes until the
rightmost saddle-nodes marking the right edge of the existence region for convectons
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FIGURE 8. Same as figure 2 but for the localized solutions along (a) L−10 and (b) L+10 in
figure 7(a).

(Dawes & Lilley 2010). In the present case both L±10 branches terminate together on
the P7 branch at Ra ≈ 2391. Figure 8 shows the solutions along these branches using
the same representation as used in figure 2. The solutions are qualitatively similar
to those in figure 2 except for broader diffusive layers between adjacent cells owing
to the larger Prandtl number. As a result the saw-tooth structure of V(x) in the
periodic state is less marked. However, the localized states are still accompanied by
strong negative shear within the structure (figure 7b) that serves to reduce the local
rotation rate, with a compensating prograde shear zone outside. Thus the convectons
are embedded in a self-generated shear zone exactly as in the subcritical case.
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FIGURE 9. Bifurcation diagrams representing the average poloidal kinetic energy E as a
function of the Rayleigh number Ra for the L±10 branches for different Taylor numbers T when
σ = 0.6 and Γ = 10λc. In all cases these branches bifurcate from P10 (not shown). The L±10
branches are indistinguishable for T > 70.

In figure 9 we show the evolution of the L±10 branch as T is varied from
T = 20 to T = 110, while keeping σ = 0.6 and Γ = 10λc. We emphasize again
that λc depends on the value of T used. In all cases the primary periodic branch
bifurcates supercritically. We see that for small T the extent of the subcriticality of the
secondary branches is relatively narrow while the maximum energy along the branch
remains relatively small. With increasing T the branch of localized states moves
to larger values of Ra (along with the primary bifurcation). At the same time the
branch becomes more subcritical and the maximum energy attained increases rapidly.
Simultaneously the small-amplitude oscillations superposed on the general tilt of the
branch become more and more noticeable although the snaking remains smooth. The
number of these oscillations decreases with increasing T owing to two properties of
the solutions: the Rayleigh number range for the presence of convectons increases
with T and the wavelength within the convectons increases with Ra. As a result fewer
and fewer cells can be added before the domain is filled and the L±10 branches must
terminate. For example, L+10 terminates on P8 when T = 20 and on P7 when T = 30
and T = 40. This fact is responsible for the observation that maximum energy is
attained for T ≈ 40 after which the energy begins to drop off. The extent in Rayleigh
number within which convectons are present is likewise widest for T ≈ 40 and starts
to decrease for larger T while the extent of the subcriticality of the L±10 branches
decreases at the same time, and essentially disappears by T = 100. Figure 10 shows
the existence region of convectons in the (Ra,T) plane when σ = 0.6 and Γ = 10λc.
The figure confirms that the range of Ra for which such states are present is broadest
when T ≈ 40 and that it shrinks to zero at both small and large T . For example, we
have found no secondary bifurcations from the periodic state at T = 5 and T = 120.
The localization of the lowest Rayleigh number convectons is likewise strongest at
T ≈ 40 (figure 11).

Figure 9 reveals another interesting aspect of this evolution. Until T = 50 the slope
dE /d(Ra) is approximately constant and independent of T . This is so beyond T = 60
as well, although the slope now takes a significantly lower value. In the former regime
the localized structures grow via nucleation of new cells, behaviour that is associated
with snaking. In contrast, beyond T = 60 snaking is absent, suggesting that convectons



430 C. Beaume, A. Bergeon, H.-C. Kao and E. Knobloch

T

125

105

85

65

45

25

5
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

FIGURE 10. The existence region (shaded) of convectons in the (Ra,T) plane when σ = 0.6.
The vertical line at Ra = Rac represents the onset of spatially periodic convection. The
existence region is delimited either by saddle-node bifurcations on the convecton branches,
or by bifurcations to modulated states if no such saddle-nodes exist.

no longer grow via nucleation. Moreover, the solution branches in this regime always
terminate on P10. Figure 9 suggests that the transition between these two regimes takes
place at approximately T = 60.

In an attempt to understand the origin of this change in behaviour we plot in
figures 12 and 13 the profiles along the branches of even-parity convectons for T = 50
and T = 100. While the convectons are in both cases well localized near the left
saddle-nodes (albeit less so when T is larger) the figures reveal a significant change
in the wavelength of the cells comprising them. In figure 12 the cells are initially
broad and remain so until maximum energy is reached; thereafter the wavelength
decreases rapidly and the branch terminates on P10. In contrast, the wavelength
of the cells when T = 100 (figure 13) hardly changes as E increases from small
values to large, and this is so already when Ta = 70. At the same time the dimples
representing nucleation events in figure 12 shrink and the convecton branches become
indistinguishable. A similar transition was recently observed in magnetoconvection
with an imposed vertical magnetic field (Lo Jacono et al. 2011; Lo Jacono, Bergeon
& Knobloch 2012). We surmise that the sudden change in slope of the slanted snaking
that takes place around T = 60 is related to this change in cell wavelength and
note, in particular, that broader cells are more efficient at transporting heat since
in narrower cells such as those favoured at larger rotation rates the rising plumes
exchange more heat with falling plumes, thereby reducing their efficiency and hence
the associated Nusselt number. Thus for T . 50 the length scale of convection is
selected primarily by thermal effects, while for T & 70 the length scale is selected
primarily by a competition between the tendency towards a Taylor–Proudman balance
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FIGURE 11. Localized solutions at the leftmost saddle-node for T increasing from 10 to 90 in
steps of 10 when σ = 0.6 and Γ = 10λc. The same isovalues of the streamfunction are used in
all panels. The localization is strongest when T ≈ 40.

and the requirement that the flow transport heat at the level specified by the Rayleigh
number. In the former regime localization is strong and nucleation of new cells occurs
at well-defined Rayleigh numbers. In contrast, the latter regime is characterized by
weak localization while new cells grow gradually over a range of Rayleigh numbers.
Of course, for T . 10 localization is also weak but this is a consequence of the slow
rotation rate.

Figures 2 and 8 also reveal a systematic trend that merits explanation: the convecton
cells are always broader than the corresponding cells in the periodic state. We believe
that this is a reflection of the shear V ′ across the convecton. If we suppose that this
shear is smoothed out and is a linear function of x, i.e. V(x) = sx, where s < 0 (see
e.g. figure 2) we may include this shear in the base state and study the stability of the
state (ψ, θ, v)= (0, 0, sx) instead of the state (ψ, θ, v)= (0, 0, 0). The stability of this
state is described by the relations given in § 4 with T2 replaced by T(T + σ−1s). It
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FIGURE 13. As for figure 12 but for T = 100.

follows that negative shear (s< 0) decreases both the critical Rayleigh number Rac and
the associated critical wavenumber kc relative to the case s = 0. However, this linear
effect is quickly overwhelmed by the nonlinear wavelength change that takes place
with increasing amplitude. We return to this question in the next section.
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4. Theoretical understanding of the bifurcation to convectons
Linear stability analysis predicts that the conduction state ψ = θ = v = 0 loses

stability with respect to stationary perturbations with wavenumber k when Ra reaches

Ra(k)= p3+π2T2

k2
, p≡ k2+π2. (4.1)

The critical value Rac is defined as the minimum of Ra(k) for a stationary bifurcation
to occur, implying that (Veronis 1959)

Rac = 3p2
c, p2

c(2k2
c−π2)= T2π

2
, (4.2)

where pc ≡ k2
c+π2, and kc = kc(T) is the critical wavenumber satisfying the second of

the above relations. In the following we omit the subscript on kc and pc but retain the
subscript on Rac ≡ Rac(T).

To compute the resulting solutions in the weakly nonlinear regime we suppose that
Ra= Rac + ε2r, where r = O(1), ε� 1, and introduce a large spatial scale X = εx and
a slow time scale T2 = ε2t. We follow Cox & Matthews (2001) and look for solutions
in the form

ψ = ε
2

(
a(X,T2)eikx + c.c.

)
sin(πz)+ h.o.t., (4.3)

θ = εk

2p

(
ia(X,T2)eikx + c.c.

)
sin(πz)+ h.o.t., (4.4)

v = εV(X,T2)+ εTπ

2p

(
a(X,T2)eikx + c.c.

)
cos(πz)+ h.o.t. (4.5)

The large-scale zonal velocity V is necessary to capture the shear that builds up across
a convecton and enters at O(ε); its inclusion is a consequence of the phase-like quality
of the variable v, i.e. the invariance of (2.1)–(2.3) with the boundary conditions (2.5)
with respect to v→ v+c, where c is a constant. At third-order we obtain the equations
(Cox & Matthews 2001)

p(3k2σ − k2 + 2π2)

σk2
aT2 = ra+ 12paXX − 3pk2

8
(1− ξ 2) |a|2 a− Tπ2

σk2
aVX, (4.6)

VT2 = σVXX + Tπ2

4p
(|a|2)X, (4.7)

where ξ ≡ Tπ2/
√

3pk2σ . This set of equations can be further simplified by rescaling
the variables (a→ 2A/

√
3pk, V→ 2V/

√
p, X→√12pX, T2→ 12pT2/σ ), leading to

ηAT2 = rA+ AXX − 1− ξ 2

2
|A|2 A− ξAVX, (4.8)

VT2 = VXX + ξ (|A|2)X, (4.9)

where η ≡ (3k2σ − k2 + 2π2)/12k2. The quantity η vanishes at the Takens–Bogdanov
point RaH = Rac where RaH is the critical Rayleigh number for the onset of a Hopf
mode with the same wavenumber k. In the present work we are interested in the case
in which the conduction state loses stability at a steady-state bifurcation, i.e. a Hopf
bifurcation is absent. In this case η > 0.
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Equations (4.8) and (4.9) can also be written in the form

AT2 =−η−1 δF

δA∗
, VT2 =−

δF

δV
, (4.10)

where F is defined as

F[A,A∗,V] =
∫
Γ ′

{
−r |A|2+ |AX|2+1

2
VX

2 + 1− ξ 2

4
|A|4+ξ |A|2 VX

}
dX. (4.11)

Here Γ ′ is the period Γ on the scale X. The functional F[A,A∗,V] is bounded from
below when ξ 2 < 1/3. It follows that in this case the system (4.6)–(4.7) has variational
dynamics provided only that η > 0. This is not necessarily the case for the original
system (2.1)–(2.3).

In the stationary case with PBC on the large spatial scale X (4.9) implies that

VX = ξ
(〈|A|2〉 − |A|2) , (4.12)

where 〈·〉 represents a spatial average over the domain. Thus VX > 0 if |A|2 < 〈|A|2〉,
i.e. outside the convecton, while VX < 0 if |A|2 > 〈|A|2〉, i.e. inside the convecton,
exactly as found in figures 2 and 8. Moreover, using (4.12) to eliminate VX from (4.8)
we obtain the non-local equation (Cox & Matthews 2001)

rA+ AXX − 1
2(1− 3ξ 2) |A|2 A− ξ 2〈|A|2〉A= 0. (4.13)

Let A = ρeiφ with ρ, φ ∈ R and ρ > 0. If ρ is independent of X, i.e. the solution
is periodic, then 〈|A|2〉 = ρ2 = 2(r − q2)/(1 − ξ 2), where q ≡ φX , and the solution is
supercritical when ξ 2 − 1 < 0 and subcritical when ξ 2 − 1 > 0, as determined already
by Veronis (1959). The point ξ 2 = 1, sometimes called the tricritical point, occurs at

Tc =
√

3σπ2
(

2±√1− 3σ 2
)

(
1±√1− 3σ 2

)2 ≡ Tper
± . (4.14)

This relation implies that, provided σ < 1/
√

3, the bifurcation to periodic convection
is supercritical for T < Tper

+ , becomes subcritical for Tper
+ < T < Tper

− and then changes
back to supercritical for T > Tper

− , cf. Goldstein et al. (1990); the bifurcation is always
supercritical when σ > 1/

√
3. Equation (4.12) shows that the inclusion of amplitude

modulation on the scale X = O(1) alters this picture dramatically. In particular, the
codimension-two point for modulated wavetrains occurs at a different location, as
determined next. This shift is a consequence of the nonlinear interaction between the
unstable mode and the marginally stable long-wave mode V .

Non-local equations of the form (4.13) have been studied before (Hall 1984;
Elmer 1988; Norbury, Wei & Winter 2002; Vega 2005; Norbury, Wei & Winter
2007). We summarize first the stability properties of the periodic solution A = ρeiqX ,
V = 0, corresponding to a wavetrain (ψ, θ, v) with wavenumber k + εq. We write
A = ρeiqX(1 + Ã), where |Ã| � 1, and let V be the associated zonal velocity
perturbation. The linearized equations are

ηÃT2 = ÃXX + 2iqÃX − (1− ξ 2)ρ2Re[Ã] − ξVX, (4.15)

VT2 = VXX + 2ξρ2Re [Ã]X . (4.16)
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FIGURE 14. Regions of super- and subcriticality for primary–secondary branches in the
(σ,T) plane on (a) linear and (b) logarithmic scales. (c) Sketches of the bifurcation diagrams
characteristic of each of the four regions i–iv shown in (a,b). The curves ξ 2 = 1 and ξ 2 = 1/3
were computed by Cox & Matthews (2001).

The characteristic polynomial for the growth rate λ of a Fourier mode with
wavenumber l is (Cox & Matthews 2001)

η2λ3 + ηλ2[(1− ξ 2)ρ2 + (2+ η)l2] + λl2[(1− ξ 2)ρ2 + η(1− 3ξ 2)ρ2 − 4q2]
+ λl4(1+ 2η)+ l4[l2 − 4q2 + (1− 3ξ 2)ρ2] = 0. (4.17)

Thus when |l| � 1 there is a pure amplitude mode with O(1) eigenvalue λ ≈
(ξ 2 − 1)ρ2/η + O(l2) reflecting the supercriticality or subcriticality of the periodic
state and two O(l2) eigenvalues satisfying

ηρ2(1− ξ 2)λ2 + [ηρ2(1− 3ξ 2)+ ρ2(1− ξ 2)− 4q2]l2λ+ [ρ2(1− 3ξ 2)− 4q2]l4 ≈ 0.
(4.18)

It follows that when q = 0 there are two long-wave modes, λ = −l2/η and
λ = ((3ξ 2 − 1)/(1 − ξ 2))l2. Thus when η < 0 (RaH < Rac) the periodic state at band
centre is necessarily unstable. On the other hand when η > 0 (no primary Hopf
bifurcation) there is a long-wave instability when 1/3 < ξ 2 < 1 but no long-wave
instability when ξ 2 < 1/3. Thus the q = 0 mode becomes unstable as ξ 2 decreases
through ξ 2 = 1/3, i.e. as the rotation increases or decreases (see figure 14). The
resulting instability generates an amplitude modulated wavetrain. When ξ 2 > 1 the
periodic state is subcritical and therefore also unstable. Finally, when q 6= 0 the two
long-wave modes become coupled but no secondary Hopf bifurcation is possible
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when η > 0. These results apply to infinite domains; in finite domains they require
modification as discussed further below (Norbury et al. 2007).

The spatial dynamics of (4.13) take the form of a complex Duffing equation which
is integrable with two conserved quantities:

K1 ≡ ρ2φX, K2 ≡ 1
2 (ρX)

2+U[ρ], (4.19)

where

U[ρ] ≡ 1
2

r′ρ2 + K2
1

2ρ2
− 1

8
(1− 3ξ 2)ρ4. (4.20)

Here r′ ≡ r − ξ 2〈ρ2〉, implying that the bifurcation parameter r is increasingly modified
as the convection amplitude ρ grows. In a periodic domain with period Γ ′ PBC and
the integral constraint imply

Γ ′

2n
=
∫ ρmax

ρmin

dρ√
2(K2 − U)

,
〈ρ2〉Γ ′

2n
=
∫ ρmax

ρmin

ρ2 dρ√
2(K2 − U)

, (4.21)

where n ∈ N is the number of full periods of amplitude modulation within Γ ′, and
ρmin (ρmax) corresponds to the minimum (maximum) of ρ during amplitude modulation.
The total change of phase across the domain (including the contribution from the
fast oscillation with wavenumber k) must be an integer multiple of 2π implying that∫ Γ ′

0 φX dX must also be a constant unless a phase jump occurs. The wavenumber
q ≡ φX is a constant along the branch of periodic states. Secondary branching occurs
when ρ attains a local minimum of U. To fit PBC, Uρρ must be equal to 4π2n2/Γ ′2

which occurs at r = rn where

rn ≡ 2π2n2

Γ ′2
1− ξ 2

3ξ 2 − 1
+ 5ξ 2 − 3

3ξ 2 − 1
q2 (4.22)

in both super- and subcritical cases. When q is small, a secondary bifurcation
is only possible when ξ 2 > 1/3. The branching direction at these points was
calculated by Elmer (1988), who shows that when q = 0, the secondary bifurcation
is supercritical when ξ 2 < 3/7 and subcritical when ξ 2 > 3/7 (see the Appendix for
an alternative derivation of this result). In summary, there are four possible scenarios
for the primary–secondary bifurcations with PBC: (i) both bifurcations are subcritical
(ξ 2 > 1); (ii) the primary bifurcation is supercritical while the secondary bifurcation
is subcritical (3/7 < ξ 2 < 1); (iii) both bifurcations are supercritical (1/3 < ξ 2 < 3/7);
and (iv) the primary bifurcation is supercritical but no secondary bifurcation is present
(ξ 2 < 1/3). Figure 14 shows the regions of super- and subcriticality in the (σ,T) plane,
while figure 15 shows sample bifurcation diagrams computed from (4.13) for (some
of) the Taylor numbers used in figure 9 using the numerical continuation software
AUTO (Doedel et al. 2008). Owing to translation symmetry (A→ Aeiφ0) and spatial
reversibility (A→ A∗, X→−X), we perform continuation on the half-domain using
Neumann boundary conditions (NBC), i.e.

Re[AX] = Im[A] = 0 (4.23)

at the boundaries. The average poloidal kinetic energy E to O(ε4) takes the form

E = 1
8ε

2p〈|a|2〉 + 1
8 iε3k〈aa∗X − a∗aX〉 + 1

8ε
4〈|aX|2〉, (4.24)

where the amplitude a is defined in (4.3). We use this expression to draw bifurcation
diagrams E (Ra) for σ = 0.6. For this purpose we define ε using the ratio of the
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FIGURE 15. Bifurcation diagrams showing stationary solutions of (4.13) with φX = 0
satisfying NBC for σ = 0.6 and Γ = 10λc. Thick solid lines: primary state (periodic
convection). Thin solid lines: modulated states (convectons). (a) T = 50 (ξ 2 = 0.7032, region
ii). (b) T = 70 (ξ 2 = 0.5882, region ii). (c) T = 120 (ξ 2 = 0.4269, region ii). (d) T = 140
(ξ 2 = 0.3877, region iii). The periodic state is stable up to the secondary bifurcation; in
(d) the modulated state is stable up to the saddle-node.

small and large scales, ε ≡ λc/Γ = 0.1. We then solve (4.13) in the domain Γ ′ = 2π/k
varying the parameter r. Owing to the relatively small domain (large value of ε) the
calculation requires quite large values of r in order to locate the secondary states. The
resulting energy E is therefore also large. Of course, as r and hence E increase the
amplitude equation (4.13) becomes less reliable, and comparison with the results of § 3
shows that in the full problem the convecton branch always turns towards larger values
of Ra as E increases, in contrast to the predictions summarized below.

Figure 15 shows that for σ = 0.6 the convecton branch bifurcates supercritically
from the periodic states once T > 119.2579 (i.e. ξ 2 < 3/7), in reasonable agreement
with figure 9. The bifurcation to convectons is also supercritical when T < 6.1108
since for these values ξ 2 < 3/7 also. As ξ 2 decreases towards ξ 2 = 1/3 the secondary
bifurcation moves to larger and larger amplitude and for ξ 2 < 1/3 the secondary
bifurcation to convectons is absent. Of course before this happens (4.13) loses validity,
a fact that may account for the discrepancy between figure 15(d) and the phase
diagram in figure 10; in particular, a different scaling is required to understand the
disappearance of the convecton branch (see § 5).

We define the length L of a convecton as the interval where |A|2 > 〈|A|2〉. This
interval can be calculated explicitly by solving the non-local equation (4.13) in terms
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of elliptic functions. The explicit form of the n= 1 solution is

ρ2/ρ2
+ = 1− ζ 2sn2

[
1
2

√
ρ2+(3ξ 2 − 1)X; ζ

]
, (4.25)

where

Γ ′ = 4K(ζ )√
ρ2+(3ξ 2 − 1)

, 〈ρ2〉 = E(ζ )

K(ζ )
ρ2
+. (4.26)

The ratio L/Γ ′ is thus equal to F(ζ−1
√

1− E(ζ )/K(ζ ), ζ )/K(ζ ). Here ζ ≡√
1− ρ2−/ρ2+, ρ± are the positive roots of U[ρ] = K2 with ρ− < ρ+, F is the

incomplete elliptic integral of the first kind, and K and E are the complete elliptic
integrals of the first and second kind. There are two limiting regimes which yield
simple predictions for the parameter dependence of L. In the case of weak spatial
modulation, K2 is only slightly greater than the local minimum of U and we have

L

Γ ′
= 1

2
− Γ ′

2π2

√
(3ξ 2 − 1)(r − r1)

3− 7ξ 2
+ O(|r − r1|). (4.27)

In the strongly modulated case with large domain size (Γ ′
√−r′ � 1), the solutions

with φX = 0 can be approximated by the sech function (Matthews & Cox 2000; Cox &
Matthews 2001),

ρ =
√
−4r′

3ξ 2 − 1
sech

(√−r′X
)
, (4.28)

where

r′ =−r̃

(
1±

√
1− r

r̃

)2

, r < r̃ ≡ 16ξ 4

Γ ′2 (3ξ 2 − 1)2
;

the + solution exists for all r < r̃ while the − solution exists for 0 < r < r̃ only. The
resulting solutions are homoclinic to ρ = 0 and so represent fully localized convectons.
It should be noted that due to finite domain size, 〈ρ2〉 is non-zero. The length of such
a convecton is thus

L

Γ ′
≈ log(2Γ ′

√−r′)

Γ ′
√−r′

. (4.29)

See Proctor (2001) and Cox (2004) for related results.
The stability of the solutions (4.25) on a finite domain was studied rigorously by

Norbury et al. (2007) in the case η > 0. In conjunction with the Appendix these results
confirm that for 1/3 < ξ 2 < 3/7 the secondary branch is supercritical and stable in
the interval between the bifurcation point and a saddle-node on the right and unstable
thereafter. For ξ 2 > 3/7 the secondary branch is subcritical and unstable throughout
(figure 15).

We can use the above results to calculate the local shear at the maximum of the
amplitude modulation. For the n= 1 secondary branch we obtain

s=− 8Tπ3

3p2k2σΓ

√
Ra− Ra1

(3ξ 2 − 1)(3− 7ξ 2)
+ O(|Ra− Ra1|), (4.30)
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Ra= 2572.6. (iv) Ra= 2571.6. Note that the spatial frequency of V(x) is double that of ψ(x).

where Ra= Ra1 denotes the location of the secondary bifurcation. To obtain this result
we include a non-zero constant of integration in (3.3), as required by PBC, and choose
this constant to cancel the mean Reynolds stress associated with periodic wavetrains.
With this shear the critical wavenumber k̃c for instability of the sheared base state
(ψ, θ, v)= (0, 0, sx) differs from kc in (4.2) by

k̃c − kc ≈ Tπ2s

12pk3σ
=− 2T2π

5

9p3k5σ 2Γ

√
Ra− Ra1

(3ξ 2 − 1)(3− 7ξ 2)
+ O(|Ra− Ra1|), (4.31)

showing that the wavelength of the instability of the sheared state will be larger
than that of the unsheared state (ψ, θ, v) = (0, 0, 0). Numerical measurements of
the convecton wavelength near onset (not shown) are consistent with the predicted
square-root behaviour.

Figure 16(a,b) shows the profiles of the resulting convectons for ξ 2 > 1 (the
subcritical case) and figure 16(c,d) for ξ 2 < 1 (the supercritical case). The results
are in excellent qualitative agreement with the continuation results in figures 2 and 8.

5. The transition at ξ 2 = 1/3
The calculation in the preceding section shows that periodic wavetrains are

supercritical for ξ 2 < 1 while spatially modulated wavetrains are present when
ξ 2 > 1/3. Near these critical parameter values the amplitude equation (4.13) breaks
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FIGURE 17. The coefficients (a) a1 and (b) a2 as functions of σ . Solid line: T = Tmod
+ .

Dashed line: T = Tmod
− .

down and the derivation must be extended to higher order. We focus here on the
latter and more interesting case. To derive the corresponding amplitude equation we
introduce a slow spatial variable X ≡ ε2x, where ε� 1, and write

ψ ∼
∞∑

n=1

εnψn(x,X, z), θ ∼
∞∑

n=1

εnθn(x,X, z), v ∼ v0(X)+
∞∑

n=1

εnvn(x,X, z). (5.1)

In contrast to § 4 the leading-order term in the zonal velocity is now of order one. The
parameters Ra and T are expanded as Ra= Rac + ε2r2 + ε4r4 and T = Tc + ε2δ, where
Rac is the critical Rayleigh number for the onset of stationary convection and Tc is the
critical Taylor number determined by ξ 2 = 1/3. Thus

Tc = Tmod
± ≡

σπ2(2±√1− σ 2)

(1±√1− σ 2)
2 (5.2)

and secondary bifurcations to modulated wavetrains occur in the interval Tmod
+ < T <

Tmod
− (ξ 2 > 1/3) provided that σ 6 1.
The expansion procedure leads to a non-local fifth-order stationary

Ginzburg–Landau equation of the form (see supplementary material available at http://
dx.doi.org/10.1017/jfm.2012.585 for this paper)

µA+ AXX + i(γAX + a1 |A|2 AX + a2A2A∗X)+ b |A|2 A− |A|4 A= 0, (5.3)

where

µ= µ0 + µ1〈|A|2〉 + µ2〈|A|4〉 + µ3Im[〈AA∗X〉] + µ4〈|A|2〉2, (5.4)

γ = γ0 + γ1〈|A|2〉, b= b0 + b1〈|A|2〉. (5.5)

Here A(X) is a suitably scaled amplitude of the leading-order mode ψ1. This equation
generalizes (4.13) and applies whenever the coefficient of |A|4 A can be scaled to
−1. This is always the case when Tc = Tmod

+ but when Tc = Tmod
− the Prandtl number

is restricted to the range 0.59796 . σ < 1. These results and the coefficients µ0, . . .

are readily deduced from the expressions provided in the supplementary material.
Figure 17 shows the coefficients a1 and a2 as functions of σ .
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An equation of the form (5.3) has been written down before (Elmer 1992; Riecke
1999) but its properties have not been studied except in one special case (Wei &
Winter 2004). In contrast, the local version of the equation is well studied (Eckhaus &
Iooss 1989; Kao & Knobloch 2012). We describe here the solutions of (5.3) for the
parameter values used in § 3 and compare the results with the computed solutions of
(2.1)–(2.3) with the boundary conditions (2.5).

We begin by observing that (5.3) with the non-local terms (5.5) is integrable just
like (4.13), with the conserved quantities

K1 = ρ2φX + 1
2γρ

2 + 1
4(a1 + a2)ρ

4, K2 = 1
2 (ρX)

2+U[ρ], (5.6)

where

U[ρ] = K2
1

2ρ2
+
[
µ+ γ

2

4
+ (3a2 − a1)K1

2

]
ρ2

2
+
[

b− γ (a2 − a1)

2

]
ρ4

4

−
[

1+ (a1 + a2)(5a2 − 3a1)

16

]
ρ6

6
.

For stationary solutions with AX = 0, the amplitude ρ can be written as

ρ2 = ρ2
± ≡

µ1 + b0 ±
√
(µ1 + b0)

2+4µ0(1− b1 − µ2 − µ4)

2(1− b1 − µ2 − µ4)
. (5.7)

The parameter values must lie in a range such that ρ± > 0 is well defined. Secondary
branching points depend on the sign of Uρρ at the stationary point Uρ = 0 (Kao &
Knobloch 2012). When AX = 0 we have

Uρρ = γ 2
0 + 2[b0 + γ0(a1 + γ1)]ρ2 + [(γ1 + a1)

2+2b1 − a2
2 − 4]ρ4. (5.8)

Owing to the presence of γ0 the first bifurcating branch in a domain with finite period
may correspond to n > 1, where n is the number of wavelengths in the domain. The
number of secondary branches is determined by the coefficient of ρ4 in (5.8), and is
finite when (γ1 + a1)

2+2b1 < 4 + a2
2, a condition that is always satisfied in the case

considered.
We compare here the predictions from the above equations, computed as in § 4, with

the bifurcation behaviour seen in the original problem. To distinguish the different
branches we have found it useful to plot the average three-dimensional kinetic
energy, E ′ ≡ (1/2Γ ) ∫D |u|2 dx dz as a function of Ra instead of E , since in the
latter representation all branches fall essentially on top of one another. Here

E ′ = 1
2 〈v2

0〉 + 3
8ε

2k2〈|a|2〉 + O(ε4), (5.9)

where a is again defined as in (4.3). The bifurcation diagrams that result are shown
in figure 18 for σ = 0.6, Γ = 50λc and several different Taylor numbers near
Tmod
+ ≈ 5.1176. The figure shows that there are two types of secondary branch and that

both are strongly supercritical. Those represented in grey (red online) correspond to
the convecton states studied in the full problem: the secondary bifurcations producing
these states move towards small amplitude as the domain period Γ ′ increases, in
agreement with the theory presented in § 4. However, as shown in figure 18(a), there is
a second type of secondary state as well, represented by a dashed line. The presence
of these states is a finite size effect: the secondary bifurcations producing these states
move towards larger amplitude as Γ ′ increases. We refer to the latter as n = 1 defect
states by analogy with other problems of this type (Bergeon et al. 2008); we have not
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FIGURE 18. (Colour online) Bifurcation diagrams showing the average kinetic energy E ′
of the solutions of (5.3) satisfying NBC as a function of Ra for σ = 0.6 (Tmod

+ = 5.1176),
T ∼ Tmod

+ and Γ = 50λc. Solid black lines: φX = 0 primary state (periodic convection).
Grey curves (red online): convectons. Dashed curve in: (a) modulated states called defect
states; and (d) φX = 2π/Γ primary state. (a) T = 4.4176. (b) T = 5.2176. (c) T = 5.5676.
(d) T = 5.6676.

computed states of this type in the full problem. Secondary branches of n = 2, 3 . . .
defect states may appear with further decrease of T . However, figure 18(b) shows that
no secondary branches of either type are present when T is close to but below Tmod

+ ,
as expected from the analysis in § 4. When we increase the Taylor number above
Tmod
+ , an n = 1 secondary branch bifurcates from the primary φX = 0 branch at small

but non-zero amplitude and reconnects to it at a subsequent secondary bifurcation
(grey (red online) line in figure 18c). This is the convecton branch. For larger Taylor
numbers, the left end of the convecton branch moves down to smaller amplitude and
undergoes a phase jump to a φX 6= 0 primary branch (figure 18d) while the right end
remains on the φX = 0 primary branch and moves up to larger amplitude. Figure 19
shows sample profiles of the amplitude |A| along both branch types. These results
may be compared with figure 13. We emphasize that the termination of the convecton
branches cannot be determined within the cubic amplitude equation (4.13); for this
purpose the non-local equation (5.3) is required.

It remains to mention that for T = Tmod
− and 0 < σ . 0.59796 the coefficient of

|A|4 A is positive and a fifth-order calculation cannot capture the complete details of
the transition whereby convectons disappear as T increases.
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6. Conclusion
In this paper we have computed strongly nonlinear solutions of the equations

describing two-dimensional convection in a horizontal layer rotating with constant
angular velocity about the vertical axis. The localized solutions were computed
on spatially periodic domains with a period that is large compared to the critical
wavelength of convection, and are present regardless of whether the primary branch
of periodic states is sub- or supercritical, provided only that ξ 2 > 1/3. The localized
structures are embedded in a self-generated zonal shear layer with a compensating
shear profile outside the structure. The shear rate V ′ < 0 inside the convecton while
V ′ > 0 outside, implying that the convecton locally reduces the angular velocity by
expelling angular momentum; this angular momentum increases the angular velocity
outside the convecton and creates a shear layer. Similar symbiotic coexistence between
anticyclonic shear and localized vortex structures is familiar from other rotating fluid
systems (Marshall & Schott 1999; Marcus, Kundu & Lee 2000; Evonuk & Glatzmaier
2007; Petersen, Julien & Stewart 2007).

In the present case the localized structures are present only for low Prandtl
numbers (σ < 1) and moderate Taylor numbers. At small rotation rates the shear
that accompanies a putative convecton is insufficient to localize it, while rotation
rates that are too high suppress the amplitude of the convection and thereby the
angular momentum expulsion that is required to confine the structure. However, when
convectons are possible they are present over a substantial range of Rayleigh numbers
(figure 10) in contrast to other fluid systems exhibiting localized states (Batiste et al.
2006; Lo Jacono et al. 2010; Beaume et al. 2011). This is a consequence of the
conserved integral V̄ of the zonal velocity v(x, z, t) in the presence of stress-free
boundary conditions at the top and bottom boundaries. Because of this conserved
quantity the amplitude equations describing the localized structure are non-local, and
the spatially periodic states are unstable at small amplitude even when they bifurcate
supercritically. This non-local aspect of the problem has four consequences: (i) it leads
to slanted snaking of the localized structures; (ii) it permits localized structures to
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be present outside the region of bistability between the conduction state and periodic
convection; (iii) it destabilizes the spatially periodic convection at small amplitude
even when the bifurcation to convection is supercritical; and (iv) it permits localized
states even when periodic convection bifurcates supercritically. These effects are all
a consequence of the interaction between convection and the zonal shear flow it
generates through the action of the Reynolds stresses associated with the convective
flow. We have seen explicitly how the zonal shear flow generated by this mechanism
can, under appropriate conditions, confine convection in the lateral direction thereby
creating the localized structures studied in this paper.

The presence of slanted snaking permitted by the boundary conditions we use
is significant since it greatly increases the Rayleigh number interval within which
localized states may be found. The behaviour that results is similar to the slanted
snaking present in convection in an imposed vertical magnetic field (Dawes 2007;
Lo Jacono et al. 2011, 2012). As emphasized by Cox & Matthews (2001) this is a
consequence of the conservation of imposed magnetic flux, a conserved quantity that
exerts a qualitatively similar effect on the properties of localized states as exerted
here by the requirement V̄ = 0. The effect of the conserved quantity persists as Γ
increases (see e.g. figure 4). However, the limit Γ →∞ differs from the situation on
the whole real line. In the latter case flux expulsion does not lead to an increase in the
ambient magnetic field and the problem becomes local. This is the case for rotating
convection as well: on the real line no prograde (anticyclonic) shear develops outside
the convecton. It follows that with increasing Γ the slant of the snaking branches must
decrease so that snaking in large domains ultimately becomes vertical. This is indeed
the case when the total poloidal kinetic energy E is plotted as a function of Ra (Lo
Jacono et al. 2011).

We emphasize that the wavelength within the convecton does not in general
correspond to the wavelength of a coexisting periodic state, even if such a state is
present. This is because the convecton wavelength is selected by the fronts on either
side; because the convecton is spatially localized the wavelength within can vary with
the applied Rayleigh number simply by adjusting the location of the fronts. This is
not the case for periodic convection which is hemmed in by the imposed period Γ :
for such states any increase in wavelength of one or more cells must be compensated
by a corresponding wavelength decrease of the remaining cells. On the other hand
centrifugal effects on a periodic cell state are usually neglected whenever LΩ2/g� 1,
where L ≡ λ is the dimensional wavelength. For convectons such as those described
here the corresponding requirement is more stringent, since the relevant length scale L
is now the convecton length, i.e. L = Nλ, where N is the number of cell pairs within
the structure.

In this work we have not studied the stability properties of the localized states
we have calculated. These are complicated by the presence of Galilean invariance
permitted by the stress-free boundaries we use, much as in non-rotating convection.
In addition, in three dimensions these boundary conditions are responsible for the
presence of a small-angle Küppers–Lortz instability (Clune & Knobloch 1993; Cox
& Matthews 2000). Nevertheless, the third-order non-local amplitude equation studied
in § 4 sheds light on the likely stability properties of the states we have found
(Norbury et al. 2007), as does the fifth-order non-local equation derived in § 5,
provided allowed perturbations are restricted to two dimensions.
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Appendix. Direction of branching of the convecton branches
We begin with (4.8) and (4.9) and compute the secondary branch of stationary

modulated solutions using weakly nonlinear theory, following Matthews & Cox (2000).
These equations have the stationary equilibrium (A,V)= (A0, 0), where without loss of
generality A0 =

√
2r/(1− ξ 2). We seek nearby solutions in the form

A= A0(1+ Ã(X, τ ; ε)), V = Ṽ(X, τ ; ε), (A 1)

where τ = ε2T2 and Ã = εÃ1 + ε2Ã2 + ε3Ã3 + · · ·, Ṽ = εṼ1 + ε2Ṽ2 + ε3Ṽ3 + · · ·. Here
ε is defined implicitly by the relation r = r1 + ε2r̃, where r = r1 denotes the location
of the secondary bifurcation. Since the imaginary part of Ã decays to zero we take
Ã to be real. At O(ε) we obtain a linear eigenvalue problem for r1 with solution
Ã1 = Ã11 cos lX, Ṽ1 = Ṽ11 sin lX, where

r1 = l2

2

(
1− ξ 2

3ξ 2 − 1

)
, Ṽ11 =− 4ξr1

l(1− ξ 2)
Ã11. (A 2)

In the following we assume that ξ 2 < 1 so that the periodic state (A0, 0) is
supercritical. Thus a secondary bifurcation requires that 3ξ 2 − 1> 0.

Second order

At O(ε2) we obtain

Ã2XX − 2r1Ã2 − ξ Ṽ2X = 3r1Ã2
1 + ξ Ã1Ṽ1X, (A 3)

Ṽ2X + 4ξr1

1− ξ 2
Ã2 =− 2ξr1

1− ξ 2
Ã2

1 + C2, (A 4)

where C2 is a constant of integration. The requirement that 〈Ṽ2X〉 = 0 determines C2

and leads to the solution

Ã2 = Ã20 + Ã22 cos 2lX, Ṽ2X = Ṽ22 cos 2lX, (A 5)

where

Ã20 = 7ξ 2 − 3
4(1− ξ 2)

Ã2
11, Ã22 = 1

4
Ã2

11, Ṽ22 =− 2ξr1

1− ξ 2
Ã2

11. (A 6)

Third order

At O(ε3) we obtain

Ã3XX − 2r1Ã3 − ξ Ṽ3X = 2r̃Ã1 + 6r1Ã1Ã2 + r1Ã3
1 + ξ Ã2Ṽ1X + ξ Ã1Ṽ2X, (A 7)

Ṽ3X + 4ξr1

1− ξ 2
Ã3 =− 4ξ r̃

1− ξ 2
Ã1 − 4ξr1

1− ξ 2
Ã1Ã2 + C3. (A 8)
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The requirement 〈Ṽ3X〉 = 0 establishes that C3 = 0. Elimination of terms proportional
to cos lX from the equation for Ã3 leads to the solvability condition

r̃ = l2

4

(
3− 7ξ 2

3ξ 2 − 1

)
Ã2

11, (A 9)

where l = 2π/Γ ′ and Γ ′ is defined in (4.26). It follows that the secondary branch is
supercritical (r̃ > 0) if ξ 2 < 3/7 and subcritical (r̃ < 0) if ξ 2 > 3/7, in agreement with
the numerical results in § 4. These results can also be obtained from a careful study
of the conditions (4.21) using the potential U[ρ] given in (4.20) with K1 = 0 (Kao &
Knobloch 2012).

We remark that Norbury et al. (2007) identify in their study of (4.8) and (4.9) only
one type of secondary bifurcation, a supercritical one. In their work the bifurcation
behaviour is described by the function

f (k)≡ L2

8E(k)K(k)
+ (1− k2/2)K(k)

E(k)
, (A 10)

where L is the domain length, and E(k) and K(k) are elliptic integrals of the first
and second kind. Their result is based on the claim that f (k) always attains a local
minimum for some k0 ∈ (0, 1) owing to strict convexity (f ′′(k) > 0 for all k ∈ (0, 1)).
However, an expansion of f (k) around k = 0 shows that

f (k)= 1+ L2

2π2 +
k4

16

(
1− L2

4π2

)
+ O(|k|4). (A 11)

Thus if L < 2π, f is non-decreasing and no local minimum is present. This in turn
implies that the fold in the secondary branch is absent, i.e. that the secondary branch
bifurcates subcritically. The condition L= 2π agrees with that determined by Matthews
& Cox (2000).
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